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Introduction

Biofouling is the accumulation of unwanted biological material at an interface and we nor-
mally associate it with the growth of organisms on surfaces in aquatic environments, be they
hard or soft, living or non-living, surfaces. The organisms making up the unwanted biologi-
cal assemblage may range in size from nanoscale viruses to large macroscopic algae several
meters long, and the methods required to study these assemblages are accordingly diverse.

Although the study of biofouling has taken off in recent decades, with the term first
appearing in the literature in the mid-1970s, the issue has been noted for millennia, and the
term antifouling has a much more antiquated usage associated with the use of tars, paints,
and copper sheathing to control the growth of biofouling on ships in days gone by. This
reflects the huge impact that biofouling has on vessels, causing both drag and corrosion.
Indeed, much of the current driving force behind research into biofouling is the need of the
global merchant marine fleet and also navies to reduce the cost of propulsion. This economic
driver has the benefit of also reducing the global fleet’s carbon footprint, that is, the same
performance but with less fuel. More recently, with the advent of large off-shore engineering
projects, such as oil and gas installations, and coastal projects, such as power stations and
desalination plants, the awareness of the impact of biofouling on both hydraulics and corro-
sion has increased considerably outside of the sphere of shipping. This concern is further
driving the need for more research into both fundamental processes and novel antifouling
technologies.

Biofouling and antifouling research is now a substantial academic field with its own journal
and a biennial conference. It was also the focus of a recent Wiley-Blackwell textbook, Durr
and Thomason’s (2010) Biofouling, which brought the literature in the field up to date. That
book was a key review of the current boundaries but contained only a summary of research
methods. Conversely, the aim of this book, Biofouling Methods, is to be an essential com-
panion to the former work by providing a “cook book” of practical recipes for those who are
currently working in, or just entering, the biofouling field. We have strived to ensure that the
book includes methods are that tried and tested as well as those at the cutting edge, thus
encompassing the full diversity of the field. We expect this book to become the essential
methodological reference for all those working on biofouling and antifouling in academia,
namely aquatic biologists, ecologists, environmental scientists, and also for research and
development technologists in the antifouling industry. It will also be relevant to anyone who
has to monitor biofouling, such as aquaculture producers, managers of off-shore and coastal
installation in the oil, gas and desalination sectors, amongst others. This book will also be
useful for some specialized practical courses and for graduate and postgraduate students
undertaking their own research.

The book is organized in two parts:

1. Methods for Microfouling (Part Editor: Sergey Dobretsov)
2. Methods for Macrofouling, Coatings and Biocides (Part Editors: Jeremy C. Thomason,
David N. Williams)
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Each chapter aims to cover a brief history of the method(s) to ensure suitable acknowledgement
of the original inventors, includes some examples of the successful use of the method, and
examples of the questions that can be answered with the method. Each chapter may cover
several methods in a clearly defined subarea. The materials and equipment and methods
are described in sufficient detail that the method can be readily implemented and
troubleshooting hints and tips are given to permit rapid problem solving along with
suggestions with examples for data analysis and presentation. Some chapters vary from
this theme, particularly where there is little experimental methodology to describe and we
were not overly prescriptive to the authors.

We hope that this book serves its purpose and that you find the methods described here to
be useful for your research.

Sergey Dobretsov
(Muscat, Oman)
Jeremy C. Thomason
(Mérida, México)
David N. Williams
(Felling, UK)
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1 Microscopy of biofilms

Abstract

Identification, visualization and investigation of biofouling microbes are not possible with-
out light, epifluorescence and electron microscopy. The first section of this chapter presents
methods of quantification of microbes in biofilms and Catalyzed Reporter Deposition
Fluorescent in situ hybridization (CARD-FISH). The second section provides an overview
of Laser Scanning Confocal Microscopy (LSCM) imaging, which focuses mainly on the
Fluorescent in situ Hybridization Technique (FISH) technique. This technique is very useful
for visualization and quantification of different groups of microorganisms. The third section
describes the principles of transmission (TEM) and scanning (SEM) electron microscopy.

Biofouling Methods, First Edition. Edited by Sergey Dobretsov, Jeremy C. Thomason and David N. Williams.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



Section 1 Traditional light and
epifluorescent microscopy

Sergey Dobretsov' and Raeid M.M. Abed?

' Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences,
Sultan Qaboos University, Al Khoud, Muscat, Oman
2Bijology Department, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman

1.1 Introduction

Light microscopy is among the oldest methods used to investigate microorganisms [1, 2].
Early microscopic observations are usually associated with the name of Antony van
Leeuwenhoek, who was able to magnify microorganisms 200 times using his designed
microscope [1]. A modern light microscope has a magnification of about 1000x and is able
to resolve objects separated by 0.275 pm. This resolving power is limited by the wave-
length of the used light for the illumination of the specimens. Several light microscopy
techniques, such as bright field, dark field and phase contrast, enhance contrast between
microorganisms and background [1]. Fluorescent microscopy takes advantage of the abil-
ity of some materials or organisms to emit visible light when irradiated with ultraviolet
radiation at a specific wavelength. Phototrophic organisms have a natural fluorescence due
to the presence of chlorophyll in their cells [3]. Other organisms require additional dyes in
order to become fluorescent.

Light microscopy is a simple and cheap method [2]. It is commonly used for observation
of relatively large (>0.5 pm) cells of microorganisms (Figure 1.1). In comparison, epifluo-
rescent microscopy provides higher resolution and is generally used for observation of
bacteria or cell organelles. The pros and cons of these methods are presented in Table 1.1.

Epifluorescent stains allow quick and automatic counting of bacteria using flow cytometry
(discussed later in this chapter). Epifluorescent microscopy is preferable over scanning
electron microscopy (SEM) (Chapter 1, section 3) for bacterial size and abundance studies
[4]. While direct light microscopy measurements can be highly sensitive to low cell num-
bers, electron microscopy methods are not. Light and epifluorescent microscopy has the
advantage over electron microscopy that a larger surface area can be assessed for a given
amount of time [5]. Two fluorescent stains are widely used to stain microbial cells, namely
4’ 6-diamidino-2-phenylindole (DAPI), which binds to DNA [6] (Figure 1.2), and acrydine
orange, which binds to DNA and RNA as well as to detritus particles [7]. Therefore, the
estimated number of bacteria stained with DAPI is on average 70% of bacterial counts
made with acrydine orange [8]. The use of DAPI stain allows a longer period between slide

Biofouling Methods, First Edition. Edited by Sergey Dobretsov, Jeremy C. Thomason and David N. Williams.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 1.1 Microfouling community dominated by different cyanobacteria, diatoms and bacteria
under a light microscope. Magnification 100x. Picture by Julie Piraino. For color detail, please see
color plate section.

Table 1.1 Pros and cons of light and epifluorescent microscopy.

Method Pros Cons
Light * Relatively inexpensive method (<$500) e Visualization of small microorganisms
microscopy and does not require specialized (>0.5mm) is difficult
equipment ¢ Only large cell organelles
e Simple sample preparation. In order to (such as nucleus) can be visualized
increase contrast, object can be stained ¢ Counting of bacteria is difficult
Epifluorescent  ® Small microorganisms, such as  Require specialized equipment, relatively
microscopy bacteria, can be visualized and easily expensive (>$10 000) equipment
counted (epifluorescent microscope with UV lamp)
¢ Photosynthetic organisms, such as e Usually requires staining with fluorescent
diatoms and cyanobacteria, do not probes

require staining

Specialized selective probes allow
staining of different cell organelles or
different groups of microorganisms

preparation and counting, since DAPI fluorescence fades less rapidly than acrydine orange.
DAPI staining does not allow accurate measurement of the size of the bacterial cells, since it
could only stain the specific part of the cell containing DNA [8]. Visualization of bacteria in
dense biofilms is highly difficult. This problem can be overcome to a certain extent by using
confocal scanning laser microscopy (CSLM) (Chapter 1, part 2). DAPI staining has been
intensively used for determination of bacterial abundance in water samples [9] as well as in
biofilms [10]. This can be useful for the determination of the efficiency of biocides (Chapter 2).
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Figure 1.2 Bacterial cells stained with DAPI visualized under an epifluorescent microscope.
Magpnification 1000 x. For color detail, please see color plate section.

Fluorescent in situ hybridization (FISH) allows quick phylogenetic identification
(phylogenic staining) of microorganisms in environmental samples without the need to
cultivate them or to amplify their genes using the polymerase chain reaction (PCR) [11]
(Table 1.2, Figure 1.3). This method is based on the identification of microorganisms
using short (15-20 nucleotides) rRNA-complementary fluorescently labeled oligonucleo-
tide probes (species, genes or group specific) that penetrate microbial cells, bind to RNA
and emit visible light when illuminated with UV light [12]. Common fluorescent dyes
include Cy3, Cy5 and Alexa®. In comparison with other molecular methods (Chapter 3),
FISH provides quantitative data about abundance of bacterial groups without PCR bias
[13]. The FISH-based protocol is presented later in this chapter (Chapter 1, section 2);
here the modified protocol of catalyzed reporter deposition fluorescent in situ hybridiza-
tion (CARD-FISH) is described. CARD-FISH is based on the deposition of a large number
of labeled tyramine molecules by peroxidase activity (Figure 1.3), which enhances
visualization of a small, slow growing or starving bacteria that have a small amount of
rRNA and, thus, give a weak FISH signal [14]. Additionally, CARD-FISH can be used for
the visualization and assessment of the densities of microorganisms in the samples that
have high background fluorescence, such as algal surfaces, fluorescent paints, phototro-
phic biofilms and sediments [14—16]. In this procedure, FISH probes are conjugated with
the enzyme (horseradish peroxidase) and after hybridization the subsequent deposition of
fluorescently labeled tyramides results in substantially higher signal intensities on target
cells [16]. The critical step of CARD-FISH is to ensure probe microbial cell permeability
with cellular integrity, especially in diverse, multispecies microbial communities [17].
Recent improvements in CARD-FISH samples preparation, permeabilization and staining
techniques have resulted in a significant improvement in detection rates of benthic and
planktonic marine bacteria [14, 15].
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Figure 1.3 Outline of fluorescent in situ hybridization (FISH) and catalyzed reporter deposition
fluorescent in situ hybridization (CARD-FISH).

1.2 Determination of bacterial abundance

1.2.1 Material and equipment

The materials and equipment necessary for counting bacteria in biofilms using DAPI stain-
ing are listed in Table 1.3.

1.2.2 Method

Add a few drops of DAPI solution in order to fully cover the biofilm.

Stain for 15 minutes in the dark. Stained samples should be processed within 2-3 days in
order to avoid loss of bacterial numbers [18].

Place a cover slip.

Remove excess water using filter paper.

Place immersion oil on the top of the cover slip.

Using 100x objective count bacteria in 20 fields of view selected randomly. In the case
of digital camera coupled with an epifluorescent microscope, an automatic counting of

N =

AW



