Fourth Edition

Fundamentals of Soil Behavior

James K. Mitchell

Kenichi Soga

Catherine O'Sullivan

WILEY

Fundamentals of Soil Behavior

Fundamentals of Soil Behavior

Fourth Edition

James K. Mitchell

Virgina Polytechnic Institute and State University, Blacksburg, VA, USA

Kenichi Soga

University of California, Berkeley, Berkeley, CA, USA

Catherine O'Sullivan

Imperial College London, London, UK

WILEY

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

The manufacturer's authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback ISBN: 9781119832317

Cover Design: Wiley

Set in 10.5/12pt Times by Straive, Pondicherry, India

DEDICATION - JAMES K. MITCHELL

While we are pleased that the fourth edition of this book is being published, we are sad that James (Jim) K. Mitchell, the first author of this book, was not able to see the completion of this endeavor. Jim passed away peacefully at his home in Massachusetts on December 17, 2023. We dedicate this fourth edition to his memory.

Jim was born in Manchester, New Hampshire, on April 19, 1930. He earned a Bachelor of Science degree from Rensselaer Polytechnic Institute in 1951, a Master of Science degree from the Massachusetts Institute of Technology (MIT) in 1953, and a Doctor of Science from MIT in 1956. After completing his studies at MIT, he worked for a year as a soil engineer at the US Army Engineer Waterways Experiment Station (now part of the US Army Engineering Research and Development Center) in Vicksburg, Mississippi. Subsequently, he spent 1956–1958 as an officer in the US Army Corps of Engineers, stationed in the United States and Germany.

In 1958, Jim joined the Civil Engineering faculty at University of California Berkeley (UC Berkeley) as assistant professor. Together with his senior Berkeley colleagues, he was instrumental in developing a world-class teaching and research program in geotechnical and geoenvironmental engineering. He was a consummate teacher and researcher, creating the first civil engineering course nationally that applied the sciences of soil mineralogy and chemistry to explain fundamental aspects of the engineering behavior of soil. He retired from UC Berkeley in 1993 and joined the faculty at Virginia Polytechnic Institute and State University (Virginia Tech) in 1994. He retired from Virginia Tech in 1999. While officially retired, Jim continued to be very active in guiding research, co-teaching courses, authoring papers, and contributing in other ways to the profession. He worked co-writing this edition until near the time of his death.

Throughout his career, Jim made significant contributions in the field of soil behavior and soil property evaluation. During his doctoral research at MIT, he conducted pioneering studies on the fabric of compacted clay. Additionally, he conducted early research at UC Berkeley on compacted clay, soil stabilization, and time-dependent aspects of soil behavior. Over the first two decades of his academic career, he provided a framework for considering soil behavior from micro-scale mineralogical and chemical principles to macro-scale engineering properties.

During the Apollo Missions 14 to 17 from 1969 to 1972, as the Principal Investigator for the NASA Apollo Lunar Soil Mechanics Experiment, he was responsible for designing, executing, and evaluating mission planning, astronaut activities on the moon's surface, and post-mission analyses. These efforts provided a comprehensive understanding of the properties and engineering behavior of lunar soil. This knowledge serves as a basis for improved scientific understanding and engineering applications as space exploration and development have now resumed.

After the 1989 Loma Prieta Earthquake in California, Jim conducted a study for the Mayor of San Francisco to investigate the reasons for the significant earthquake damage in the Marina District. He also provided recommendations on measures that property owners and the city could take to minimize future earthquake losses. Over the course of the next 20 years, Jim made a number of valuable contributions to the field of geotechnical earthquake engineering.

In his career, Jim worked as a consultant on significant engineering projects, many of which involved ground stabilization, ground improvement, and the rehabilitation and retrofit of existing dams and other infrastructure, especially for seismic safety. He has been recognized with numerous awards and honors, including his elections to the National Academy of Engineering (NAE, 1976) and the National Academy of Sciences (NAS, 1998). Moreover, he has received multiple awards from the American Society of Civil Engineers, such as the Middlebrooks Award four times, the Norman Medal twice, the H. Bolton Seed Medal (2004), and the OPAL Lifetime Achievement Award in Education (2006). He was also named a distinguished member of ASCE in 1993. Furthermore, he delivered notable lectures including the ASCE Terzaghi Lecture in 1984 and the British Geotechnical Society Rankine Lecture in 1991.

Jim was an exceptional friend and mentor to many of his colleagues and students. Despite his numerous accomplishments, he remained humble and always willing to learn something new. He was a role model to his students and always generous with his time. Jim was always willing to help his colleagues and students, often extending this help throughout their careers. He loved the outdoors and music and was an accomplished saxophone player, an avocation that he enjoyed throughout his life.

Jim is survived by his wife of 16 years, Holly Taylor, and by five children and their families. Jim and his late wife, Virginia "Bunny" Mitchell, raised their family while Jim was a professor at UC Berkeley. He is also survived by nine grandchildren and was a later-life father and grandfather to Holly's two daughters and grandson.

While Jim was not with us for the final stages of bringing the process of revising the book to completion, he actively and enthusiastically drove the project from January 2021 until December 2023, via weekly video calls across three time zones. He had read and commented on drafts of all 13 chapters that were close to the final published versions. It was an absolute privilege to work on this fourth edition with Jim.

KENICHI SOGA

Donald H. McLaughlin Chair in Mineral Engineering Distinguished Professor, Department of Civil and Environmental Engineering, University of California, Berkeley

CATHERINE O'SULLIVAN

Professor of Particulate Soil Mechanics Department of Civil and Environmental Engineering, Imperial College London.

August 2024

CONTENTS

	Preface	xii
	List of Symbols	XV
CHAPTER 1	INTRODUCTION	1
	 1.1 Soil Behavior in Civil and Environmental Engineering 1.2 Scope and Organization 1.3 Getting Started 	1 3
Part I Soil Forn	nation, Composition, Characterization	5
CHAPTER 2	SOIL FORMATION	7
	 2.1 Introduction 2.2 The Earth's Crust 2.3 Geologic Cycle and Geological Time 2.4 Rock and Mineral Stability 2.5 Weathering 2.6 Origin of Clay Minerals and Clay Genesis 2.7 Residual Soils 2.8 Sediment Erosion, Transport, and Deposition 2.9 Terrestrial Deposits 2.10 Mixed Continental and Marine Deposits 2.11 Marine Deposits 2.12 Chemical and Biological Deposits 2.13 Hard Soils and Soft Rocks 2.14 Fills 2.15 Tailings 2.16 Post-Depositional Changes in Sediments 2.17 Structure Development 2.18 Soil Profiles and Taxonomy 2.19 Concluding Comments Questions and Problems 	25 25 27 28 31 32 33 34 44 47
CHAPTER 3	SOIL MINEROLOGY	49
	 3.1 Importance of Soil Mineralogy in Geotechnical Engineering 3.2 Atomic Structure 3.3 Interatomic Bonding 3.4 Secondary Bonds 3.5 Crystals and their Properties 3.6 Factors Controlling Crystal Structures 3.7 Silicate Crystals 	49 50 51 51 52 55

	3.8	Surfaces	58
	3.9	Nonclay Mineral Particles	59
	3.10	Structural Units of Clay Minerals	60
	3.11		65
		Intersheet and Interlayer Bonding in the Clay Minerals	66
	3.13		67
	3.14		70
	3.15		73
	3.16	•	74
	3.17		76
	3.18	1	79
	3.19		82
	3.20	1.0	85
	3.21		86
	3.22		87
	3.22	Questions and Problems	87
CHAPTER 4	SOIL-	-WATER-CHEMICAL INTERACTIONS	89
	4.1	Introduction	89
	4.1	Nature of Ice and Water	9(
	4.3	Influence of Dissolved Ions on Water Structure	91
	4.4	Mechanisms for Soil–Water Interaction	92
	4.4	Observations and Evidence of Structure and Properties of	92
	7.5	Adsorbed Water	96
	4.6	Clays as Colloidal Particles	100
	4.7	Elements of Double-Layer Theory	100
	4.8	Electrostatic Forces from the DLVO Theory	105
	4.9	Influences of System Variables on the Double Layer	100
	4.10		107
	4.10	e e	10
	4.11	and Van Der Waals Forces	108
	4.12		110
	4.12		110
	4.13	Clay Particle Interactions Deduced from Molecular Simulations	114
	111		116
	4.14	C	
	4.15	E	117
	4.16		118
	4.17		119
		Questions and Problems	120
CHAPTER 5		DAMENTAL ENGINEERING CHARACTERIZATION	
	OF SO	DILS	123
	5.1	Introduction	123
	5.2	Particle Size Distribution in Granular Soils	126
	5.3	Morphological Characterization of Granular Soils	130
	5.4	Texture of Granular Soils	135
	5.5	Interparticle Friction	137
	5.6	Sand Particle Stiffness	146
	5.7	Sand Particle Strength	148
	5.8	Packing Density of Granular Soils and the Limits	152
	5.9	Particle Sizes of Clays and Influences of Exchangeable	102
	5.7	Cations and pH	155
	5.10	Atterberg Limits and Activity of Clays	157
	5.11		161
	5.12		162
		Effects of Organic Matter	165
		Concluding Comments	163
	J.1⁻T	Ouestions and Problems	167

CHAPTER 6	SOIL	FABRIC AND ITS MEASUREMENT	169
	6.1	Introduction	169
	6.2	Preparing Samples for Direct Observation of Fabric	171
	6.3	Direct Observation of Soil Fabric	174
	6.4	Image Processing and Analysis	185
	6.5	Use of Particulate Mechanics and Numerical Modelling to	
		Study Fabric	190
	6.6	Qualitative Assessment of Fabric	191
	6.7	Quantitative Assessment of Fabric	198
	6.8	Void Fabric of Cohesionless Soils	207
	6.9	Concluding Comments	208
		Questions and Problems	209
Part II Engine	ering Prop	perties and Behavior	211
CHAPTER 7	EFFE(CTIVE, INTERGRANULAR, AND TOTAL STRESS	213
	7.1	Introduction	213
	7.2	Principle of Effective Stress	213
	7.3	Force Distributions in a Particulate System	214
	7.4	Interparticle Forces in Silt, Sand, and Gravel-Sized Particles	216
	7.5	Interparticle Forces in Clay-Sized Particles	225
	7.6	Relating Interparticle Forces and Macroscale Stress	228
	7.7	Total Potentials and Heads	231
	7.8	Water Pressures	232
	7.9	Assessment of Intergranular Stress	234
		Assessment of Terzaghi's Effective Stress	236
		Effective Stress in Unsaturated Soils	239
	7.12	Concluding Comments Questions and Problems	241 241
CHAPTER 8	CONI	DUCTION PHENOMENA	243
	8.1	Introduction	243
	8.2	Flow Laws and Interrelationships	243
	8.3	Hydraulic Conductivity	245
	8.4	Flows Through Unsaturated Soils	260
	8.5	Thermal Conductivity	266
	8.6	Electrical Conductivity	269
	8.7	Diffusion	274
	8.8	Simultaneous Flows of Water, Current, and Salts Through	_, .
		Soil-Coupled Flows	276
	8.9	Quantification of Coupled Flows	279
	8.10	Electrokinetic Phenomena	284
	8.11	Transport Coefficients and the Importance of Coupled Flows	285
	8.12	Compatibility—Effects of Chemical Flows on Properties	289
	8.13	Electroosmosis	291
	8.14	Electroosmosis Efficiency	293
	8.15	Consolidation by Electroosmosis	296
	8.16	Electrochemical Effects	301
	8.17	Electrokinetic Remediation	303
	8.18	Self-Potentials	303
	8.19	Concluding Comments	305
		Questions and Problems	305

CHAPTER 9	VOLU	ME CHANGE BEHAVIOR	307
	9.1	Introduction	307
	9.2	Factors Controlling Resistance to Volume Change	308
	9.3	Fundamental Concepts in Volume Change Behavior of	310
	9.4	Fine-Grained Soils Consolidation	318
	9.5	Secondary Compression	322
	9.6	Evolution of Fabric During Compression	324
	9.7	Influence of Structure on Compression Behavior	325
	9.8	The Stresses in One-Dimensional Consolidation	327
	9.9	Volume Change Behavior Under Constant Stress	222
	0.10	Ratio Conditions	333
	9.10 9.11	Swelling and Shrinkage of Fine-Grained Soils Fundamental Concepts in Volume Change Behavior of	334
	9.11	Coarse-Grained Soils	336
	9.12	Particle Deformations and Breakage During Volume	220
		Change	339
	9.13	Collapsing Soils	343
	9.14	Influences of Mineralogical Detail in Soil Expansion	345
	9.15	Osmotic Pressure and Water Adsorption Influences on	240
	9.16	Compression and Swelling Summary	348 353
	9.10	Concluding Comments	354
	<i>7.11</i>	Questions and Problems	354
CILL PEED 10			2.55
CHAPTER 10	LOAD-	DEFORMATION BEHAVIOR AND STRENGTH	357
	10.1	Introduction	357
	10.2	General Characteristics of Strength and Deformation	358
	10.3	Critical State: A Useful Reference Condition	369
	10.4	State Variables to Express the Void Ratio and Confining	378
	10.5	Pressure Dependency Effective Strength of Sands	380
	10.6	Effective Strength of Clays	385
	10.7	Undrained Strength of Clays	388
	10.8	Undrained Strength of Sands	392
	10.9	True Cohesion	397
	10.10	Prefailure Deformation of Soil	399
	10.11 10.12	Linear Elastic Stiffness Transition from Elastic to Plastic States	402 410
	10.12	Evolution of Fabric During Soil Deformation	419
	10.14	Influence of Fabric and Structure on Deformation	,
		and Strength	425
	10.15	Intermediate Stress Effects and Stress Anisotropy	436
	10.16	Concluding Comments	441
		Questions and Problems	442
CHAPTER 11	SOME	SPECIAL FEATURES OF SOIL	
	BEHAV	VIOR	445
	11.1	Introduction	445
	11.2	Sensitivity and Its Causes Property Interrelationships in Sensitive Clays	445
	11.3 11.4	Property Interrelationships in Sensitive Clays Behavior After Peak and Strain Localization	456 461
	11.5	Residual State and Residual Strength	465
	1.0		

	11.6 11.7 11.8 11.9 11.10 11.11	Undrained Cyclic Loading and Liquefaction Response to Drained Cyclic Loading Engineering Behavior of Mixed Soils Elastic Wave Propagation Fracturing of Soils Dispersive Clays	469 480 482 484 487 491
	11.11		493
	11.12	Slaking	495
	11.13	Concluding Comments	495
	11.1.	Questions and Problems	495
		Questions and Troolems	1,75
CHAPTER 12	THERM	MAL EFFECTS ON SOIL BEHAVIOR	497
	12.1	Introduction	497
	12.2	Variations of Thermal Properties of Soil With State and	400
	100	Environmental Conditions	499
	12.3	Heat Transfer in Individual Particles and at Particle Contacts	503
	12.4	Temperature Effect on Volumetric Behavior	505
	12.5	Theoretical Analysis of Drained Conditions	510
	12.6 12.7	Thermal Pressurization in Undrained Conditions	513
	12.7	Theoretical Analysis of Undrained Conditions— Thermal Pressurization	515
	12.8		517
	12.8	Temperature Effect on Mechanical Characteristics Unsaturated Soil	523
	12.10	Thermo-Hydro-Mechanical Coupling	524
	12.10	Thermally Driven Moisture Flow	525
	12.11	An Introduction to Ground Freezing	526
	12.12	Ground-Freezing Processes	529
	12.13	Frost Heave and Ice Lens Formation	535
	12.15	Mechanical Behavior of Frozen Soil	538
	12.16	Concluding Comments	543
	12.10	Questions and Problems	544
CHAPTER 13	TIME F	EFFECTS ON STRENGTH AND DEFORMATION	545
	13.1	Introduction	545
	13.2	General Characteristics	546
	13.3	Fundamental Mechanisms of Time-Dependent Behavior:	550
	10.4	Rate Process Theory	553
	13.4	Bonding, Effective Stresses, and Strength	557
	13.5	Shearing Resistance as a Rate Process	562
	13.6	Interpreting Soil Behavior Using Rate Process Theory	562
	13.7	Rate Effects on Stress–Strain Relationships of Clay	565 570
	13.8 13.9	Rate Effects on Stress–Strain Relationships of Sand	572
	13.10	Rate Effects on Stiffness and Cyclic Response	574
	13.10	Creep Creep Rupture	586
	13.11	Stress Relaxation	592
	13.12	Aging	592
	13.14	Mechanisms for Soil Property Changes During Sand Aging	599
	13.15	Inertia Effects and Rapid Flows	603
	13.16	Concluding Comments	604
		Questions and Problems	604
	Refere	nces	607
	Index		651

PREFACE

The National Research Council (1989, 2006), its committee on Geological and Geotechnical Engineering (COGGE), and Lu and Mitchell (2019) have identified the role of geoengineering in addressing critical societal needs. These include, but are not limited to, (i) climate change mitigation and adaptation; (ii) waste management and environmental protection; (iii) energy and water resource identification, recovery, and storage; (iv) infrastructure development, rehabilitation, security, sustainability, and resilience; (v) construction efficiency and innovation; (vi) resource discovery and recovery; (vii) mitigation of natural hazards; and (viii) the exploration and development of new frontiers.

Solving problems and completing projects in these areas require a solid understanding of the composition, structure, and behavior of soils, as virtually all structures and facilities are built on, in, or with the Earth. The purpose of this book remains the same as for the prior three editions: to develop an understanding of the factors determining and controlling the engineering properties and behavior of soils under different conditions, with an emphasis on *why* they are *what* they are. We believe that this understanding and its prudent application are valuable assets in meeting these societal needs.

The format of the book has stayed mostly the same as in the first three editions. However, we have thoroughly reviewed and revised the contents, removing some material that is no longer essential and adding substantial new material to integrate recent important developments. We have also reorganized the material among chapters to improve the flow of topics and the logic of presentation. Additionally, we have separated thermal effects on soil strength and deformation behavior into a new chapter.

For this fourth edition, we are indebted to innumerable students and professional colleagues in the form of valuable comments, figures, photos, resources, and proof checking, which were made by Susan Burns, Bodhinanda Chandra, Wonjun Cha, Kecheng Chen, Sihua Chen, Jason DeJong, Chuao Dong, Connor Geudeker, Joana Fonseca, Joel Given, Gyubeom Shin, Shaivan Hirebelaguly Shivaprakash, Xin Huang, Tadahiro Kishida, Maksymilian Jasiak, Deyun Liu, Masahide Otsubo, Tokio Morimoto, Yohei Nakamichi, Vincenzo Nardelli, Aine Ní Bhreasail, Jose Salomon, David Taborda, Lauren Talbot, Howard Taylor, Tianchen Xu, and Yaobin Yang.

JKM thanks his wife, Holly, for her support and encouragement. KS thanks his wife, Mikiko, and daughter, Minami, for their encouragement and special support. COS thanks her husband, John, and son, Oisín, for their patience and support.

LIST OF SYMBOLS

a	area	B	Bishop's pore water pressure coefficient
a	coefficient for harmonics	B_q	grain breakage parameter
a	cross-sectional area of a tube	B_r	Hardin's relative breakage parameter
a	crystallographic axis direction or distance	c	cohesion
a	effective cluster contact area	c	cohesion intercept in total stress
a	volumetric air content	c	concentration
a	thermal diffusivity	c	molar concentration
a_c	effective area of interparticle contact	c	crystallographic axis direction or distance
a_m	coefficient of compressibility with respect to	c	undrained shear strength
	changes in water content	c	velocity of light
a_t	coefficient of compressibility with respect to	c'	cohesion intercept in effective stress
	changes in $(\sigma - u_a)$	c_0	equilibrium solution concentration, bulk solution
a_{v}	coefficient of compressibility in one dimensional		concentration
	compression	c_0^+	cation equilibrium solution concentration
\boldsymbol{A}	activity	c_0	anion equilibrium solution concentration
\boldsymbol{A}	area	c_a	mid-plane anion concentration
\boldsymbol{A}	creep rate parameter	c_e, c'_e	Hvorslev's cohesion parameter
\boldsymbol{A}	cross section area normal to the direction of flow	cec	cation exchange capacity
\boldsymbol{A}	Hamaker constant	c_{ic}, c_c	mid-plane cation concentration
\boldsymbol{A}	long-range interparticle attractions	c_{i0}	equilibrium solution concentration
\boldsymbol{A}	Skempton's pore pressure parameter	c_m	mid-plane concentration
\boldsymbol{A}	thermal diffusivity	c'_m	mid-plane anion concentration
\boldsymbol{A}	van der Waal's constant	c_u	undrained shear strength
A'	short-range attractive stress	c_v	coefficient of consolidation
\overline{A}	pore pressure parameter = $\Delta u/\Delta(\sigma_1 - \sigma_3)$	c_w	concentration of water
A_0	concentration of charges on pore wall	C	capacitance
A_0	surface charge density per unit pore volume	C	chemical concentration
A_c	solid contact area	C	clay content by weight
A_f	area of flow passages	C	composition
\overline{A}_f	pore pressure parameter at failure	C	electrical capacitance
A_h	Hamaker constant	C	short-range repulsive force between contacting
A_i	state parameter in disturbed state		particles
A_i	total surface area of the <i>i</i> th grain	C	soil compressibility
A_i^0	state parameter at equilibrium	C	speed of light in vacuum or in air, 3×10^8 m/sec
$A_s^{'}$	specific surface area per unit weight of solids	C	volumetric heat
Å	Angstrom unit = 1×10^{-10} m	C	volumetric heat capacity
b	coefficient of harmonics	C_c	compression index
b	crystallographic axis direction or distance	C_c^*	intrinsic compression index
b	intermediate stress parameter	C_l	compressibility of pore fluid
B	parameter in rate process equation = $X(kT/h)$	C_n	coordination number

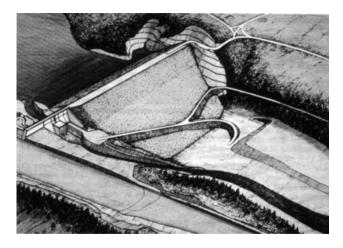
CD		E	V
CR	compression ratio	E	Young's modulus
CRR	cyclic resistance ratio	E	voltage, electrical potential
C_s	compressibility of a solid	E_{50}	secant modulus at 50 percent of peak strength
C_s	shape coefficient	$\frac{E_{max}}{\overline{E}}$	small strain Young's modulus
C_s	swelling index	\overline{E}_r	rebound modulus
C_u	coefficient of uniformity	ESP E(a)	exchangeable sodium percentage
C_u	compressibility of soil skeleton by pore	$E(\beta)$	distribution function for interparticle
C	pressure change		contact plane normals
C_W	compressibility of water	f	force acting on a flow unit
$C_{\alpha}, C_{\alpha e}$		f	frequency
d	diameter	f_i	fraction of particles between two sizes
d	distance	f^n	normal force
d_{10}	sieve size that 10% of the particles by weight	f^t	tangential force
1	pass through	F	force of electrostatic attraction
d_{60}	sieve size that 60% of the particles by weight	F	formation factor
1	pass through	F	free energy
dx	incremental horizontal displacement at peak	F	freezing index
dy	incremental vertical displacement at peak	F	pressure-temperature parameter
D	diameter of particle	F	tensile strength
D	dielectric constant, relative permittivity	F, F_0	Faraday constant = 96,500 coulombs
$D \ D$	diffusion coefficient deviator stress	\overline{F}	partial molar free energy on adsorption
$\frac{D}{\overline{D}}$	stress level = D/D_{max}	F_d	free energy of the double layer per unit area at
		A F	a plate spacing of 2d
D_0	molecular diffusivity of water vapor in air self-diffusion coefficient	ΔF	free energy of activation
D_0		F_E	electrical force per unit length
D_{50}	sieve size that 50% of the particles by weight pass through	F_H	hydraulic seepage force per unit length
$D_{e\!f\!f}$	effective diameter	FI	causing flow
D_{eV}	isothermal vapor diffusivity		fabric index
D_{eV} D_{max}	strength at the beginning of creep	F_{∞}	free energy of a single non-interacting double layer
D_R, D_r	relative density	σ	acceleration due to gravity
D_s	characteristic grain size	$\overset{g}{G}$	shear modulus
D_{TV}	thermal vapor diffusivity	G	source-sink
D^*	effective diffusion coefficient	G_{1000}	shear modulus measured after 1000 minutes of
e	electronic charge = 4.8029×10^{-10} esu	O 1000	constant confining pressure
	$= 1.60206 \times 10^{-10}$ coulomb	G_g	shear modulus of grains
e	void ratio	G_{max}	small strain shear modulus
e_0	initial void ratio	G_s	secant shear modulus
e_{100}^*	intrinsic void ratio under effective vertical stress	G_s	specific gravity of soil solids
100	of 100 kPa	G_{SC}	specific gravity of clay particles
e_c	intracluster void ratio	G_{SG}	specific gravity of the granular particles
e_{cs}	void ratio at critical state	h	head or head loss
$e_{\it ff}$	void ratio at failure	h	relative humidity of air in pores
e_g, e_G	void ratio of the granular phase, granular	h	Planck's constant = 6.624×10^{-27} erg sec
	void ratio	h_m	matrix or capillary head
e_{ini}	initial void ratio	h_s	osmotic or solute head
e_L	void ratio at liquid limit	H	maximum distance to drainage boundary
e_{max}	maximum void ratio	H	stress history
e_{min}	minimum void ratio	H	thickness
e_p	intercluster void ratio	H	total head
e_T	total void ratio	$\underline{\underline{H}}$	water transport by ion hydration
E	experimental activation energy	\overline{H}	partial molar heat content
E	potential energy	i	gradient

;	unit vaatar	L	latent heat of fusion
<i>l</i>	unit vector		
l_c :	chemical gradient	L	length
i_e	electrical gradient	L_{ij}	coupling coefficient or conductivity coefficient
\dot{l}_h	hydraulic gradient	LI	liquidity index
i_t	thermal gradient	LI_{eq}	equivalent liquidity index
I	electrical current	LL	liquid limit
I	intensity	L_s	latent heat of fusion of water
I_1, I_2, I_3	stress invariants	m	slope of relationship between log creep strain
I_G	coefficient of shear modulus increase		rate and log time
	with time	m	total mass per unit total volume
I_R	dilatancy index	m	total number of pore classes
I_{v}	void index	m_c	mass of clay
J_c	chemical flow rate	m_s	compressibility of mineral solids under hydro-
J_D	chemical flow rate		static pressure
J_i	flux of constituent i	m_s'	compressibility of mineral solids under concen-
J_i	value of property i in clay-water system	~	trated loadings
J_s	flow rate of salt relative to fixed soil layer	m_{ν}	compressibility
J_{v}°	volume flow rate of solution	m_w	compressibility of water
J_w	flow rate of water	m_w	mass of water
J_i^n	value of property <i>i</i> in pure water	$M^{"}$	constrained modulus or coefficient of volume
k	Boltzmann's constant = 1.38045×10^{-23} J/°K		change
k k	hydraulic conductivity, hydraulic permeability	M	metal cations
k	mean coordination number of a grain	M	monovalent cation concentration
k	selectivity coefficient	n	concentration, ions per unit volume
k	thermal conductivity	n	harmonic number
_	true cohesion in a solid	n	integer
k 1-		n	number of grains in an ideal breakage plane
k_0	pore shape factor		porosity
k_c	osmotic conductivity	n	total number of pore classes
k_e	electro-osmotic conductivity	n	unspecified atomic ratio
k_h	hydraulic conductivity	n	concentration in external solution
k_i	constant characteristic of a property	n_0	
k_r	relative permeability	n_1	number of bonds per unit of normal force
k_s	saturated conductivity	n_e	effective porosity
<i>k</i> (<i>S</i>)	saturation dependent hydraulic conductivity	n_i	Refractive index in <i>i</i> direction $A = \frac{1}{2} \cdot \frac{1}{2$
k_t	thermal conductivity	N	Avogadro's number = $6.0232 \times 10^{23} \text{ mole}^{-1}$
$k_{ heta}$	unsaturated hydraulic conductivity	N	coordination number
K	absolute permeability or intrinsic permeability	N	monovalent cation concentration
K	bulk modulus	N	normal load or force
K	double-layer parameter = $(8\pi n_0 e^2 v^2 / DRT)^{1/2}$	N	number of moles of hydration water
K	pore shape factor		per mole of ion
K	rate of increase in tip resistance in logarithmic	N	number of particles per cluster in
	time		a cluster structure
K_0	coefficient of lateral earth pressure at rest	N	number of weeks since disturbance
K_a	coefficient of active earth pressure	N	total number of harmonics
K_c	principal stress ratio	N_1	number of load cycles to cause liquefaction
K_c	principal stress ratio during consolidation	N_e	number of load cycles
K_d	distribution coefficient	N_G	normalized shear modulus increase with time
K_p^a	coefficient of passive earth pressure	N_s	moles of water per unit volume of sediment
K_{so}^{r}	stress-optical material constant	N_w	moles of salt per unit volume of sediment
K_{α}^{so}	wavelengths of monochromatic radiation	OCR	overconsolidation ratio
l	length	p	constant that accounts for the interaction
l	material thickness	-	of pores of various sizes
l	total number of pore classes	p	hydrostatic pressure
	r · · · · · · · · · · · · · · · · · · ·	-	- · · · · · · · · · · · · · · · · · · ·

p	matrix or osmotic pressure	R	electrical resistance
p	pressure	R	gas constant = 1.98726 cal/°K-mole
p	partial pressure of water vapor in pore space		8.31470 joules/°K-mole
p_{\perp}	vertical consolidation pressure		82.0597 cm ³ atm/°K-mole
p'	mean effective pressure	R	long-range repulsion pressure
p_o	present overburden pressure	R	ratio of cations and anions
p_a	atmospheric pressure	R	source or sink mass transfer term
p_c	preconsolidation pressure	R	sphere radius
p_{cs}'	mean effective pressure at critical state	R	tube radius
p_s	osmotic or solute pressure	R_d	retardation factor
p_z	gravitational pressure	R_H	hydraulic radius
P	area	R_p	average particle radius
P	bond strength per contact zone	$R(\theta)$	radius at angle θ
P	concentration of divalent cations	S	slope of stress relaxation curve
P	power consumption	s_u	undrained shear strength
P	total gas pressure in pore space	S	entropy
P	total pressure	S	fraction of molecules striking a surface that
P	wetted perimeter		stick to it
P_c	capillary pressure	S	number of flow units per unit area
\hat{P}_c	capillary pressure at air entry	S	partial molar entropy
P_f	injection pressure that causes clay to fracture	S	saturation
PI	plasticity index	S	specific surface area per unit volume of solids
P_{inj}	injection pressure	S	structure
PL PL	plastic limit	S	swell
P_N	probability distribution of normal contact	\overline{S}	partial molar entropy
1 /V	force	S_0	specific surface per unit volume
PR	peak ratio	20	of soil particles
P_s	swelling pressure	SAR	sodium adsorption ratio
P_T	probability distribution of tangential	S_t	sensitivity
1 1	contact force	S_u	undrained shear strength
a	degree of connectivity between	S_w	water saturation ratio
q	water-conducting pores	S_x , S_y , S_z	projected areas of interparticle contact surfaces
a	deviator stress	b_X , b_Y , b_Z	average thickness
q	flow rate	t	tetrahedral coordinations
q	hydraulic flow rate	t t	time
q	CPT tip resistance	t t	transport number
q_c	deviator stress at critical state	,	reference time
q_{cs}	deviator stress at failure	t_1 t_f	time to failure
q_f	hydraulic flow rate		time for adsorption of a monolayer
q_h	osmotic flow rate	T	intercluster tortuosity
q_{hc}	electro-osmotic flow rate	T	shear force
q_{he}	concentration of solids	T	temperature
q_i	heat flow rate	T	time factor
q_t		T_0	initial temperature
q_{vap}	vapor flux density		
q_w	water flow rate	T_c	intracluster tortuosity
Q	electrical charge	T_c	temperature at consolidation
Q	quantity of heat	T_{FP}	freezing temperature
r	pore radius	T_s	surface temperature
r	radius	T_s	temperature of shear for consolidated undrained
r_k	ratio of horizontal to vertical hydraulic	T	direct shear tests
	conductivities	T_V	time factor
r_p	pore size	и	excess pore pressure
$\stackrel{r_p}{R}$	tube radius	и	ionic mobility
K	coefficient of roundness	и	midplane potential function

		_	
и	pore water pressure	Z	elevation or elevation head
и	pore water pressure in the interparticle zone	Z	number of molecules per second striking a surface
и	pressure	\boldsymbol{Z}	potential function = $ve\psi_0/kT$
и	thermal energy	α	angle between b and c crystallographic axes
u^*	effective ionic mobility	α	directional parameter
u_0	initial pore pressure	α	disturbance factor
u_0	pore water pressure remote from the interparti-	α	geometrical packing parameter
	cle zone	α	inclination of failure plane to horizontal plane
U_f	pore pressure at failure	α	slope of the relationship between logarithm of
U	average degree of consolidation		creep rate and creep stress
ν	flow velocity	α	thermal ratio
ν	frequency of activation	α	tortuosity factor
ν	ionic valance	$lpha_G$	normalized strain rate parameter
ν	settling velocity	α_s	thermal expansion coefficient of soil solids
ν	specific volume = $1 + e$	$lpha_{ST}$	thermal expansion coefficient of soil structure
v_{ave}	average flow velocity	α_w	thermal expansion coefficient of water
$v_{ave} \ v_c^0$	specific volume of the pure clay	β	angle between a and c crystallographic axes
v_{cs}	specific volume at critical state	β	birefringence ratio
v_h	apparent water flow velocity	β	disturbance factor
\ddot{V}	area	β	geometrical packing parameter
V	difference in self-potentials	β	rotation angle of yield envelope
V	electrical potential	β_0, β_i	constant characteristic of the property
V	speed	7 0 7 7 1	and the clay
V	valence	χ	Bishop's unsaturated effective stress parameter
V	voltage	δ	clay plate thickness measured between
\overline{V}	volume		centers of surface layer atoms
V_0	initial volume	δ	deformation parameter in Hertz theory
V_A	attractive energy	δ	displacement, distance
V_{DR}	volume of water drained	δ	solid fraction of a contact area
V_{GS}	volume of granular solids	δ	relative retardation
V_m	total volume of soil mass	δ_p	particle eccentricity distance
V_p	compression wave velocity	ε^p	dielectric constant, permittivity
$\stackrel{r_p}{V_R}$	repulsive energy	ε	porosity
V_s	shear wave velocity	ε	strain
V_s	volume of solids	$\dot{arepsilon}$	strain rate
V_w	partial molar volume of water	ϵ_0	permittivity of vacuum, $8.85 \times 10^{-12} \text{ C}^2/(\text{Nm}^2)$
V_w	volume of water	ε_0	axial strain
w W	water content	$\dot{\varepsilon}_a$	vertical strain rate in one dimensional
	liquid limit	ϵ_a	consolidation
w_L, w_l	plastic limit	c	strain at failure
W_P, W_p W	water content	$arepsilon_f$	minimum strain rate
W	width	$\dot{arepsilon}_{\min}$	volumetric strain that would occur if drainage were
		$arepsilon_{rd}$	e
W	fluid volume		permitted
W	water transport	ϵ_s	deviator strain
W	weight	$\dot{oldsymbol{arepsilon}}_{s}$	deviator strain rate
X	distance from the clay surface	$\stackrel{{m arepsilon}_v}{\cdot}$	volumetric strain
X	distance	$\dot{arepsilon}_{v}$	volumetric strain rate
X	friction coefficient	ΔE	energy dissipated per cycle per unit volume
X_i	driving force	ϕ	friction angle
У	potential function = $ve\Psi/kT$	ϕ_{μ}	local electrical potential
Z	direction of gravity	ϕ'_{h}	friction angle in effective stress
Z	distance from drainage surface	ϕ^b	angle defining the rate of increase in shear
Z	electrolyte		strength with respect to soil suction
Z	ionic valence	ϕ_c	characteristic friction angle

1/	friction angle at critical state	θ	volumetrie weter content
ϕ'_{crit}	friction angle at critical state		volumetric water content volumetric water content at full saturation
ϕ_e, ϕ'_e	Hyorslev friction parameter	$egin{array}{c} heta_m \ heta_r \end{array}$	residual water content
ϕ_f'	friction angle corrected for the work of dilation	θ_s	volumetric water content at full saturation
ϕ'_m	peak mobilized friction angle		bulk dry density
$oldsymbol{\phi}_r'$	residual friction angle	ρ	charge density
ϕ_{repose}	angle of repose	ρ	mass density
$oldsymbol{\phi}_{v}$	apparent specific volume of the water in a clay/	ρ	bulk dry density
	water system of volume V	ρ_d	resistivity of saturated soil
ϕ_μ,ϕ_μ'	intergrain sliding friction angle	ρ_T	density of water
Φ	dissipation function	ρ_w	resistivity of soil water
γ	activity coefficient	$ ho_W \ \sigma$	area occupied per absorbed molecule on a surface
γ	angle between a and b crystallographic axes	σ	double-layer charge
γ	unit weight	σ	electrical conductivity
γ	shear strain rate	σ	entropy production
γ_c	applied shear strain or cyclic shear	σ	normal stress
	strain amplitude	σ	surface tension of water
c_d	dry unit weight	σ	surface charge density
Γ	double layer charge	σ	total stress
Γ	specific volume intercept at unit pressure	σ'	effective stress
η	dynamic viscosity	σ_0'	initial effective confining pressure
η	fraction of pore pressure that gives effective	σ_1	major principal total stress
	stress	σ_1	tensile strength of the interface bond
η_0	initial anisotropy	σ_1'	major principal effective stress
κ	swelling index	σ_{1c}	major principal stress during consolidation
κ'	real relative permittivity	σ_{1f}	major principal stress at failure
κ''	polarization loss, imaginary relative permittivity	σ'_{1ff}	major principal effective stress at failure
λ	compression index	σ_2'	intermediate principal effective stress
λ	correction coefficient for frost depth prediction		minor principal total stress
	equation	$\sigma_3 \ \sigma_3'$	minor principal effective stress
λ	damping ratio		minor principal stress during consolidation
λ	decay constant	σ_{3c}	minor principal effective stress at failure
λ	pore size distribution index	σ'_{3ff}	axial effective stress
λ	separation distance between successive positions	σ'_a	
	in a structure	σ'_{ac}	axial consolidation stress
λ	wave length of X ray	σ_{as}	interfacial tension between air and solid
λ	wave length of light	σ_{aw}	interfacial tension between air and water
λ_{cs}	critical state compression index	σ_c	crushing strength of particles tensile strength of cement
μ	chemical potential	σ_c	electrical conductivity
μ	coefficient of friction	σ_e	equivalent consolidation pressure
μ	dipole moment	σ_e'	effective AC conductivity
μ	fusion parameter	$\sigma_{e\!f\!f}$	partial stress increment for fluid phase
μ	Poisson's ratio	σ_f	effective normal stress on shear plane
μ	viscosity	σ_f'	
M	critical state stress ratio	$\sigma_{\!f\!f} \ \sigma_{\!f\!f}'$	normal total stress on failure plane
ν	Poisson's ratio		normal effective stress on failure plane
$ u_b $	Poisson's ratio of soil skeleton	σ_h	electrical conductivity due to hydraulic flow
$\pi hinspace heta$	osmotic or swelling pressure	σ'_{h0}	initial horizontal effective stress
U	angle of bedding plane relative to the maximum principal stress direction	σ'_i	effective stress in the <i>i</i> -direction
А	contact angle	σ'_i	intergranular stress
$rac{ heta}{ heta}$	geometrical packing parameter	σ_i'	isotropic consolidation
θ	liquid-to-solid contact angle	σ_{iso}	isotropic total stress
θ	orientation angle	σ_{max}	maximum principal stress
U	onenanon ungie	σ_{min}	minimum principal stress

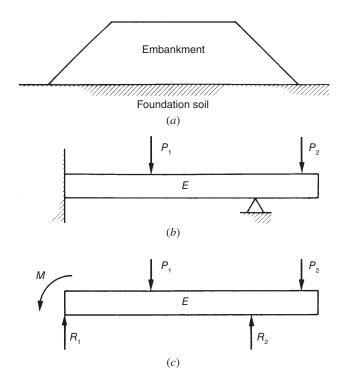

CHAPTER 1

Introduction

1.1 SOIL BEHAVIOR IN CIVIL AND ENVIRONMENTAL ENGINEERING

Civil and environmental engineering includes the conception, analysis, design, construction, operation, and maintenance of a diversity of structures, facilities, and systems. All are built on, in, or with soil or rock. The long-term properties and behavior of these materials have major influences on the success, economy, sustainability, resilience, and safety of the work. Geoengineers play a vital role in these projects and are also concerned with virtually all aspects of environmental control, including water resources, water pollution control, waste disposal and containment, and the mitigation of such natural disasters as floods, earthquakes, landslides, and volcanoes. Furthermore, detailed understanding of the behavior of earth materials is essential for mining, for energy resources development and recovery, and for scientific studies in virtually all the geosciences.

To deal properly with the earth materials associated with any of these problems and projects requires knowledge, understanding, and appreciation of the importance of geology, materials science, materials testing, and mechanics. Geotechnical engineering is concerned with all of these. Environmental concerns—especially those related to groundwater, the safe disposal and containment of wastes, and the cleanup of contaminated sites—have spawned yet another area of specialization; namely, environmental geotechnics, wherein chemistry and biological science are important. The impacts of geochemical and microbiological phenomena on the composition, properties, and stability of soils and rocks are now known to be significant.



Successful design, construction, and long-term performance of a complex earth embankment dam such as this requires knowledge and understanding of all four dimensions of soil behavior—volume change properties, stress and deformation characteristics, flow of fluid through the materials, and changes in these properties with time.

Students in civil engineering are often quite surprised, and sometimes quite confused, by their first course in engineering with soil. After studying statics, mechanics, and structural analysis and design, wherein problems are usually quite clear-cut and well defined, they are suddenly confronted with situations where this is no longer the case. A first course in soil mechanics may not, at least for the first half to two-thirds of the course, be mechanics at all. The reason for this is simple: analyses and designs are useless if the boundary conditions and material properties are improperly defined.

Acquisition of the data needed for analysis and design on, in, and with soils and rocks can be far more difficult and uncertain than when dealing with other engineering materials. There are at least three reasons for this.

- 1. No Clearly Defined Boundaries: An embankment resting on a soil foundation is shown in Fig. 1.1a, and a cantilever beam fixed at one end is shown in Fig. 1.1b. The free body of the cantilever beam, Fig. 1.1c, is readily analyzed for reactions, shears, moments, and deflections using standard methods of structural analysis. However, what are the boundary conditions, and what is the free body for the embankment foundation?
- 2. Variable and Sometimes Unknown Material Properties: The properties of most construction materials (e.g., steel, plastics, concrete, aluminum, and wood) are ordinarily known within rather narrow limits and usually can be specified to meet certain needs. Although this may be the case in

Figure 1.1 The problem of boundary conditions in geotechnical problems: (a) embankment on soil foundation, (b) propped cantilever beam, and (c) free body diagram for its analysis.

construction using earth and rock fills, at least part of every geotechnical problem involves interactions with in situ soil and rock. No matter how extensive and expensive any boring and sampling program is, only a very small percentage of the subsurface material is available for observation and testing. In most cases, more than one stratum is present, and conditions are nonhomogeneous and anisotropic.

3. Stress and Time-Dependent Material Properties:
Soils and some rocks have mechanical properties that depend on both the stress history and the present stress state. This is because the volume change, stress-strain, and strength properties depend on stress transmission between particles and particle groups. These stresses are mostly generated by body forces and boundary stresses and not by internal forces of cohesion, as is the case for many other materials. In addition, the properties of most soils change with time after placement, exposure, and loading. Because of these stress and time dependencies, any given geotechnical problem may involve not just one or two but an almost infinite number of different materials.

Adding to the above three factors the fact that soil and rock properties may be susceptible to influences from changes in temperature, pressure, water availability, and chemical and biological environment, one might conclude that successful application of mechanics to earth materials is an almost hopeless proposition. It has been amply demonstrated, of course, that this is not the case; in fact, it is for these very reasons that geotechnical engineering offers such a great challenge for imaginative and creative work.

Modern theories of soil mechanics, the capabilities of modern computers and numerical analysis methods, and our improved knowledge of soil physics and chemistry make possible the solution of a great diversity of static and dynamic problems of stress deformation and stability, the transient and steady-state flow of fluids through the ground, and the long-term performance of earth systems. Nonetheless, our ability to analyze and compute often exceeds our ability to understand, measure, and characterize a problem or process. Thus, understanding and the ability to conceptualize soil and rock behavior become more important.

The objectives of this book are to provide a basis for the understanding of the engineering properties and behavior of soils and the factors controlling changes with time, and to indicate why this knowledge is important and how it can be used in the solution of geotechnical and geoenvironmental engineering problems.

It is easier to state what this book is not, rather than what it is. It is not a book on soil or rock mechanics; it is not a book on soil exploration or testing; it is not a book that teaches analysis or design; and it is not a book on geotechnical engineering practice. Excellent books and references dealing with each of these important areas are available.

It is a book on the composition, structure, and behavior of soils as engineering materials. It is intended for students, researchers, and practicing engineers who seek a more in-depth knowledge of the nature and behavior of soils than is provided by classical and conventional treatments of soil mechanics and geotechnical engineering.

Here are some examples of the types of questions that are addressed in this book:

- What are soils composed of? Why? How did they get the way they are?
- How does geological history influence soil properties?
- How are engineering properties and behavior related to composition?
- What is clay?
- Why are clays plastic?
- What are friction and cohesion?

- What is *effective* stress? Why is it important?
- Why does soil creep and exhibit stress relaxation?
- Why do some soils swell while others do not?
- Why does stability failure sometimes occur at stresses less than the measured strength?
- Why and how are soil properties changed by disturbance?
- How do changes in environmental conditions change soil properties?
- What are some practical consequences of the prolonged exposure of clay containment barriers to waste chemicals?
- What controls the rate of flow of water, heat, chemicals, and electricity through soil?
- How are the different types of flows through soil interrelated?
- Why is the residual strength of soil often much less than its peak strength?
- How do soil properties change with time after deposition or densification and why?
- How do temperature changes influence the mechanical properties of soils?
- What is soil liquefaction, and why is it important?
- What causes frost heave, and how can it be prevented?
- What clay types are best suited for sealing waste repositories?
- What biological processes can occur in soils and why are they important in engineering problems?

Developing answers to questions such as these requires the application of concepts from chemistry, geology, biology, materials science, and physics. Principles from these disciplines are introduced as necessary to develop the background for the phenomena under study. It is assumed that the reader has a basic knowledge of applied mechanics and soil mechanics, as well as a general familiarity with the commonly used engineering properties of soils and their determination.

1.2 SCOPE AND ORGANIZATION

The topics covered in this book begin with consideration of soil formation in Chapter 2 and soil mineralogy and compositional analysis of soil in Chapter 3. Water may make up more than half the volume of a soil mass, it is attracted to soil particles, and the interactions between water and the soil surfaces influence soil behavior. Interrelationships between soil, water, and chemicals are developed in Chapter 4.

Fundamentals of soil characterization for engineering purposes are covered in Chapter 5. Because a soil mass is composed of an assemblage of discrete particles that may be of different sizes and shapes and arranged in many ways, the specifics of these arrangements and their properties, termed the soil *fabric*, is an essential consideration. Observing and quantifying these fabrics is the subject of Chapter 6. This is followed in Chapter 7 by an analysis of the transmission of interparticle forces and total and effective stresses and a discussion of why they are important.

The remaining chapters draw on the preceding developments for explanations of phenomena and soil properties of interest in geotechnical and geoenvironmental engineering. The next three chapters deal with those soil properties that are of primary importance to the solution of most geoengineering problems: the flows of fluids, chemicals, electricity, and heat and their consequences in Chapter 8; volume change behavior in Chapter 9; and deformation and strength behavior in Chapter 10. Some special and unique features of soil behavior, arising because of the particulate nature, different fabrics, biogeochemical interactions, and changing environmental conditions are discussed in Chapter 11. In recent years, both the importance and understanding of temperature effects and heat flow in the ground have increased significantly, and these topics are addressed in Chapter 12. Finally, Chapter 13 on time effects on strength and deformation recognizes that soils are not inert, static materials and that how a given soil responds under different rates of loading or at some time in the future may be quite different than how it responds today.

1.3 GETTING STARTED

Find an article about a problem, a project, or issue that involves some aspect of geotechnical soil behavior as an important component. The article can be from the popular press, from a technical journal or magazine, such as the *Journal of Geotechnical and Geoenvironmental Engineering* of the American Society of Civil Engineers, *Géotechnique*, *The Canadian Geotechnical Journal*, *Soils and Foundations*, *ENR (Engineering News-Record)*, or elsewhere.

- 1. Read the article and prepare a one-page *informative abstract*. (An informative abstract summarizes the important ideas and conclusions. A *descriptive abstract*, on the other hand, simply states the article contents.)
- 2. Summarize the important geotechnical issues that are found in the article and write down what you believe you should know about to understand them well enough to solve the problem, resolve the issue, advise a client, and the like. In other words, what is in the article that you believe the subject matter in this book should prepare you to deal with? Do not exceed two pages.

PART I

Soil Formation, Composition, Characterization