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Preface

The topic of the book, “Quantum Optics Devices on a Chip,” is situated at 
the intersection of several disciplines and industries, driving advancements 
in quantum technology and integrated photonics. In the realm of disci-
plinary development, quantum optics is a branch of physics that focuses 
on the behavior and properties of light at the quantum level. It explores the 
fundamental principles of quantum mechanics applied to optics, includ-
ing the wave–particle duality of light and the quantized nature of energy. 
Quantum optics plays a crucial role in understanding and harnessing phe-
nomena such as entanglement, superposition, and quantum interference, 
which are essential for quantum information processing, communication, 
and sensing.

The development of quantum optics devices on a chip represents a signif-
icant breakthrough in the field. Chip-scale integration involves designing 
and fabricating optical devices, such as waveguides, modulators, detectors, 
and light sources, on a micro- or nanoscale chip. This miniaturization 
enables the integration of multiple components on a single chip, leading 
to compact, efficient, and scalable quantum optical systems. The impact of 
quantum optics devices on a chip extends beyond the realm of physics and 
has far-reaching implications across various industries. In quantum com-
puting, the ability to manipulate and control quantum states of light on a 
chip paves the way for the development of quantum processors capable of 
solving complex problems at unprecedented speeds. Quantum communi-
cation benefits from chip-scale devices by enabling secure transmission of 
information through quantum key distribution protocols. Quantum sens-
ing applications, such as magnetometry, gyroscopy, and biosensing, can 
benefit from miniaturized, high-performance devices integrated on a chip. 
Moreover, the integration of quantum optics on a chip has implications for 
the field of integrated photonics. It allows for the seamless integration of 
quantum optical functionalities with existing photonic circuits, enabling 
the development of hybrid systems that leverage the advantages of both 
classical and quantum technologies. This integration holds promise for 
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applications in telecommunications, data communication, and optical sig-
nal processing.

Overall, the development of quantum optics devices on a chip represents 
a significant step forward in the advancement of quantum technology. It 
brings together principles from physics, materials science, engineering, 
and computer science to enable the practical implementation of quantum 
phenomena for a wide range of applications across industries. The book 
serves as a comprehensive guide to this rapidly evolving field, providing 
insights and knowledge to researchers, scientists, and industry profession-
als seeking to explore and contribute to the disciplinary and industrial 
development of quantum optics devices on a chip. The book’s content is 
carefully structured to appeal to a wide audience, from graduate students 
and researchers entering the field of quantum optics to experienced sci-
entists and engineers who want to expand their knowledge. The compre-
hensive and accessible approach will enable readers from diverse scientific 
backgrounds to understand fundamental concepts, explore cutting-edge 
research, and visualize the future prospects of on-chip quantum optics 
devices. The chapters included in the book are summarized below:

Chapter 1 reviews different quantum-limited microwave amplifiers for 
various quantum technological applications. The chapter details current 
progress related to quantum-limited microwave amplifiers, types of ampli-
fiers, their design and structure, advantages and limitations, and future 
development. The outlook discusses controlling operating parameters, 
materials geometry, and fabrication techniques.
Chapter 2 provides a brief introduction to the field of quantum optics. It 
includes an overview of key scientific developments that led to the field 
of quantum optics and a discussion of the physical phenomena covered 
within the field.
Chapter 3 covers the significance of carbon nanotubes in molecular elec-
tronics. It emphasizes several intriguing ways to alter the fundamental 
properties of the carbon network by adding defects and examines their 
creation in depth.
Chapter 4 introduces quantum dots (QDs) and their medical applications, 
detailing synthesis methods, properties, and biocompatibility. It high-
lights their superior fluorescence for imaging, roles in drug delivery, and 
diagnostic uses. Ethical, safety, regulatory, and environmental issues are 
discussed, emphasizing QDs’ potential in diagnostics and therapy while 
addressing associated challenges.
Chapter 5 describes fascinating areas in quantum optics and quan-
tum information, revealing unique quantum properties with essential 
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characteristics and principles governing the quantum state of light. The 
study discusses superposition, entanglement, and quantum coherence, 
techniques for generating and manipulating light quantum states, and 
applications in communication, computing, and metrology.
Chapter 6 details the historical development of quantum technology, the 
fundamentals of quantum chip-scale devices, and the revolution that these 
technologies bring to the fabrication of next-generation devices. Various 
quantum chip-scale architectures and circuits are discussed in detail to 
elaborate on their effectiveness in device fabrication. The benefits, chal-
lenges, and financial aspects of investing in quantum chip-scale devices 
have opened the market for innovation and research. With the latest tech-
nologies like artificial intelligence and machine learning, this industry is 
poised to deliver better and more customer-friendly products.
Chapter 7 delves into the cutting-edge realm of quantum-enhanced THz 
spectroscopy and the integration of on-chip devices. It explores the gener-
ation and detection of THz radiation, emphasizing the pivotal role of fem-
tosecond lasers, photoconductive antennas, and quantum cascade lasers. 
Advanced THz spectroscopy techniques, including terahertz time-do-
main and time-resolved spectroscopy, are discussed in detail, showcasing 
their potential to unravel dynamic material properties. The chapter also 
highlights innovative THz imaging methodologies, particularly near-field 
imaging, and groundbreaking biomedical applications such as early-stage 
cancer detection. Concluding with a forward-looking perspective, the 
chapter provides insights into future breakthroughs and opportunities, 
inviting interdisciplinary collaboration to push the boundaries of this 
dynamic field.
Chapter 8 delves into the fascinating world of optical devices found on 
microchips incorporating plasmonics for sensor applications. The litera-
ture primarily focuses on plasmonic-based sensors, including SPR, LSPR, 
and SERS sensors. It explores their scope, advantages, and limitations.
Chapter 9 traces the evolution of quantum computing, highlighting silicon 
photonics’ pivotal role in scalability and efficiency. Focusing on practical 
implementation, it explores scalable methods for silicon photonic chips 
and their advancements. In chip-based quantum communication, par-
ticularly quantum key distribution (QKD), integrated photonics enables 
real-world applications. The chapter discusses diverse QKD approaches, 
including entanglement-based and superposition-based methods, and 
introduces continuous-variable QKD for secure metropolitan communi-
cation. Addressing challenges, it covers quantum multiplexing techniques, 
emphasizing solutions to issues like spontaneous Raman scattering noise. 
Examining the intersection of silicon photonics and quantum computing, 
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the narrative highlights applications in communication, imaging, and 
error correction. Persistent challenges like quantum noise and decoher-
ence underscore the need for innovative solutions, showcasing silicon 
photonics’ pivotal role in advancing secure communication and unlocking 
unprecedented computational power.
Chapter 10 navigates through the intricate landscape of quantum nano-
photonics, with a spotlight on the indispensable role of rare earth ions. 
Key themes include the growth techniques and material topologies asso-
ciated with rare earth-doped materials, the fundamental aspects of rare 
earth ions in solid-state materials, and their pivotal role in quantum optics. 
The chapter unveils applications spanning quantum devices, low-dimen-
sional materials, insulators, and spectral hole burning. The convergence of 
ultrasound and optics in ultrasonic-optical tissue imaging and the trans-
formative impact of solid-state optical devices in diverse industries further 
enrich the narrative.
Chapter 11 delves into the evolution of chip-scale quantum memories, 
highlighting their scalability, rapid communication, and low power con-
sumption. It explores theoretical and experimental approaches, develop-
ment challenges, and the significant roles of quantum dots and photonic 
methods in advancing chip-scale memories.
Chapter 12 discusses the integrated light sources that revolutionize appli-
cations with high efficiency. Several III-V-based inorganic semiconduc-
tor lasers, quantum dots, and germanium-on-silicon lasers are discussed, 
along with a tunable quantum light source, enabling on-demand tuning of 
spatial photon-pair correlations and entanglement in a nonlinear direc-
tional coupler for practical quantum information applications.
Chapter 13 delves into the progressive advancements of integrated optical 
systems, focusing on their significant influence on telecommunications, 
computing, and sensing technologies. It comprehensively examines the 
design principles, fabrication methodologies, and essential components 
such as waveguides, modulators, and amplifiers, underscoring their piv-
otal role in enhancing optical communication and information processing 
functionalities.

The Editors
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Abstract
Weak microwave signals and their amplification are gaining a great interest for 
numerous applications, especially in quantum-based applications. Lowest possible 
noise is ideal for quantum technologies. At present, quantum-limited microwave 
amplification is done through various types of amplifiers such as high-electron 
mobility transistors (HEMT), superconductor-based amplifiers, and MASER 
(microwave amplification by stimulated emission of radiation)-based amplifiers. 
Each technique has its unique advantages and limitations. In this chapter, cur-
rent progress related to quantum-limited microwave amplifier, types of amplifiers, 
designs and structures, advantages and limitations, and future development are 
discussed.

Keywords:  Amplifiers, qubit, resonators, microwave amplification, microwave 
photon, superconductor, Josephson junction

1.1	 Introduction

At present, detection and amplification of very weak microwave signals 
are attaining an interest for various quantum-based applications such as 
RADAR, space technology, communication, quantum computing, etc. For 
such amplification, the signal is usually very weak, and therefore it might 
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get lost in the main signal due to the noise present. Microwave photons 
in the range of 3 to 12 GHz are very important for quantum applications 
as they reach the energy of a single photon. Single microwave photon at a 
few gigahertz level can be controlled with much better accuracy than THz 
photon [1–4]. There are numerous advantages of microwave photonics 
over quantum optics. Microwave components are much stable than optical 
components when they cool down. Additionally, an interface of electronics 
with microwaves is much simpler and faster than the optical way. Lastly, 
it is easy to pump the non-linear and non-dissipative Josephson junction 
with microwave.

The fundamental laws of quantum physics tell us that “any phase-
preserving amplifier requires to add at least half a noise photon to the out-
put signals in the high-gain limit”. It is called “standard quantum limit” [5]. 
So, the device design for quantum applications must be processed such 
that the signal is near the quantum limit.

Basic amplifiers such as high-electron mobility transistors (HEMT), 
superconducting based amplifiers, and microwave amplification by stimu-
lated emission of radiation (MASER)-based amplifiers have been explored 
for such applications [6]. Here the current development in the field of 
quantum-limited microwave amplifiers is presented.

1.2	 Why Microwave Amplifiers?

It is known that every device has some fundamental detection limit gen-
erally decided by the mechanism of the device. Normally, a circuit that 
increases the input signal is called an amplifier. So, amplification is a process 
that increases the magnitude of the signal. Generally, a non-linear compo-
nent such as a field effect transistor is used for this purpose (Figure 1.1).  
In this case, the gain of the device is used and given by the ratio of an out-
put signal to an input signal [7, 8].

For fast signal attenuation, higher sensitivity is preferred because of the 
large reduction of power. This is highly required when the output signal is 
lower in magnitude and therefore is potentially required in several appli-
cations including space applications, RADAR, cosmos, microwave, and 
quantum-based applications. Normally, the signal level is faint at around 
tens to hundreds of microwave photons. Due to added noise, it becomes 
challenging to detect the main signal [3]. The concept of microwave ampli-
fier was proposed by A. L. Cullen in 1959 [9]. It was studied that the reg-
ular transference of power among a pump tone and a signal drifting in 
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a transmission line constituted of a voltage-reliant capacitance per unit 
length. After this, the concept of using a non-linear component made using 
a superconducting material into a transmission line was established [10].

1.3	 Quantum-Limited Amplifiers

Normally for electrical systems, the signal is recorded in the form of volt-
age and it is not hard to amplify the weak signal also. The weak signal can 
be amplified using an electrical amplifier. The microwave signal with low 
noise can be detected by a conventional electrical amplifier mainly based 
on HEMT. It has the capability to go below several critical temperatures up 
to 5 K and add around ~10 noisy photons/signal in 1 s at 1-Hz bandwidth. 
This could provide around 40 dB of amplified signal and noise of around 
tens of photons. However, it will further reduce the signal-to-noise ratio 
by the order of 50–100, and hence the noise also comes into play [11, 12]. 
In the case of quantum-based applications, there is a tremendous need to 
decrease the noise signal significantly. There is another alternative based 
on superconducting amplifiers that mainly work at an ultralow tempera-
ture. It goes up to ~10 to 25 mK and thus significantly amplifies the micro-
wave signal with 0.5 noise photons/second at 1-Hz bandwidth. However, 
an operation is complicated and less suitable [13]. One more approach on 
microwave amplification by stimulated emission of radiation (MASER) 
mainly based on parametric material ions fixed in a crystallite like ruby 
and under static magnetic field and microwave pumping, population 

Figure 1.1  Typical diagram of an amplifier.
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inversion occurs, which emits the stimulated amplified microwave radia-
tion. Typically, it works at a low temperature of around ~1 K and has few 
noise photons for 1-Hz bandwidth [12]. The importance of an amplifier in 
a superconducting quantum computing system with logical qubits was also 
reviewed elsewhere (Figure 1.2) [14].

As per quantum physics, any phase-preserving amplifier is essential 
to add at least half a noise photon in high-gain limit, and this is called 
standard quantum limit (SQL). Caves has defined the quantum limit of 
performance of a phase-preserving amplifier which normally amplifies all 
the inputs equally. For Caves’ limit, the half of a photon at the signal fre-
quency gets added and doubles the noise power of the input signal [15]. 
Therefore, this is called “quantum limited”. Now, with the current rise in 
quantum-based technological applications, there is a special need of these 
types of quantum-limited amplifiers.

1.4	 Types of Microwave-Based Amplifiers

Normally, there are three kinds of amplifiers adopted for amplification, 
namely:

1.	 Conventional electronic amplifiers or high-electron mobil-
ity transistor (HEMT) amplifiers

2.	 Superconducting circuit-based amplifiers
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Figure 1.2  Use of a microwave amplifier and its typical experimental setup for quantum 
applications (reproduced with permission from [14]).
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�a. �Superconductor quantum interference device (SQUID) 
amplifier

b. Radio frequency single-electron transistors
c. Quantum Josephson parametric amplifier
d. Kinetic inductance parametric amplifier

3.	 Solid-state MASER-based amplifier

1.4.1	 Conventional Electronic Amplifiers or High-Electron 
Mobility Transistor (HEMT) Amplifiers

The HEMT was first proposed and studied by Mimura at Fujitsu Labs in 
the year 1980 [16]. Lots of semiconductor materials have been explored in 
the fabrication of HEMT. Normally, it is fabricated with very sophisticated 
techniques such as molecular beam epitaxy, atomic layer deposition, etc. 
It is desired to obtain a single layer along with doping for a good perfor-
mance of the system. At present, numerous 0D, 1D, and 2D structures such 
as quantum dots and quantum wires have been utilized in HEMT. Even a 
single-electron transistor is realized for such application [17–19].

Working mechanism: The HEMT works on a heterojunction normally 
created by attaching different bandgap semiconductor materials. The flow 
of electrons and holes occur until it attains an equilibrium (Figure 1.3). 
Generally, without doped narrow bandgap material is exhibited by a 
majority of carriers, and thus a high switching speed is acquired. On the 
other side, a low bandgap material possesses no donors and thus can dis-
play high mobility [20, 21].

HEMT has the following major components [20]:

Schottky
barrier Channel

Substrate
material
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EF

EV

2D electron
gas

Donors
Gate

Figure 1.3  Schematic of energy levels for a high-electron mobility transistor (HEMT).
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1.	 Substrate: This acts as a base, and the normally used materi-
als are GaAs, silicon, etc.

2.	 Buffer coating: It is an additional layer and covered a top 
position on the substrate.

3.	 Channel: It is majorly deciding the movement of charge 
carriers and thus, exhibits a property like high mobility. 
Generally, materials like InGaAs are used.

4.	 Barrier: It plays a role of barrier which prevents the move-
ment of charge carriers (materials used: AlGaAs).

5.	 Spacer: It is placed between the channel and barrier. It sig-
nificantly reduces the scattering.

1.4.2	 Superconducting-Based Amplifiers

1.4.2.1	 Josephson Junction

This is a very significant part and a basic building block of superconductor-
based amplifiers. It is a device consisting of two weakly bonded regions 
formed by using non-superconducting or weak superconducting materials 
(Figure 1.4). When the non-superconducting layer is an insulator, then it is 
called a superconductor–insulator–superconductor (SIS) junction. When 
it is a metallic one, then it is known as a superconductor–normal-super-
conductor (SNS) junction. Two weak superconducting materials also form 
a Josephson junction [22, 23]. The structure is very simple to construct. An 
insulating layer is placed between two superconducting layers. If the bar-
rier is very thin, then the superconductor charge carriers (Cooper pairs) 
can be quantum-mechanically tunneled via a barrier height under no 
applied voltage, and thus there is a flow of current [24–27].

(a) (b)

Insulator
layer

Superconductor layers

Waveguide 1

Waveguide 2

Driven pulse

Resonator Qubit

Photonic
signal

Figure 1.4  (a) Schematic of Josephson junction and (b) diagram of a three-level system 
for quantum applications.
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In order to release a quantum-limited microwave amplifier, then the 
device needs to be in close proximity of the qubits without loss of heat. 
For this, a Josephson-based amplifier is needed. It might have several 
Josephson junctions to get the desired output. Normally, an amplifier is 
applied specifically with pump tones for precise frequency to activate gain 
activity, where it starts resonating, and we call it as superconducting para-
metric amplifier which operates at a very low cryogenic temperature near 
total zero Kelvin at which the Boltzmann energy is minor related to the 
lowest energy level. Here the microwave modes lead in the ground state 
with only present quantum-based variations. An input port is impedance 
coordinated with the transmission line which carries a weak microwave 
signal. Therefore, the signal fixed with qubit information is only passed 
and not reflected back [24–26].

The superconductor parametric amplifier is divided in two types, 
namely:

1.	 Cavity-based amplifiers
2.	 Traveling-wave parametric amplifiers

The cavity-based amplifiers consist of Josephson junctions like Josephson 
parametric amplifier (JPA) and Josephson parametric converter (JPC). The 
saturation power for these types of amplifiers is up to -120 to -100 dBm 
along with the bandwidth of 150 to 600 MHz [28, 29]. The traveling wave 
parametric amplifiers (TWPA) are based on transmission line structures 
like array of Josephson junctions or a long kinetic inductive structure. This 
type of device can achieve a bandwidth of around 3 GHz and power of 95 
dBm [30]. For quantum-limited amplification, both types of amplifiers are 
utilized, i.e., circulators and isolators.

b

a

c

Parametric drives

Figure 1.5  Schematic of a parametric amplifier.
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1.4.2.2	 Concept of Parametric Amplifier

The superconducting circuit contains a block having linear and non-
linear modes and a non-linear Josephson junction. When a pump wave 
triggers the parametric non-linear element inside the circuit, an amplifi-
cation occurs (Figure 1.5). The parametric amplification will be accom-
plished either as three-wave or four-wave mixing. Normally, three-wave 
mixing can be done using three electromagnetic waves, pump, signal, and 
idler with conservation of energy. Depending upon the signal and idler 
frequency, the degenerate and non-degenerate parametric process occur. 
In case of four-wave-mixing, two pump photons get transformed into one 
signal and one idler photon. The fourth-order terms in the Hamiltonian 
are used in this process.

Low-noise amplifiers are basically constructed on JPA and TWPAs 
configurations. In JPA, a coupling between pump tone to a signal via a 
non-linear Josephson junction is used. JPA shows a bandwidth in the range 
of 100 MHz. The good noise performance and small bandwidth allow a 
few qubits per amplifier to be read. However, the scale-up of this type of 
amplifier is limited due to restricted bandwidth [23, 31].

TWPA are suitable for quantum applications due to its quantum-limited 
amplifier and large bandwidth. These are designed using a transmission 
line and non-linear element such as Josephson junction with a large kinetic 
inductance, and thus a low pump power and dissipation are required 
[32–34].

1.4.3	 Microwave Amplification by Stimulated Emission 
of Radiation (MASER)

MASER is an oscillator containing a source which excites atoms or mole-
cules to the upper energy level. The microwave energy can be used to excite 
the electrons and obtain the population inversion condition required for 
amplification. At the population inversion, there will be more electrons 
than the lower energy level and the input microwave radiation will induce 
the stimulated emission; thus, amplification of the input radiation can be 
done (Figure 1.6). MASERS can operate at a higher temperature or even 
at room temperature, which is not possible for other types of amplifiers as 
discussed above. Normally, for wavelength in the range of millimeter or 
centimeter, the resonant modes can be tuned by choosing the size of the 
resonator metal box. So, only one resonant mode at a fixed frequency will 
be emitted. The losses inside the resonator can be lowered, which can sig-
nificantly improve the amplification [12, 35, 36]. For device amplification, 


