OUANTUM OPTICS DEVICES ON A CHIP

Edited By

Inamuddin, Tariq Altalhi, Naif Ahmed Alshehri, and Jorddy Neves Cruz

WILEY

Quantum Optics Devices on a Chip

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

Quantum Optics Devices on a Chip

Edited by

Inamuddin Tariq Altalhi Naif Ahmed Alshehri

and

Jorddy Neves Cruz

WILEY

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781394248575

Cover image: Generated with AI using Adobe Firefly

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pı	efac	e	xvii
1	Qua	antum-Limited Microwave Amplifiers	1
	Dny	vandeo Pawar, Bhaskara Rao, Ajay Kumar,	
	Raj	esh Kanawade and Arul Kashmir Arulraj	
	1.1	Introduction	1
	1.2	Why Microwave Amplifiers?	
	1.3	Quantum-Limited Amplifiers	2 3 4
	1.4	Types of Microwave-Based Amplifiers	4
		1.4.1 Conventional Electronic Amplifiers or High-Electron	l
		Mobility Transistor (HEMT) Amplifiers	5
		1.4.2 Superconducting-Based Amplifiers	6
		1.4.2.1 Josephson Junction	6
		1.4.2.2 Concept of Parametric Amplifier	8
		1.4.3 Microwave Amplification by Stimulated Emission	
		of Radiation (MASER)	8
	1.5	Discussion on Quantum-Limited Microwave Amplifiers	9
	1.6	Conclusion and Outlook	16
		References	18
2		roduction to Quantum Optics	25
	Jam	iie Vovrosh	
	2.1	` 1	25
	2.2	, , , ,	26
	2.3	, ,	31
		References	32
3	Car	bon Nanotubes with Quantum Defects	35
		sya G. Chandran, Loganathan Muruganandam	
		Rima Biswas Introduction	35
	3.2	Various Types of Defects in Carbon Nanotube	38

vi Contents

		3.2.1	Capped	Carbon Nanotube (Hemispherical Caps)	38
		3.2.2	Intramo	lecular Nano-Junction	
			(Bent C	arbon Nanotube)	39
		3.2.3	Irradiat	ed Carbon Nanotube	41
		3.2.4	Layered	Carbon Nanotube	42
		3.2.5	Coalesc	ence of Carbon Nanotubes	44
		3.2.6	Welding	g Carbon Nanotubes	45
		3.2.7	Doping	Carbon Nanotubes	45
		3.2.8	sp³ Qua	ntum Defect (Organic Color-Center)	46
	3.3	Conc	lusions		50
		Refer	ences		50
4	Qua	ntum	Dots to N	Medical Devices	55
	Mol	hamma	ıd Harun	-Ur-Rashid, Israt Jahan and Abu Bin Imran	
	4.1	Intro	duction		56
	4.2	Synth	esis and (Characterization of QDs	57
		4.2.1		al Synthesis Methods	57
				Colloidal Synthesis	57
				Organometallic Synthesis	58
				Sol-Gel Method	60
				Microwave-Assisted Synthesis	61
		4.2.2	,	Properties and Characterization Techniques	62
			4.2.2.1	1	62
				Optical Properties	65
			4.2.2.3	•	65
			4.2.2.4	Electrical Properties	65
			4.2.2.5	, , ,	65
		4.2.3		Modification for Biocompatibility	65
			4.2.3.1		66
			4.2.3.2	0 0	66
			4.2.3.3	0 1	66
			4.2.3.4	Ligand Exchange Processes	67
			4.2.3.5	Biocompatibility Testing	68
	4.3	Quan		s in Biomedical Imaging	69
		4.3.1		cent Properties and Their Use in Imaging	69
			4.3.1.1	Unique Fluorescent Properties	69
			4.3.1.2	Advantages in Imaging	70
			4.3.1.3	Techniques Employing Quantum Dot	
				Fluorescence	71
			4.3.1.4	Biocompatibility and Targeting	71
			4.3.1.5	Clinical and Research Applications	73

	4.3.2	In Vivo	vs. <i>In Vitro</i> Imaging Applications	73
			In Vitro Imaging Applications	74
			In Vivo Imaging Applications	75
		4.3.2.3	Comparative Considerations	76
	4.3.3	Advanta	ages Over Traditional Imaging Agents	76
		4.3.3.1	Enhanced Fluorescent Properties	76
		4.3.3.2	Improved Targeting and Specificity	77
			Versatility and Broad Application Range	77
		4.3.3.4	Long-Term Tracking Capabilities	77
4.4	QDs i	n Drug I	Delivery Systems	78
	4.4.1		ism of Drug Delivery	79
		4.4.1.1	Targeting and Cellular Uptake	79
		4.4.1.2	Drug Release	79
			Endosomal Escape	79
		4.4.1.4	Real-Time Tracking	79
	4.4.2	Current	: Advancements in QD-Mediated Therapies	81
		4.4.2.1	Targeted Drug Delivery	81
		4.4.2.2	Photodynamic and Photothermal Therapies	83
			Gene Therapy	84
		4.4.2.4	Immunotherapy	85
		4.4.2.5	Overcoming Multidrug Resistance (MDR)	86
4.5	QDs i	in Diagno	ostic Applications	88
	4.5.1	Bioimag	ging	88
	4.5.2	Fluores	cence Resonance Energy Transfer (FRET)	89
	4.5.3	Diagnos	stic Assays	90
4.6	Ethica	al, Safety,	and Regulatory Considerations	92
	4.6.1	Ethical	Considerations	92
	4.6.2	Safety C	Concerns	94
			ory Considerations	95
	4.6.4	Environ	imental Impact	96
	4.6.5	Future I	Directions	97
4.7	Conc	lusion		98
	Ackn	owledgm	ents	99
	Refer	ences		99
The	Quant	um State	e of Light	111
	-		der, Gurjaspreet Singh,	
		_	peiro and Brij Mohan	
5.1		duction		111
5.2	Quan	tum State	es of Light	112
	5.2.1		zation of Optical Field	112

5

viii Contents

	5.3	Quan	tum Superposition	114
	5.4	Quan	itum Entanglement	115
	5.5	Cohe	rent Light	116
	5.6	Photo	onic Integration	117
	5.7	Photo	on Combs	119
	5.8	Photo	onic-Chip-Based Frequency Combs	120
	5.9	Doub	ole Photon Combs	121
	5.10	Appli	ications	122
		5.10.1	Quantum Key Distribution (QKD)	122
	5.11	Quan	tum Computing	124
	5.12	Quan	tum Metrology	124
			itum Imaging	125
		Chall	· ·	126
	5.15		lusion and Outlooks	127
			owledgments	127
		Refer	ences	128
6	Qua	ntum	Computing with Chip-Scale Devices	133
	P. M	[allika	, P. Ashok, N. Sathishkumar,	
	Har	ishcha	nder Anandaram, N.A. Natraj and Sarala Patchal	а
	6.1	Quan	tum Computing: An Introduction to the Field	134
		6.1.1	Overview of Quantum Computing	134
		6.1.2	Historical Development	134
			Topography of Quantum Technology	135
			Quantum Chip Scale Devices	135
	6.2		amentals of Chip-Scale Quantum Devices	136
		6.2.1	ı	
			of Quantum Communication	136
			Principles of Quantum Superposition	137
			Quantum Entanglement in Chip-Scale Systems	138
			Quantum Bits (Qubits) and Chip Integration	139
	6.3		-Scale Quantum Architectures	140
		6.3.1	1	140
			Quantum Circuits	141
		6.3.3	Key Aspects Pertaining to Quantum Circuits	142
		6.3.4	Challenges and Advances in Chip-Scale	
			Architectures	143
	6.4		cations of Chip-Scale Quantum Computing	145
		6.4.1	Materials Science and Drug Discovery	145
		6.4.2	Financial Modeling and Risk Analysis	145
		6.4.3	Artificial Intelligence and Machine Learning	147

Contents	ix

		6.4.4	Cryptography and Cybersecurity	148
			Logistics and Optimization	149
	6.5		-Scale Quantum Computing: Challenges	
			Suture Directions	150
		6.5.1	Challenges and Opportunities	151
		6.5.2	Future Opportunities of Quantum Computing	
			Chip-Scale Devices	152
	6.6	Conc	lusion	154
		Refer	ences	155
7			Enhanced THz Spectroscopy: Bridging the Gap	
			Chip Devices	159
			oane and Tsuneyuki Ozaki	
			duction	160
	7.2		diations Generation and Detection	163
			Photo-Conductive Antenna	167
		7.2.2	0	169
			The Photo-Dember Effect	170
			Optical Rectification for THz Generation	171
			Electro-Optical Sampling	172
			Wide Band Generation and Sensing	172
			Quasi-Phase-Matching	173
			Quantum Cascade Laser THz Source	174
	7.3		nertz Spectroscopy and Imaging	174
		7.3.1	1 17	175
			7.3.1.1 Principle	176
		7.3.2	1 17	177
		7.3.3	8 8	179
			7.3.3.1 T-Ray Imaging	179
			7.3.3.2 Reflection Imaging with T-Rays	180
		-	7.3.3.3 THz Near-Field Imaging	181
	7.4		nt Developments in THz Technology	181
			THz Spectroscopy	181
			THz-TDS	182
			Medical Applications	182
			THz Near-Field Imaging	183
	7.5		re Outlooks in THz Technology	184
	7.6		lusion	186
			owledgment	187
		Refer	ences	187

8				crofluidics for Developing	
			d Sensors		199
				ılika Srivastava, Subhojyoti Sinha,	
				tish Lakkakula, Shailendra K. Saxena	
			l M. Shriv	vastav	
	8.1		duction		200
				or Sensor Technologies	201
	8.3			ed Sensors	204
		8.3.1		Plasmon Resonance for Chip-Based Sensing	205
				Prism-Based SPR Sensor	206
				Fiber Optic-Based SPR Sensor Chip	210
			8.3.1.3	Grating Coupled- SPR for Chip-Based	
				Sensing	212
			8.3.1.4	Waveguide-Based SPR Sensing	213
		8.3.2		ed Surface Plasmon Resonance	
				Based Sensor Chips	215
		8.3.3		Enhanced Raman Scattering	
			-	p-Based Sensor	217
	8.4		•	l Future Scope	219
	8.5	Sumn	•		221
		Refere	ences		221
9	Sili	con Ph	otonics in	n Quantum Computing	227
	<i>M</i> . <i>I</i>	Rizwan	, A. Ayub	, M.A. Waris, A. Manzoor, S. Ilyas	
	and	F. Waq	<i>qas</i>		
	9.1	Intro	duction		228
	9.2	Overv	view of Q	uantum Computing	229
		9.2.1	Quantur	m Physics and Qu-Bits	229
		9.2.2	Quantur	m Gates	230
	9.3	Signif	ficance of	Photonics in Quantum Computing	230
		9.3.1	Quantur	m-Light-Sources	231
		9.3.2	Tunable	Quantum-Photonic-Components	232
		9.3.3	Single-P	Photon-Detectors (SPDs)	232
		9.3.4	Chip Wi	rapping and System Amalgamation	232
	9.4	Funda	amentals (of Silicon Photonics	233
		9.4.1	Quantur	m Computing Technologies	234
		9.4.2	Scalable	Methods for Silicon Photonic Chips	234
	9.5	Single	e-Photon	Sources	236
	9.6	Quan	tum Phot	on Detection	238
	9.7	Mode	-Division	Multiplexing (MDM) and Wavelength-	
		Divisi	ion Multip	plexing (WDM)	238

	9.8	Cryogenic Practices	239
	9.9	Chip Interconnects	240
	9.10	Chip-Based Quantum Communication	241
	9.11	QKD in Silicon Photonics	241
		9.11.1 Entanglement-Based QKD	244
		9.11.1.1 Entanglement-Based Protocols	245
		9.11.1.2 Working on Entanglement-Based QKD	245
		9.11.2 Superposition-Based QKD	246
		9.11.3 CV-QKD (Continuous-Variable QKD)	247
		9.11.4 Coherent State QKD	247
		9.11.5 Multiplexing Quantum Key Distribution (QKD)	248
		9.11.6 Types of Multiplexing QKD	248
		9.11.6.1 FDM (Frequency-Division Multiplexing)	248
		9.11.6.2 TDM (Time-Division Multiplexing)	249
		9.11.6.3 PDM (Polarization-Division Multiplexing)	249
		9.11.6.4 OAMM (Orbital Angular Momentum	
		Multiplexing)	249
		Application of Silicone Photonics in Quantum Computing	250
		Multiphoton and High-Dimensional Applications	252
	9.14	Quantum Error Correction	255
		Quantum State Teleportation	257
		Challenges and Outcomes	261
		Low Loss Component	261
	9.18	Photon Generation	262
	9.19	Deterministic Quantum Operation	263
		Frequency Conversion	264
	9.21	Conclusion	264
		References	265
10	Rare	e-Earth Ions in Solid-State Devices	273
	M. F	Rizwan, K. Zaman, S. Ahmad, A. Ayub and M. Tanveer	
	10.1	Introduction	274
	10.2	Basic Aspects of Rare Earth Ions in Solids	275
	10.3	Role of Rare Earth Ions in Quantum Optics	276
	10.4	Rare Earth Ion-Based Devices	277
		10.4.1 Quantum Computer	278
	10.5	Quantum Photonic Materials and Devices	
		with Rare-Earth Elements	279
	10.6	Recent Advancements in Low-Dimensional Rare-Earth	
		Doped Material	280

xii Contents

	10.7	Rare Ea	arth Ions Insulator	281
	10.8	Spectra	al Hole Burning (SHB) and Spectral Recording	
		and Pro	ocessing	283
		10.8.1	Optical Communication and Processing	283
	10.9	Spectro	oscopy and the Description of Materials	283
		10.9.1	Overcoming Blazing Spectral Holes	284
	10.10	Utilizir	ng a SHB "Dynamic Optical Filter"	
		for Las	er Line Narrowing	284
	10.11	Examp	le of Ultrasonic-Optical Tissue Imaging	285
		10.11.1	Elements of Ultrasound Optical Tissue (USO)	
			Imaging System	287
	10.12	Applica	ations of Solid-State Optical Devices	288
		Conclu		289
		Referen	nces	290
11	Chip-	Scale Q	uantum Memories	295
	_		nd Muhammad Husnain	
	11.1	Introdu	action	296
		11.1.1	Quantum Memories (QMs)	297
		11.1.2		297
		11.1.3	Classical Memories (CMs) and Quantum	
			Memories (QMs)	298
	11.2	Scalabl	e Quantum Memories (QMs)	299
		11.2.1	Some Fruitful Properties of QMs on Chip	299
		11.2.2	Performance Criteria	301
			11.2.2.1 Fidelity	302
			11.2.2.2 Efficiency	302
			11.2.2.3 Storage Time	302
			11.2.2.4 Bandwidth	302
			11.2.2.5 Multimodality	303
			11.2.2.6 Wavelength	303
			11.2.2.7 Robustness and Scalability	303
	11.3		nges in the Development of Scalable QMs	303
	11.4	-	mental and Theoretical Approaches Towards QMs	304
	11.5		ms for Chip-Scale QMs	306
			Atomic Gases	306
		11.5.2	0	307
		11.5.3	8	
			on Chip	307
			11.5.3.1 Trapped Ions in Solids	308

Contents	X111
CONTENTS	AIII

			11.5.3.2	Material Stability and Coherence Time	308
			11.5.3.3	Quantum Error Correction	308
			11.5.3.4	Integration with Quantum Repeaters	309
			11.5.3.5	Compatibility with Quantum	
			(Communication Protocols	309
	11.6	Rare-Ea	rth Ions Do	oped in Solids	309
	11.7	Nitroge	n Vacancy ((NV)	310
	11.8	Quantu	m Dots in t	he Development of QMs	311
	11.9	III-V G	roups Mate	rials-Based Platform	312
	11.10	Role Gr	aphene in (QM	313
	11.11	Hybrid	Quantum N	Memories	314
	11.12	Chip-B	ased QMs ii	n the Improvements of Quantum Key	
		Distrib	ıtion (QKD)	315
		11.12.1	Enhancing	g QKD Performance	315
	11.13	Role of	Optics and	Photonics in the Field	
			-Scale QMs		316
	11.14		Developme	nt in QMs	318
		Referen	ces		319
12	Integ	rated Lis	ght Sources	•	323
	_	-	-	nad Nayab Ahmad	
		Introdu			324
	12.2	Types o	f Integrated	Light Sources	325
		• -	_	actor Diode Lasers and LEDs	325
		12.2.2	White GaN	N LEDs	326
		12.2.3	Quantum 1	Dots and Nanowire Emitters	326
		12.2.4	Path-Entar	ngled Photon Sources on Nonlinear	
			Chips		327
		12.2.5	Silicon Pho	otonics Light Sources	328
		12.2.6	Heterogen	eously Integrated III-V/Si Lasers	329
		12.2.7	Single Pho	ton Sources in Integrated Photonics	330
		12.2.8	Tunable an	nd Narrowband Light Sources	331
		12.2.9	Micro-Cav	rity and Photonic Crystal Resonator	
			Sources		332
		12.2.10	Micro-Fab	ricated Solid-State Dye Laser	334
		12.2.11		Doped Waveguides for Integrated	
			Light Gene		334
	12.3	_	-	ources for Quantum Information	
		Process	~		335
		12.3.1		Quantum Chips	336
		12.3.2	Photons as	Good Quantum Hardware	336

xiv Contents

		12.3.3	Photonic Technologies	337			
			Protocols for Quantum Communication	337			
	12.4	Integration Techniques for Light Sources on Chips					
		12.4.1	Heterogeneous Integration	337 337			
			12.4.1.1 Components in Integration	338			
			12.4.1.2 Applications	339			
		12.4.2	Monolithic Integration	339			
			12.4.2.1 Components in Integration	339			
			12.4.2.2 Applications	339			
		12.4.3	On-Chip Waveguides	340			
			12.4.3.1 Applications	341			
		12.4.4	Hybrid Integration	341			
			12.4.4.1 Applications	342			
		12.4.5	Epitaxial Growth	342			
			12.4.5.1 Methods of Epitaxial Growth	343			
			12.4.5.2 Applications	343			
		12.4.6	Nanowire or Quantum Dot Integration	344			
			12.4.6.1 Applications	344			
	12.5	Challenges and Future Perspectives					
		12.5.1	Challenges	345			
		12.5.2	2.5.2 Future Perspectives				
	12.6	Conclu		347			
		nces	347				
13	Integ	rated O	ptical Design Principles	351			
	Sharl	Sharbari Deb and Santanu Mallik					
		Abbrev	viations	352			
	13.1	Introdu	uction	352			
	13.2	Brief History of Optical Design Evolution					
		Brief History of Optical Design Evolution Role of Integrated Optical Design in Modern Technology					
	13.4						
		13.4.1	Basic Concepts in Optical Physics Relevant				
			to Integration	355			
		13.4.2	Waveguides: Types, Properties, and How				
			They Guide Light	355			
			13.4.2.1 Types of Waveguides	356			
			13.4.2.2 Characteristics of Waveguides	356			
			13.4.2.3 Light Guidance Principles	357			
	13.5	Design	Principles of Integrated Optical Devices	358			

13.5.1	Beam Pro	pagation Method for Integrated Optical			
	Design		358		
13.5.2	Couplers,	Splitters, and Combiners: Design			
	and Func	tion	359		
	13.5.2.1	Optical Coupler	360		
	13.5.2.2	Optical Splitter	361		
	13.5.2.3	Optical Combiner	361		
13.5.3	Integrated Lasers and Amplifiers: Principles				
	and Applications				
13.5.4	Modulators and Switches				
	13.5.4.1	Optical Modulators	363		
	13.5.4.2	Optical Switches: Mechanisms and			
		Applications	364		
Advanced Integrated Optical Systems					
13.6.1	Photonic Crystals				
13.6.2	Quantum	Optics and Integration	365		
13.6.3	Nonlinear Optical Devices				
13.6.4	Integration of Optical Sensors				
Fabrication Techniques for Integrated Optical Devices					
13.7.1	Lithography and Etching 3				
13.7.2	Wafer Bonding and Dielectric Deposition				
13.7.3	Challenges in Fabrication				
Testing and Characterization of Integrated Optical Systems					
13.8.1	Measurement Techniques 3				
13.8.2	Character	rization of Waveguides, Resonators,			
			370		
13.8.3	Reliability	y and Performance Testing	370		
Conclusion					
References					
Index					
	13.5.2 13.5.3 13.5.4 Advance 13.6.1 13.6.2 13.6.3 13.6.4 Fabrica 13.7.1 13.7.2 13.7.3 Testing 13.8.1 13.8.2 13.8.3 Conclustree Reference	Design 13.5.2 Couplers, and Func 13.5.2.1 13.5.2.2 13.5.2.3 13.5.3 Integrated and Appl: 13.5.4 Modulated 13.5.4.1 13.5.4.2 Advanced Integrated 13.6.1 Photonic 13.6.2 Quantum 13.6.3 Nonlinea 13.6.4 Integration Fabrication Techn 13.7.1 Lithograp 13.7.2 Wafer Bo 13.7.3 Challenge Testing and Chara 13.8.1 Measurer 13.8.2 Character and Activ 13.8.3 Reliability Conclusion References	Design 13.5.2 Couplers, Splitters, and Combiners: Design and Function 13.5.2.1 Optical Coupler 13.5.2.2 Optical Splitter 13.5.2.3 Optical Combiner 13.5.3 Integrated Lasers and Amplifiers: Principles and Applications 13.5.4 Modulators and Switches 13.5.4.1 Optical Modulators 13.5.4.2 Optical Switches: Mechanisms and Applications Advanced Integrated Optical Systems 13.6.1 Photonic Crystals 13.6.2 Quantum Optics and Integration 13.6.3 Nonlinear Optical Devices 13.6.4 Integration of Optical Sensors Fabrication Techniques for Integrated Optical Devices 13.7.1 Lithography and Etching 13.7.2 Wafer Bonding and Dielectric Deposition 13.7.3 Challenges in Fabrication Testing and Characterization of Integrated Optical Systems 13.8.1 Measurement Techniques 13.8.2 Characterization of Waveguides, Resonators, and Active Devices 13.8.3 Reliability and Performance Testing Conclusion References		

The topic of the book, "Quantum Optics Devices on a Chip," is situated at the intersection of several disciplines and industries, driving advancements in quantum technology and integrated photonics. In the realm of disciplinary development, quantum optics is a branch of physics that focuses on the behavior and properties of light at the quantum level. It explores the fundamental principles of quantum mechanics applied to optics, including the wave–particle duality of light and the quantized nature of energy. Quantum optics plays a crucial role in understanding and harnessing phenomena such as entanglement, superposition, and quantum interference, which are essential for quantum information processing, communication, and sensing.

The development of quantum optics devices on a chip represents a significant breakthrough in the field. Chip-scale integration involves designing and fabricating optical devices, such as waveguides, modulators, detectors, and light sources, on a micro- or nanoscale chip. This miniaturization enables the integration of multiple components on a single chip, leading to compact, efficient, and scalable quantum optical systems. The impact of quantum optics devices on a chip extends beyond the realm of physics and has far-reaching implications across various industries. In quantum computing, the ability to manipulate and control quantum states of light on a chip paves the way for the development of quantum processors capable of solving complex problems at unprecedented speeds. Quantum communication benefits from chip-scale devices by enabling secure transmission of information through quantum key distribution protocols. Quantum sensing applications, such as magnetometry, gyroscopy, and biosensing, can benefit from miniaturized, high-performance devices integrated on a chip. Moreover, the integration of quantum optics on a chip has implications for the field of integrated photonics. It allows for the seamless integration of quantum optical functionalities with existing photonic circuits, enabling the development of hybrid systems that leverage the advantages of both classical and quantum technologies. This integration holds promise for

applications in telecommunications, data communication, and optical signal processing.

Overall, the development of quantum optics devices on a chip represents a significant step forward in the advancement of quantum technology. It brings together principles from physics, materials science, engineering, and computer science to enable the practical implementation of quantum phenomena for a wide range of applications across industries. The book serves as a comprehensive guide to this rapidly evolving field, providing insights and knowledge to researchers, scientists, and industry professionals seeking to explore and contribute to the disciplinary and industrial development of quantum optics devices on a chip. The book's content is carefully structured to appeal to a wide audience, from graduate students and researchers entering the field of quantum optics to experienced scientists and engineers who want to expand their knowledge. The comprehensive and accessible approach will enable readers from diverse scientific backgrounds to understand fundamental concepts, explore cutting-edge research, and visualize the future prospects of on-chip quantum optics devices. The chapters included in the book are summarized below:

Chapter 1 reviews different quantum-limited microwave amplifiers for various quantum technological applications. The chapter details current progress related to quantum-limited microwave amplifiers, types of amplifiers, their design and structure, advantages and limitations, and future development. The outlook discusses controlling operating parameters, materials geometry, and fabrication techniques.

Chapter 2 provides a brief introduction to the field of quantum optics. It includes an overview of key scientific developments that led to the field of quantum optics and a discussion of the physical phenomena covered within the field.

Chapter 3 covers the significance of carbon nanotubes in molecular electronics. It emphasizes several intriguing ways to alter the fundamental properties of the carbon network by adding defects and examines their creation in depth.

Chapter 4 introduces quantum dots (QDs) and their medical applications, detailing synthesis methods, properties, and biocompatibility. It highlights their superior fluorescence for imaging, roles in drug delivery, and diagnostic uses. Ethical, safety, regulatory, and environmental issues are discussed, emphasizing QDs' potential in diagnostics and therapy while addressing associated challenges.

Chapter 5 describes fascinating areas in quantum optics and quantum information, revealing unique quantum properties with essential

characteristics and principles governing the quantum state of light. The study discusses superposition, entanglement, and quantum coherence, techniques for generating and manipulating light quantum states, and applications in communication, computing, and metrology.

Chapter 6 details the historical development of quantum technology, the fundamentals of quantum chip-scale devices, and the revolution that these technologies bring to the fabrication of next-generation devices. Various quantum chip-scale architectures and circuits are discussed in detail to elaborate on their effectiveness in device fabrication. The benefits, challenges, and financial aspects of investing in quantum chip-scale devices have opened the market for innovation and research. With the latest technologies like artificial intelligence and machine learning, this industry is poised to deliver better and more customer-friendly products.

Chapter 7 delves into the cutting-edge realm of quantum-enhanced THz spectroscopy and the integration of on-chip devices. It explores the generation and detection of THz radiation, emphasizing the pivotal role of femtosecond lasers, photoconductive antennas, and quantum cascade lasers. Advanced THz spectroscopy techniques, including terahertz time-domain and time-resolved spectroscopy, are discussed in detail, showcasing their potential to unravel dynamic material properties. The chapter also highlights innovative THz imaging methodologies, particularly near-field imaging, and groundbreaking biomedical applications such as early-stage cancer detection. Concluding with a forward-looking perspective, the chapter provides insights into future breakthroughs and opportunities, inviting interdisciplinary collaboration to push the boundaries of this dynamic field.

Chapter 8 delves into the fascinating world of optical devices found on microchips incorporating plasmonics for sensor applications. The literature primarily focuses on plasmonic-based sensors, including SPR, LSPR, and SERS sensors. It explores their scope, advantages, and limitations.

Chapter 9 traces the evolution of quantum computing, highlighting silicon photonics' pivotal role in scalability and efficiency. Focusing on practical implementation, it explores scalable methods for silicon photonic chips and their advancements. In chip-based quantum communication, particularly quantum key distribution (QKD), integrated photonics enables real-world applications. The chapter discusses diverse QKD approaches, including entanglement-based and superposition-based methods, and introduces continuous-variable QKD for secure metropolitan communication. Addressing challenges, it covers quantum multiplexing techniques, emphasizing solutions to issues like spontaneous Raman scattering noise. Examining the intersection of silicon photonics and quantum computing,

the narrative highlights applications in communication, imaging, and error correction. Persistent challenges like quantum noise and decoherence underscore the need for innovative solutions, showcasing silicon photonics' pivotal role in advancing secure communication and unlocking unprecedented computational power.

Chapter 10 navigates through the intricate landscape of quantum nanophotonics, with a spotlight on the indispensable role of rare earth ions. Key themes include the growth techniques and material topologies associated with rare earth-doped materials, the fundamental aspects of rare earth ions in solid-state materials, and their pivotal role in quantum optics. The chapter unveils applications spanning quantum devices, low-dimensional materials, insulators, and spectral hole burning. The convergence of ultrasound and optics in ultrasonic-optical tissue imaging and the transformative impact of solid-state optical devices in diverse industries further enrich the narrative.

Chapter 11 delves into the evolution of chip-scale quantum memories, highlighting their scalability, rapid communication, and low power consumption. It explores theoretical and experimental approaches, development challenges, and the significant roles of quantum dots and photonic methods in advancing chip-scale memories.

Chapter 12 discusses the integrated light sources that revolutionize applications with high efficiency. Several III-V-based inorganic semiconductor lasers, quantum dots, and germanium-on-silicon lasers are discussed, along with a tunable quantum light source, enabling on-demand tuning of spatial photon-pair correlations and entanglement in a nonlinear directional coupler for practical quantum information applications.

Chapter 13 delves into the progressive advancements of integrated optical systems, focusing on their significant influence on telecommunications, computing, and sensing technologies. It comprehensively examines the design principles, fabrication methodologies, and essential components such as waveguides, modulators, and amplifiers, underscoring their pivotal role in enhancing optical communication and information processing functionalities.

The Editors

Quantum-Limited Microwave Amplifiers

Dnyandeo Pawar^{1*}, Bhaskara Rao², Ajay Kumar³, Rajesh Kanawade³ and Arul Kashmir Arulraj¹

¹Centre for Materials for Electronics Technology (C-MET), Thrissur, Kerala, India ²Departamento de Física, Facultad de Ciencias Naturales Matemática Y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile ³Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India

Abstract

Weak microwave signals and their amplification are gaining a great interest for numerous applications, especially in quantum-based applications. Lowest possible noise is ideal for quantum technologies. At present, quantum-limited microwave amplification is done through various types of amplifiers such as high-electron mobility transistors (HEMT), superconductor-based amplifiers, and MASER (microwave amplification by stimulated emission of radiation)-based amplifiers. Each technique has its unique advantages and limitations. In this chapter, current progress related to quantum-limited microwave amplifier, types of amplifiers, designs and structures, advantages and limitations, and future development are discussed.

Keywords: Amplifiers, qubit, resonators, microwave amplification, microwave photon, superconductor, Josephson junction

1.1 Introduction

At present, detection and amplification of very weak microwave signals are attaining an interest for various quantum-based applications such as RADAR, space technology, communication, quantum computing, etc. For such amplification, the signal is usually very weak, and therefore it might

^{*}Corresponding author: pawar.dnyandeo@gmail.com

get lost in the main signal due to the noise present. Microwave photons in the range of 3 to 12 GHz are very important for quantum applications as they reach the energy of a single photon. Single microwave photon at a few gigahertz level can be controlled with much better accuracy than THz photon [1–4]. There are numerous advantages of microwave photonics over quantum optics. Microwave components are much stable than optical components when they cool down. Additionally, an interface of electronics with microwaves is much simpler and faster than the optical way. Lastly, it is easy to pump the non-linear and non-dissipative Josephson junction with microwave.

The fundamental laws of quantum physics tell us that "any phase-preserving amplifier requires to add at least half a noise photon to the output signals in the high-gain limit". It is called "standard quantum limit" [5]. So, the device design for quantum applications must be processed such that the signal is near the quantum limit.

Basic amplifiers such as high-electron mobility transistors (HEMT), superconducting based amplifiers, and microwave amplification by stimulated emission of radiation (MASER)-based amplifiers have been explored for such applications [6]. Here the current development in the field of quantum-limited microwave amplifiers is presented.

1.2 Why Microwave Amplifiers?

It is known that every device has some fundamental detection limit generally decided by the mechanism of the device. Normally, a circuit that increases the input signal is called an amplifier. So, amplification is a process that increases the magnitude of the signal. Generally, a non-linear component such as a field effect transistor is used for this purpose (Figure 1.1). In this case, the gain of the device is used and given by the ratio of an output signal to an input signal [7, 8].

For fast signal attenuation, higher sensitivity is preferred because of the large reduction of power. This is highly required when the output signal is lower in magnitude and therefore is potentially required in several applications including space applications, RADAR, cosmos, microwave, and quantum-based applications. Normally, the signal level is faint at around tens to hundreds of microwave photons. Due to added noise, it becomes challenging to detect the main signal [3]. The concept of microwave amplifier was proposed by A. L. Cullen in 1959 [9]. It was studied that the regular transference of power among a pump tone and a signal drifting in

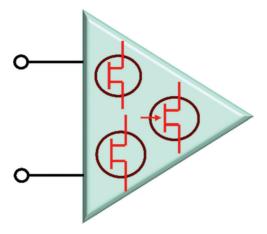


Figure 1.1 Typical diagram of an amplifier.

a transmission line constituted of a voltage-reliant capacitance per unit length. After this, the concept of using a non-linear component made using a superconducting material into a transmission line was established [10].

1.3 Quantum-Limited Amplifiers

Normally for electrical systems, the signal is recorded in the form of voltage and it is not hard to amplify the weak signal also. The weak signal can be amplified using an electrical amplifier. The microwave signal with low noise can be detected by a conventional electrical amplifier mainly based on HEMT. It has the capability to go below several critical temperatures up to 5 K and add around ~10 noisy photons/signal in 1 s at 1-Hz bandwidth. This could provide around 40 dB of amplified signal and noise of around tens of photons. However, it will further reduce the signal-to-noise ratio by the order of 50–100, and hence the noise also comes into play [11, 12]. In the case of quantum-based applications, there is a tremendous need to decrease the noise signal significantly. There is another alternative based on superconducting amplifiers that mainly work at an ultralow temperature. It goes up to ~10 to 25 mK and thus significantly amplifies the microwave signal with 0.5 noise photons/second at 1-Hz bandwidth. However, an operation is complicated and less suitable [13]. One more approach on microwave amplification by stimulated emission of radiation (MASER) mainly based on parametric material ions fixed in a crystallite like ruby and under static magnetic field and microwave pumping, population

4 QUANTUM OPTICS DEVICES ON A CHIP

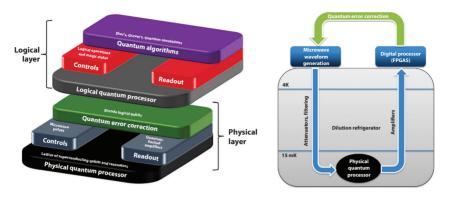


Figure 1.2 Use of a microwave amplifier and its typical experimental setup for quantum applications (reproduced with permission from [14]).

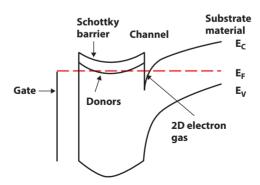
inversion occurs, which emits the stimulated amplified microwave radiation. Typically, it works at a low temperature of around ~ 1 K and has few noise photons for 1-Hz bandwidth [12]. The importance of an amplifier in a superconducting quantum computing system with logical qubits was also reviewed elsewhere (Figure 1.2) [14].

As per quantum physics, any phase-preserving amplifier is essential to add at least half a noise photon in high-gain limit, and this is called standard quantum limit (SQL). Caves has defined the quantum limit of performance of a phase-preserving amplifier which normally amplifies all the inputs equally. For Caves' limit, the half of a photon at the signal frequency gets added and doubles the noise power of the input signal [15]. Therefore, this is called "quantum limited". Now, with the current rise in quantum-based technological applications, there is a special need of these types of quantum-limited amplifiers.

1.4 Types of Microwave-Based Amplifiers

Normally, there are three kinds of amplifiers adopted for amplification, namely:

- 1. Conventional electronic amplifiers or high-electron mobility transistor (HEMT) amplifiers
- 2. Superconducting circuit-based amplifiers

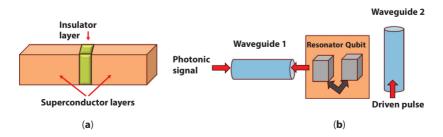

- a. Superconductor quantum interference device (SQUID) amplifier
- b. Radio frequency single-electron transistors
- c. Quantum Josephson parametric amplifier
- d. Kinetic inductance parametric amplifier
- 3. Solid-state MASER-based amplifier

1.4.1 Conventional Electronic Amplifiers or High-Electron Mobility Transistor (HEMT) Amplifiers

The HEMT was first proposed and studied by Mimura at Fujitsu Labs in the year 1980 [16]. Lots of semiconductor materials have been explored in the fabrication of HEMT. Normally, it is fabricated with very sophisticated techniques such as molecular beam epitaxy, atomic layer deposition, etc. It is desired to obtain a single layer along with doping for a good performance of the system. At present, numerous 0D, 1D, and 2D structures such as quantum dots and quantum wires have been utilized in HEMT. Even a single-electron transistor is realized for such application [17–19].

Working mechanism: The HEMT works on a heterojunction normally created by attaching different bandgap semiconductor materials. The flow of electrons and holes occur until it attains an equilibrium (Figure 1.3). Generally, without doped narrow bandgap material is exhibited by a majority of carriers, and thus a high switching speed is acquired. On the other side, a low bandgap material possesses no donors and thus can display high mobility [20, 21].

HEMT has the following major components [20]:


Figure 1.3 Schematic of energy levels for a high-electron mobility transistor (HEMT).

- 1. Substrate: This acts as a base, and the normally used materials are GaAs, silicon, etc.
- 2. Buffer coating: It is an additional layer and covered a top position on the substrate.
- 3. Channel: It is majorly deciding the movement of charge carriers and thus, exhibits a property like high mobility. Generally, materials like InGaAs are used.
- 4. Barrier: It plays a role of barrier which prevents the movement of charge carriers (materials used: AlGaAs).
- 5. Spacer: It is placed between the channel and barrier. It significantly reduces the scattering.

1.4.2 Superconducting-Based Amplifiers

1.4.2.1 Josephson Junction

This is a very significant part and a basic building block of superconductor-based amplifiers. It is a device consisting of two weakly bonded regions formed by using non-superconducting or weak superconducting materials (Figure 1.4). When the non-superconducting layer is an insulator, then it is called a superconductor–insulator–superconductor (SIS) junction. When it is a metallic one, then it is known as a superconductor–normal-superconductor (SNS) junction. Two weak superconducting materials also form a Josephson junction [22, 23]. The structure is very simple to construct. An insulating layer is placed between two superconducting layers. If the barrier is very thin, then the superconductor charge carriers (Cooper pairs) can be quantum-mechanically tunneled via a barrier height under no applied voltage, and thus there is a flow of current [24–27].

Figure 1.4 (a) Schematic of Josephson junction and (b) diagram of a three-level system for quantum applications.

In order to release a quantum-limited microwave amplifier, then the device needs to be in close proximity of the qubits without loss of heat. For this, a Josephson-based amplifier is needed. It might have several Josephson junctions to get the desired output. Normally, an amplifier is applied specifically with pump tones for precise frequency to activate gain activity, where it starts resonating, and we call it as superconducting parametric amplifier which operates at a very low cryogenic temperature near total zero Kelvin at which the Boltzmann energy is minor related to the lowest energy level. Here the microwave modes lead in the ground state with only present quantum-based variations. An input port is impedance coordinated with the transmission line which carries a weak microwave signal. Therefore, the signal fixed with qubit information is only passed and not reflected back [24–26].

The superconductor parametric amplifier is divided in two types, namely:

- 1. Cavity-based amplifiers
- 2. Traveling-wave parametric amplifiers

The cavity-based amplifiers consist of Josephson junctions like Josephson parametric amplifier (JPA) and Josephson parametric converter (JPC). The saturation power for these types of amplifiers is up to -120 to -100 dBm along with the bandwidth of 150 to 600 MHz [28, 29]. The traveling wave parametric amplifiers (TWPA) are based on transmission line structures like array of Josephson junctions or a long kinetic inductive structure. This type of device can achieve a bandwidth of around 3 GHz and power of 95 dBm [30]. For quantum-limited amplification, both types of amplifiers are utilized, i.e., circulators and isolators.

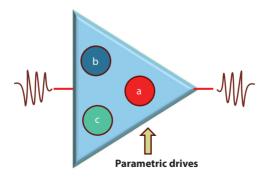


Figure 1.5 Schematic of a parametric amplifier.

1.4.2.2 Concept of Parametric Amplifier

The superconducting circuit contains a block having linear and non-linear modes and a non-linear Josephson junction. When a pump wave triggers the parametric non-linear element inside the circuit, an amplification occurs (Figure 1.5). The parametric amplification will be accomplished either as three-wave or four-wave mixing. Normally, three-wave mixing can be done using three electromagnetic waves, pump, signal, and idler with conservation of energy. Depending upon the signal and idler frequency, the degenerate and non-degenerate parametric process occur. In case of four-wave-mixing, two pump photons get transformed into one signal and one idler photon. The fourth-order terms in the Hamiltonian are used in this process.

Low-noise amplifiers are basically constructed on JPA and TWPAs configurations. In JPA, a coupling between pump tone to a signal via a non-linear Josephson junction is used. JPA shows a bandwidth in the range of 100 MHz. The good noise performance and small bandwidth allow a few qubits per amplifier to be read. However, the scale-up of this type of amplifier is limited due to restricted bandwidth [23, 31].

TWPA are suitable for quantum applications due to its quantum-limited amplifier and large bandwidth. These are designed using a transmission line and non-linear element such as Josephson junction with a large kinetic inductance, and thus a low pump power and dissipation are required [32–34].

1.4.3 Microwave Amplification by Stimulated Emission of Radiation (MASER)

MASER is an oscillator containing a source which excites atoms or molecules to the upper energy level. The microwave energy can be used to excite the electrons and obtain the population inversion condition required for amplification. At the population inversion, there will be more electrons than the lower energy level and the input microwave radiation will induce the stimulated emission; thus, amplification of the input radiation can be done (Figure 1.6). MASERS can operate at a higher temperature or even at room temperature, which is not possible for other types of amplifiers as discussed above. Normally, for wavelength in the range of millimeter or centimeter, the resonant modes can be tuned by choosing the size of the resonator metal box. So, only one resonant mode at a fixed frequency will be emitted. The losses inside the resonator can be lowered, which can significantly improve the amplification [12, 35, 36]. For device amplification,