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Preface

The evolution of computing systems has brought forth a new era of complexity,
where adaptability and resilience are crucial to ensuring reliability and efficiency.
Traditional modeling techniques often struggle to capture the dynamic nature of
modern discrete-event systems, which require structural flexibility/reconfigurability
at runtime. This book addresses these challenges by introducing reconfigurable
stochastic Petri nets (RSPNs) – a powerful extended formalism of classical Petri nets
designed to model and analyze dynamic-structure systems.

Our motivation for this work stems from the increasing need for formal verification
techniques that can accommodate reconfigurability without compromising analytical
rigor. Thus, by integrating graph transformation systems with generalized stochastic
Petri nets (GSPNs), we provide a comprehensive framework that supports both
qualitative as well as quantitative analysis. The proposed approach in this book
enables system designers to model and verify critical properties such as liveness and
boundedness and to evaluate performance metrics for system reconfigurations.

This book is structured to provide both theoretical foundations and practical
applications. The first part presents an in-depth discussion on Petri nets, their
extensions, and reconfigurabilities aspects. The second part explores new formalisms
such as dynamic GSPNs (D-GSPNs) and reconfigurable GSPNs (RecGSPNs),
offering methodologies for modeling as well as verifying reconfigurable systems.
The final sections focus on comparative evaluations, demonstrating the efficiency
and effectiveness of these approaches in various domains, including network security,
manufacturing systems, and distributed computing.

We hope that this book serves as a valuable resource for researchers, practitioners,
and students seeking to advance the field of formal methods for dynamic-structure
systems. By bridging the gap between theoretical advancements and real-world
applications, we aspire to contribute to the ongoing development of robust and
adaptive computing models.
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General Introduction

In this introduction, we start by presenting the background of this book, namely
the formal modeling and verification based on dynamic-structure stochastic Petri nets.
Then, we focus on the motivations of this work, specify the problem and the objectives
and highlight our contributions. Finally, we end with the description of the manuscript
organization.

I.1. Background

The major advancements in computing power, connectivity, sensors, storage
capacity and software development have motivated companies as well as individuals
to adopt and integrate IT solutions into their daily tasks (from a small device at the
house to a gigantic infrastructure). As the list of advantages and benefits resulting from
this orientation continues to grow, so do the risks of failure and malfunctioning that
may threaten companies as well as individuals. Therefore, it is absolutely mandatory
to ensure the proper functioning of computer systems according to customers’ and
designers’ expectations. This concern had been identified since the late 1960s that
marked the birth of software engineering. One of the main goals of the latter is
enabling developers to implement complex systems that work properly. In this regard,
several approaches have emerged to meet this crucial requirement in the various stages
of the software life cycle (Woodcock et al. 2009).

Approaches in which the syntax, semantics and manipulation rules of specification
language are explicitly defined by mathematics are called formal approaches. These
approaches include Petri nets (Murata 1989), sequential process communication
(SPC) (Brookes et al. 1984), LOTOS (Bolognesi and Brinksma 1987), B-method
(Abrial 2005), etc. Actually, formal approaches allow a complete verification of the
whole system behavior and prove the presence of certain desired properties for all
possible inputs. By formal methods, we can write a formal specification of a system
on which different properties can be proved, and thereafter we can mathematically
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prove that a system implementation meets this specification (Craigen et al. 1993;
Haxthausen 2010; Garavel and Graf 2013; Rodhe and Karresand 2015). However, the
use of formal methods does not guarantee a priori the accuracy of developed systems.
Indeed, their use enhances our understanding of a system under construction while
revealing its shortcomings, inconsistencies and ambiguities that might otherwise go
unnoticed (Clarke and Wing 1996).

Among the most widespread formalisms, we find Petri nets (PNs) (Peterson 1977;
Murata 1989). They are characterized by three major advantages (Peterson 1981;
Kamath and Viswanadham 1986):

1) Modeling level: they have a powerful mathematical foundation, as well as an
intuitive graphical representation. The graphical representation gives a flat view to
PN models, making it possible to have simple and very explicit models. Also, their
graphic modeling enables easy visualization of complex systems.

2) Verification level: their mathematical foundation is at the origin of all the
analysis techniques that were proposed in order to verify the modeled systems. Indeed,
they dispose of a well-developed qualitative/quantitative analysis panoply.

3) Coupling modeling and verification: they offer a careful balance of modeling
and decision power. In fact, Petri nets have been used in the modeling of a wide variety
of systems. As for their decision power, the reachability problem is decidable in Petri
nets (note that most problems can be converted into reachability problems).

The model, in its origin proposed by “Adam Petri” in Petri (1962), that was initially
concerned with describing the causal relationships between events that can occur
in a computer system, has undergone significant evolution and adaptation to meet
several requirements imposed by the appearance of new complicated systems. The
most notable extensions can be found in four main categories:

– Colored PNs (Jensen 2013): each token becomes rather a distinguishable value
from other tokens. The weights on the arcs are no longer constants, but rather
mathematical functions that can be complicated. This model makes it possible to have
models of reasonable size for complicated systems.

– Temporal PNs (Ramchandani 1973): the time introduced in PNs allows us to
put explicit constraints on the dynamics of the model which reflect the real temporal
constraints imposed on the system.

– Stochastic PNs (Marsan et al. 1994): stochastic PNs are a response to another
missing realistic aspect in previous models, which is the aspect of hazard, randomness
and non-absolute events. The random events in their arrivals will be explicitly
considered and modeled, allowing the model to get closer to the real system and thus
to have a good representation of the studied system.
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– Reconfigurable PNs (Llorens and Oliver 2004b; Ehrig and Padberg 2004;
Padberg and Kahloul 2018): this last category groups formalisms allowing the
modeling of structure flexibility.

The purpose of this last variant is to provide a formal model for dynamic-structure
systems, for example, flexible manufacturing systems (FMSs) (Buzacott and
Shanthikumar 1980), reconfigurable manufacturing systems (RMSs) (Koren et al.
1999), production in cloud (Xu 2012), Industry 4.0 (Lasi et al. 2014), etc. In fact,
many discrete event systems (DESs) are becoming increasingly complex, structurally
dynamic and variably interconnected. These systems are designed to be able to change
their structure and/or topology, at run time, by adding/removing interconnections,
objects or even subsystems, to accommodate new circumstances/requirements.
Ongoing studies on this class of systems focus on their key feature, namely, the
reconfigurability (Brettel et al. 2014) that must occur at run time (i.e. dynamic
reconfigurability) (Jackson et al. 2016). Dynamic reconfigurability is a critical activity
that influences the performance, security and cost of such systems. To overcome the
previous challenges, the designer must dispose of a rigorous approach and a set of
appropriate tools.

The use of PNs in the study of such systems attracts many researchers (Silva and
Valette 1990; Marsan et al. 1994; Recalde et al. 2004; Chen et al. 2017; Long et al.
2017; Latorre-Biel et al. 2018; Liu et al. 2018; You et al. 2018). In the literature,
many classes of PNs have been proposed and applied to specify/verify reconfigurable
systems. The chosen PN class is often motivated by the aspects to be specified and the
properties to be verified. In fact, we can distinguish three classes of work: that uses
basic PNs, that uses temporal or stochastic PNs and, finally, that applies reconfigurable
PNs. Stochastic PNs (SPNs) and generalized SPNs (GSPNs) represent an extension
of PNs (Marsan et al. 1994) used to model and evaluate stochastic systems. These
formalisms allow the analysis of performance metrics such as productivity, energy
consumption and machine utilization. Marsan et al. (1994) strongly emphasize the
importance of GSPNs and SPNs as versatile design tools that fit well with the behavior
of DESs at different stages of development (Long et al. 2015; Čapkovič 2017; Simon
et al. 2018; Latorre-Biel et al. 2018). Although PNs (low or high) are a powerful
and expressive tool, they are unable to specify/verify, in a natural way, advanced
dynamic-structure systems (Capra and Camilli 2018). Systems supporting volatile
environments, continuous variations and reconfigurable structures are expected to be
extremely complex (Chryssolouris et al. 2013). The design of such systems is an
increasingly complex and omnipresent challenge. Therefore, designers must dispose
of the necessary approaches, models and tools to handle this complexity (Möller
2016). To overcome this issue, researchers introduce dynamic structures into PNs,
thus expanding the standard formalism (Padberg and Kahloul 2018).

Rule-based graph transformations (Ehrig and Padberg 2004) offer a
mathematically based graphical framework for modeling the reconfigurations in
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PN structures. Nevertheless, increasing the modeling power of a formalism decreases
its decision power. Therefore, extensions proposed in the literature introducing
reconfigurability to PNs try to find a compromise between the modeling and the
verification levels. From this perspective, we can distinguish three main directions.
On the one hand, researchers develop pre-processing techniques that encode, unfold
or compile graphs and transformation rules into existing formalisms in order to
exploit the panoply of their tools (Llorens and Oliver 2004b; Capra and Camilli
2018; Camilli et al. 2018). Although they can naturally model the reconfigurations,
these approaches did not increase the modeling power compared to existing ones,
since they depend on target formalisms expressiveness and in particular do not allow
modeling infinite graphs (Rensink et al. 2004). For instance, classical model-checkers
(Baier and Katoen 2008) use a fixed number of propositions, which prevents the
modeling of infinite-structure systems (Rensink 2008). On the other hand, some
techniques execute graph transformation systems and compute the reachability graph;
nevertheless, an upper artificial threshold is still needed (Kastenberg and Rensink
2006). To mitigate this issue, some approaches compute either under-approximations
of a system’s behavior so that any property that holds in an under-approximated
model is satisfied in its original system, or over-approximations including all system
behaviors, and possibly more (da Costa and Ribeiro 2012). Nevertheless, a property
that does not hold in an under-estimated model may hold in its original system and
a property that holds in an over-estimated model may not be satisfied in its original
system (Baldan et al. 2008). A promising approach described in Li et al. (2009b),
called improved net rewriting system (INRS), preserves particular properties, namely,
liveness, boundedness and reversibility of PNs after each reconfiguration. These
properties are therefore decidable regardless of the number of obtained configurations.
However, INRSs are limited to (i) ordinary, live, bounded and reversible PNs and
(ii) particular forms of reconfiguration.

I.2. Motivation and Objectives

Exception for few work (Meer and Dusterhoft 1997) and (Capra 2017),
reconfigurability in either SPNs or GSPNs has not received much attention.
Existing approaches in the literature often focus on the performance evaluation of
reconfigurable systems using SPNs (which are not reconfigurable formalisms) or on
reconfigurability simulation and verification using reconfigurable PNs (which do not
consider stochastic aspects). Our goal in this book is to introduce reconfigurability into
the well-known GSPNs formalism using graph transformation systems. The objective
of this book is doubled:

– Integration of the dynamic aspect in GSPNs: this requires a formal definition
of a new formalism combining the stochastic and the dynamic aspects in a single
formalism.
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– Study of this hybridization consequences on GSPNs analysis: introducing
reconfigurability into GSPNs requires adapting the classical algorithms towards the
new formalisms and/or proposing new analysis techniques.

I.3. Contributions

The present book falls within the field of reconfigurable system modeling and
verification based on GSPNs, hence the need for a GSPNs-based formalism supporting
dynamic structures. However, increasing the modeling power of a formalism involves
straightforwardly increasing the verification complexity. Faced with these challenges,
we have defined five approaches – incrementally developed – for the modeling and
the verification of dynamic-structure GSPNs, each of which has its advantages, limits
and orientation.

I.3.1. Orientation 1: Transforming dynamic GSPNs into GSPNs

In the first place, we were interested in the modeling and the verification of
reconfigurable systems using (non-stochastic) reconfigurable Petri nets. With this in
mind, our first intention was to propose an extension for one of these reconfiguration
approaches to the stochastic ones. Our primary contributions in this direction were
reconfigurable SPNs (R-SPNs) (Tigane et al. 2017b), GSPNs with rewritable topology
(Tigane et al. 2017a) (GSPNs-RT) and configuration-dependent stochastic reward nets
(Tigane et al. 2021) (CD-SRNs), extending formalism presented in Llorens and Oliver
(2004b), to cope with reconfigurability in SPNs, GSPNs and stochastic reward nets
(SRNs), respectively. However, these three proposed formalisms allow only dynamic
topology, i.e. sets of places and transitions cannot be changed. By fixing both sets of
places and transitions, we can transform SPNs, GSPNs and SRNs having dynamic
topologies into basic SPNs, GSPNs and SRNs, respectively, by encompassing all
topologies in one model. In the latter, the switching between configurations and
appearing/disappearing/reappearing of topologies are modeled via the token game.
The transformation into basic SPNs, GSPNs or SRNs straightforwardly allows
exploiting the methods and techniques proposed in the literature for SPNs, GSPNs
and/or SRNs to verify the properties of dynamic ones. However, allowing only
dynamic topologies severely limits the modeling power of these formalisms.

To overcome this shortcoming, we propose a new formalism, called dynamic
generalized stochastic Petri nets (D-GSPNs), that allows us to model dynamic sets
of places and transitions, as well as keeping the possibility to transform D-GSPNs
into GSPNs for verification purposes. The obtained GSPNs preserve the stochastic
behaviors of dynamic GSPNs, allowing the use of the panoply of verification methods
and tools proposed for GSPNs in D-GSPNs analysis. Moreover, arcs in D-GSPNs
are basic ones, i.e. there is no read, reset, or inhibitor arcs (Dufourd et al. 1998),
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which increases their decision power. However, D-GSPNs only allow the modeling
and verification of nets whose transitions follow single-server semantics. Thus, tasks
that can providen services at a time cannot be modeled. To overcome D-GSPNs limits,
we extend D-GSPNs to a new formalism called improved D-GSPNs (ID-GSPNs), in
order to model and verify dynamic nets whose transitions follow single-, infinite-,
or multiple-server semantics. A new algorithm that transforms ID-GSPNs into basic
equivalent GSPNs preserving their stochastic behaviors is also presented. Moreover,
the proposed algorithm yields more compact models than those obtained by the
unfolding algorithm proposed in D-GSPNs.

I.3.2. Orientation 2: Preserving properties in reconfigurable generalized
stochastic Petri nets (RecGSPNs)

Although D-GSPNs allow natural modeling and verification of dynamic structure,
they do not increase the modeling power of GSPNs. In fact, the dynamic structure
of any D-GSPN must be finite, otherwise transforming D-GSPNs towards GSPNs
may become infinite. To consider infinite structures, we extended INRSs (Li et al.
2009b) to model reconfiguration in GSPNs and could publish two papers (Tigane et al.
2017c, 2016). In these two extensions, each reconfiguration is expressed by a rule
having left- and right-hand sides. The application of a rule implies the substitution
of its left-hand-side image, in a given GSPN to be reconfigured, by its right-hand
side. These two sides must belong to particular sets in order to allow developers to
reconfigure a live, bounded and reversible GSPN while preserving these three essential
properties in the resulting model. However, these formalisms suffer from three major
drawbacks: (i) system states are not considered (reconfigurations are done in an
off-line mode), (ii) only three qualitative properties, namely liveness, boundedness
and reversibility are decidable and finally (iii) the quantitative aspect of GSPNs is not
studied.

To remedy these problems, we have proposed a new formalism, called
INRSs-GSPNs (Tigane et al. 2018), which takes into account, inter alia, system states
in the reconfiguration application and provides an algorithm for both qualitative and
quantitative verifications. At the modeling level, designers will be able to model a
reconfigurable system and its dynamic structure using GSPNs and rewriting rules
that are controlled by the system state. Unlike our extensions described in Tigane
et al. (2016, 2017c), which limit rule application to an initial marking, we associate
each reconfiguration rule with a marking controlling its activation, i.e. if the net
has not yet reached a marking, then the rule is not yet applicable. As for the
verification level, an algorithm computing from the dynamic model, the Markov
chain, describing the stochastic behavior of the system is proposed. As a result,
the designers can evaluate the system performance. Nevertheless, the reconfiguration
remains too limited in INRSs-GSPNs formalism. On the one hand, only live, bounded
and reversible GSPNs are concerned, which limits its application field. On the other
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hand, left- and right-hand sides of rules must belong imperatively to a particular set
which can only further limit the formalism applicability. The need to (i) relax the
constraints imposed by INRSs-GSPNSs formalism, (ii) address all types of GSPNs
(not only live, bounded and reversible GSPNs) and (iii) enrich the set of nets used
in reconfiguration led us to propose reconfigurable generalized stochastic Petri nets
(RecGSPNs) (Tigane et al. 2019). Actually, RecGSPNs formalism allows designers
to model a wider range of structural changes where both sides of any rule are no
longer defined by their structure. Instead, they are defined by their behaviors. The
use of RecGSPNs-based reconfiguration allows preserving five important properties,
namely, liveness, boundedness, reversibility, deadlock-freedom and home state.
Moreover, many properties expressed by linear time logic (Baier and Katoen 2008)
can be preserved after a system reconfiguration. Thus, these properties are decidable
regardless of the number of obtained configurations that can be infinite. This practice
enjoys double advantages:

1) Temporal and spatial complexity are reduced since these properties are verified
only at the first configuration, hence no need to compute and explore the whole set of
reachable states of all reachable configurations.

2) Often, applying rules to graphs leads to structurally infinite models, and
hence properties are not decidable based on classical verification techniques. In the
RecGSPNs approach, several properties are still decidable since applying any rule
preserves them.

I.4. Book Organization

This chapter has introduced the book topic, stated research motivation and
objectives and given an overview of our contributions. The remainder of this book
is organized as follows:

Chapter 1 presents the background theory of Petri nets, model checking, Markov
chains and generalized stochastic Petri nets. In order to introduce generalized
stochastic Petri nets, we describe Petri nets in their basic form, and provide basic
definitions for both model checking and Markov chains. Finally, the extension of Petri
nets toward GSPNs is presented.

Chapter 2 introduces the graph transformation field and its use in PNs context.
Initially, graph transformation systems are outlined. Then, we focus on graph
transformation applications to PNs in the literature. As for verification aspects, we
discuss some proposed verification algorithms obtained by either developing new ones
or updating and transferring existing ones to graph transformation systems. Finally, we
conclude by showing the advantages/disadvantages of today’s formalisms and their
verification techniques proposed for dynamic structure PNs.
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Chapter 3 describes two of our primary contributions, namely GSPNs-RT (Tigane
et al. 2017a) and CD-SRNs (Tigane et al. 2021), in which we present trivial approaches
that introduce dynamic topologies into GSPNs and SRNs, as well as transform
GSPNs and SRNs with dynamic topologies into their respective equivalent underlying
formalisms. The obtained equivalent models are exploited in the verification of
dynamic nets using classical analysis approaches.

Chapter 4 develops extensions of GSPNs-RT, namely D-GSPNs and ID-GSPNs,
in which the sets of places and transitions are dynamic and can be transformed
using transformation rules formalized by DPO approach. Also, both formalisms are
equipped by algorithms that transform D-GSPNs and ID-GSPNs into equivalent
GSPNs.

Chapter 5 consists of our major contribution to this book. It describes a new
approach, called reconfigurable GSPNs (Tigane et al. 2019). Similarly to graph
transformation systems, it formalizes system configuration as GSPNs, and it describes
structure evolution as transformation rules. The chapter concludes with a discussion
about the decidability of some properties of dynamic systems even if they can be
structurally infinite, i.e. the reachable configuration set is infinite.

In Chapter 6, we compare the proposed approaches with the current
state-of-the-art. We start showing new qualitative modeling aspects provided by
RecGSPNs and D-GSPNs formalisms. Then, a quantitative comparison that shows
how the proposed approaches optimize time and memory consumption in the
verification phase is provided.

Finally, in the Conclusion of this book, we summarize this book and discuss
possible directions in future work.


