

The Microprocessor

The Microprocessor
A Practical Introduction using the

Arm® Cortex®-M0 Processor

Darshak S. Vasavada
Robert Bosch Center for Cyber-Physical Systems,

Indian Institute of Science, Bangaluru, India

S. K. Sinha
Lab To Market Innovations Private Limited, FSID, IISc,

Bangaluru, India

This Work is a co-publication between Arm Education and John Wiley & Sons, Inc.

Copyright © 2025 by John Wiley & Sons Inc. All rights reserved, including rights for text and data mining and
training of artificial technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on
the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at http://www.wiley.com/go/permission.

Any source code, models or other materials set out in this book should only be used for non-commercial,
educational purposes (and/or subject to the terms of any license that is specified or otherwise provided by
Arm). In no event shall purchasing this book be construed as granting a license to use any other Arm
technology or know-how.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is
Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries and may not be used without written permission.
The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. All rights reserved. For more information
about Arm’s trademarks, please visit https://www.arm.com/company/policies/trademarks. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may not be suitable for your situation.
You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages. Further, readers should be aware that websites listed in this work may
have changed or disappeared between when this work was written and when it is read. Neither the publisher
nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our website at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: Vasavada, Darshak S., author. | Sinha, Sudhir Kumar, author.
Title: The microprocessor : a practical introduction using the Arm

Cortex-M0 processor / Darshak S. Vasavada, S. K. Sinha.
Description: Hoboken, NJ : Wiley, 2025. | Includes bibliographical

references and index.
Identifiers: LCCN 2024037432 (print) | LCCN 2024037433 (ebook) | ISBN

9781394245291 (hardback) | ISBN 9781394245314 (adobe pdf) | ISBN
9781394245307 (epub)

Subjects: LCSH: Microprocessors.
Classification: LCC TK7895.M5 V37 2025 (print) | LCC TK7895.M5 (ebook) |

DDC 004.16–dc23/eng/20240923
LC record available at https://lccn.loc.gov/2024037432
LC ebook record available at https://lccn.loc.gov/2024037433

Cover Design: Wiley
Cover Image: © sankai/Getty Images

Set in 10.5/13pt Muli by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
Product_Safety@wiley.com
https://www.arm.com/company/policies/trademarks
http://www.wiley.com/
https://lccn.loc.gov/2024037432
https://lccn.loc.gov/2024037433

Contents

List of Exercises x

Preface xiii

About This Book xv

How to Read This Book xvi

Acknowledgements xviii

About the Companion Website xix

Introduction xxi

CHAPTER 1 Microprocessor System 1
1.1 Introduction 2
1.2 Processor 3
1.3 Memory 5
1.4 Memory Devices 7
1.5 Bus 10
1.6 IO Ports 14
1.7 Reset, Clock and Power Management 16
1.8 Overview of Arm Cortex-M0 Processor 17
1.9 Summary 20

CHAPTER 2 Instruction Set Architecture 25
2.1 Introduction 25
2.2 Registers 27
2.3 Instruction Set 28
2.4 Structure of an Instruction 30
2.5 Data-Processing Instructions 33
2.6 Memory-Access Instructions 37
2.7 Program-Control Instructions 43
2.8 Summary 47

CHAPTER 3 Program Execution 49
3.1 Introduction 49
3.2 Program 50
3.3 Inside the CPU 52
3.4 Fetch Unit 55
3.5 Decode Unit 57

v

vi Contents

3.6 Execution Unit 59
3.7 Instruction Execution 63
3.8 Processor Pipeline 66
3.9 Summary 68

CHAPTER 4 Assembly Programming 71
4.1 Statements 72
4.2 Labels 73
4.3 Sections 75
4.4 Text Section 77
4.5 Data Sections 84
4.6 Summary 90

CHAPTER 5 Arithmetic Operations 93
5.1 Arithmetic Instructions 94
5.2 Unsigned Integers 96
5.3 Signed Integers 99
5.4 APSR Flags 101
5.5 Condition Codes 106
5.6 Summary 110

CHAPTER 6 Bit-Level Operations 113
6.1 Boolean Instructions 114
6.2 Bit Manipulation 116
6.3 Shift Operations 119
6.4 Word-Length Extension 125
6.5 Byte Ordering Instructions 127
6.6 Summary 129

CHAPTER 7 Load and Store Operations 131
7.1 Introduction 131
7.2 Alignment 133
7.3 Endianness 135
7.4 Basic Load and Store Operations 140
7.5 Data Types 142
7.6 Offset Addressing 145
7.7 Summary 153

CHAPTER 8 Branch and Subroutine 155
8.1 Program-Control Instructions 155
8.2 Branch 156
8.3 Conditional Branch 158
8.4 Indirect Branch 162
8.5 Subroutines 166
8.6 Nested Subroutines 169
8.7 Summary 173

Contents vii

CHAPTER 9 Stack Operations 175
9.1 Introduction 175
9.2 What Is a Stack? 177
9.3 Stack in Cortex-M0 178
9.4 Stack Operations 180
9.5 Creating a Stack 182
9.6 Using the Stack 185
9.7 Local Variables 190
9.8 Summary 193

CHAPTER 10 Exceptions 195
10.1 Introduction 196
10.2 Exception Model 198
10.3 Vector Table 200
10.4 Reset 206
10.5 Faults 209
10.6 Exception Stack Frame 211
10.7 Summary 215

CHAPTER 11 SysTick and Core Interrupts 217
11.1 Introduction 218
11.2 SysTick 218
11.3 SysTick Programming Model 219
11.4 Programming SysTick 222
11.5 Using SysTick 224
11.6 Polling with SysTick 226
11.7 SysTick Interrupts 228
11.8 Interrupt Masking 232
11.9 Non-maskable Interrupt (NMI) 235
11.10 Summary 237

CHAPTER 12 Introduction to C Programming 239
12.1 Programming Languages 240
12.2 Structure of a C Program 241
12.3 Functions 244
12.4 Data 247
12.5 Header Files 250
12.6 Overview of C Language 257
12.7 Summary 259

CHAPTER 13 Basic Data Types 263
13.1 Characters and Strings 263
13.2 Integers 268
13.3 Floating-Point Numbers 277
13.4 Floating-Point Operations 280
13.5 Type-Casting 284
13.6 Summary 285

viii Contents

CHAPTER 14 Functions 289
14.1 Function Calls 290
14.2 Arguments 292
14.3 Local Variables 295
14.4 Conditional Execution 297
14.5 Selection 301
14.6 Loops 305
14.7 Summary 312

CHAPTER 15 Extended Data Types 315
15.1 Arrays 315
15.2 Structures 319
15.3 Pointers 323
15.4 Arrays and Pointers 327
15.5 Pointer to a Structure 330
15.6 Pointer Arithmetic 332
15.7 Uninitialized Pointers 334
15.8 Summary 339

CHAPTER 16 Compilation Process 341
16.1 Overview of the Compilation Process 342
16.2 Preprocessing 345
16.3 Compilation 348
16.4 Assembler 354
16.5 Linker 357
16.6 Executable Program 361
16.7 Summary 364

CHAPTER 17 Microcontroller 367
17.1 Introduction 368
17.2 Block Diagram 369
17.3 Pin Diagram 372
17.4 Reset, Clock and Power Management 373
17.5 Peripheral Interrupts 379
17.6 Peripheral Registers 382
17.7 Peripheral API 387
17.8 Summary 389

CHAPTER 18 IO Programming 393
18.1 IO Devices 394
18.2 GPIO 396
18.3 Timer 400
18.4 ADC 403
18.5 DAC 407
18.6 UART 410
18.7 Interrupts 414
18.8 Summary 419

Contents ix

CHAPTER 19 Microprocessor Applications 423
19.1 LED Brightness Controller 424
19.2 Ambient Light Sensor 427
19.3 Energy-Efficient Coding 430
19.4 Temperature Monitoring 433
19.5 Motor Speed Control 435
19.6 Summary 441

APPENDIX A Programming Environment 443
A.1 Introduction 444
A.2 Keil MDK 446
A.3 Assembly Programming Setup 449
A.4 Writing and Building Assembly Programs 452
A.5 Debugging an Assembly Program 454
A.6 C Programming Setup 458
A.7 Writing and Building C Program 460
A.8 Debugging A C Program 461
A.9 Debugger 464

APPENDIX B Advanced Topics 467
B.1 System-Control Instructions 467
B.2 OS Support 470

APPENDIX C Startup Code 475
C.1 OS-Less System 475
C.2 Startup Code 478
C.3 Linker Script File 481

APPENDIX D AM0 Header Files 483
D.1 Register Header File 483
D.2 AM0 Header File 484

Glossary of Acronyms 487

References 491

Index 493

List of Exercises

Exercise 4.0 Create a new project 77
Exercise 4.1 My first assembly program 78
Exercise 4.2 Exploring the instruction codes 82
Exercise 4.3 Accessing data from the memory 87
Exercise 5.0 Create a new project 96
Exercise 5.1 Addition 96
Exercise 5.2 Multiplication 97
Exercise 5.3 Subtraction 99
Exercise 5.4 N and Z bits 102
Exercise 5.5 Carry and overflow 104
Exercise 5.6 Unsigned comparison 107
Exercise 5.7 Signed comparison 109
Exercise 6.0 Create a new project 115
Exercise 6.1 Boolean operations 115
Exercise 6.2 Setting, clearing and testing bits 118
Exercise 6.3 Logical shift 121
Exercise 6.4 Arithmetic shift 123
Exercise 6.5 Word-length extension 126
Exercise 7.0 Create a new project 133
Exercise 7.1 Data formats 133
Exercise 7.2 Endianness 138
Exercise 7.3 Basic load and store 141
Exercise 7.4 Sign extension 144
Exercise 7.5 Immediate offset 148
Exercise 7.6 Register offset 150
Exercise 8.0 Create a new project 157
Exercise 8.1 Jumping around 158
Exercise 8.2 if-else statements 160
Exercise 8.3 Loops 161
Exercise 8.4 Selection 163
Exercise 8.5 Subroutine 167

x

List of Exercises xi

Exercise 8.6 Registers used in a subroutine 170
Exercise 9.0 Create a new project 183
Exercise 9.1 Where is the stack? 183
Exercise 9.2 Push and pop 186
Exercise 9.3 Registers on stack 187
Exercise 9.4 Nested subroutines 189
Exercise 9.5 Local variables on the stack 191
Exercise 10.1 Vector table 201
Exercise 10.2 Startup and main code 207
Exercise 10.3 HardFault 210
Exercise 10.4 Exception stack frame 212
Exercise 11.1 SysTick in action 223
Exercise 11.2 Polling with SysTick 226
Exercise 11.3 SysTick with interrupt 229
Exercise 11.4 Masking SysTick 233
Exercise 11.5 NMI 236
Exercise 12.0 Create a new project 243
Exercise 12.1 Function call 245
Exercise 12.2 Global variables 248
Exercise 12.3 Local variables 249
Exercise 12.4 Function declaration 250
Exercise 12.5 Header file 254
Exercise 13.0 Create a new project 264
Exercise 13.1 Characters 264
Exercise 13.2 Strings 266
Exercise 13.3 Integer data type 268
Exercise 13.4 Endianness and alignment 270
Exercise 13.5 Addition 272
Exercise 13.6 Sign and word-length 276
Exercise 13.7 Floating-point representation 279
Exercise 13.8 Floating-point addition 282
Exercise 13.9 Type-casting 284
Exercise 14.0 Create a new project 290
Exercise 14.1 Function call 291
Exercise 14.2 Arguments in registers 293
Exercise 14.3 Local variables 295
Exercise 14.4 Conditional execution 299

xii List of Exercises

Exercise 14.5 switch-case statement 302
Exercise 14.6 for loop 306
Exercise 15.0 Create a new project 316
Exercise 15.1 Arrays 317
Exercise 15.2 Implementation of a structure 319
Exercise 15.3 Pointer as a fixed address 324
Exercise 15.4 Pointers 325
Exercise 15.5 Arrays and pointers 328
Exercise 15.6 Pointer to a structure 330
Exercise 15.7 Pointer arithmetic 333
Exercise 15.8 Accessing NULL pointer 335
Exercise 15.9 Accessing pointer with a non-address value 336
Exercise 16.0 Create a new project 345
Exercise 16.1 Preprocessing 346
Exercise 16.2 Declarations 352
Exercise 16.3 Definitions 352
Exercise 16.4 Translation 355
Exercise 16.5 Map file 362

Preface

Welcome to “The Microprocessor: A Practical Introduction.”
This is an entry-level book on microprocessor architecture, with a focus

on Arm architecture for Cortex-M processors due to their widespread use in
today’s microcontrollers. The objective is to build a strong understanding of
the core concepts that can serve as a foundation to study more complex
processors and systems.

We have used Cortex-M0 processor as an example to explain the under-
lying concepts. We have chosen it for its simplicity; it allows us to cover all
the fundamental concepts without overwhelming readers with complex details.
Cortex-M0 has a small instruction set that includes all the key aspects of a
typical RISC processor: pipelined execution, arithmetic and logic instructions,
load-store and stack operations, and program flow control. It uses an intuitive
exception model that remains consistent across all Cortex-M processors. Once
learned with Cortex-M0, these same concepts will be applicable while working
on more complex processors within Cortex-M family.

We believe that the best way to learn about microprocessor internals is
through assembly language programming. Therefore, each chapter is orga-
nized as a set of topics, where each topic describes one basic concept, explains
the relevant details from the reference manual, and then provides a program-
ming exercise for clarity.

Subsequently, we introduce C programming and demonstrate how various
constructs in C are implemented on the processor. The book also describes
how a C program is compiled and debugged on a target hardware, providing
insights into the internals of a compiler tool chain.

Lastly, we have defined an abstract microcontroller to illustrate an
implementation of an Arm processor. We use this microcontroller to explain
register-level peripheral programming and peripheral APIs, and demonstrate
how real-world applications can be implemented on a microprocessor.

The assembly programming examples are based on the free version of Keil
MDK, using the built-in simulator without requiring an additional hardware.
At the same time, these programs can also run on any Cortex-M-based
hardware, thanks to the compatibility of Cortex-M0 with all the Cortex-M
processors.

Darshak S. Vasavada and S. K. Sinha
Bangalore, India

24 December 2024

xiii

About This Book

The book begins with an introduction that provides an overview of different
categories of microprocessors and introduces Cortex-M processors.

Chapter 1 provides the hardware basics: the processor, memory and bus
system, input/output (IO) ports and interrupts, and reset, clock and power
management.

The following two chapters present the microprocessor architecture
concepts. Chapter 2 describes the instruction-set architecture for Cortex-M0
processor, and chapter 3 explains how these instructions get executed inside
a typical RISC processor.

Chapter 4 provides an introduction to assembly programming. Chapters
5–9 get into the details of various types of operations carried out by the pro-
cessor: arithmetic and logic operations, load-store operations, program control
and stack operations.

Chapter 10 introduces the exception model and explains the vector table,
exception handling and reset processing. Chapter 11 describes SysTick timer
and core interrupts.

Chapter 12 introduces C programming and describes the structure of a C
program. Chapters 13, 14 and 15 demonstrate how various C elements get
implemented and executed on the processor. Chapter 16 explains the compi-
lation process, from source files to the binary program loaded in the processor’s
memory.

Chapter 17 introduces the microcontroller using an abstract imple-
mentation, simplified to explain the basic structure. Chapter 18 explains
IO programming, and chapter 19 illustrates a few examples of real-world
applications using the abstract microcontroller.

Appendix A describes Keil MDK development environment, used to carry
out the programming exercises in this book.

Appendix B describes a few topics which are part of Cortex-M0 processor
but beyond the scope of this book, included for completeness.

Appendix C lists the startup code used in the programming exercises in
this book.

Appendix D lists the header files for the abstract microcontroller used in
chapters 17–19.

xv

How to Read This Book

If you are already familiar with microprocessor basics and are particularly
interested in the architecture for Cortex-M0 processor, the introduction and
chapters 2 and 10 will provide a comprehensive overview. The introduction
provides a high-level overview of Arm Cortex processors, while chapter 2
covers Cortex-M0 instruction-set architecture and chapter 11 explains the
core exception model. Additionally, chapter 11 describes SysTick timer and
core interrupt handling.

If this is your first exposure to a microprocessor system, chapter 1 will intro-
duce you to the necessary hardware basics. Following this, chapters 2, 3 and 10
explain the core architectural concepts. Chapters 4–9 will take you deeper into
Cortex-M0 instruction set through hands-on programming, and chapters 10
and 11 will introduce you to system-level programming. Collectively, chapters
1–11 provide a strong foundation for the architectural concepts. Appendix A
will get you started with assembly programming, and appendix B introduces
advanced topics from Cortex-M0 processor for you to continue explorations
beyond this book.

Chapters 12–16 are optional. These chapters introduce C programming
constructs and show how they are implemented on Cortex-M0 processor. You
may glance through them first, and then revisit them as you get deeper into
embedded C programming. Appendix C explains the startup code, completing
the overall picture of program execution.

Chapters 17–19 provide an introduction to the microcontroller. Here, we
have defined an abstract microcontroller that explains the working principles
without overwhelming you with details. If you have worked on a real microcon-
troller, these chapters may be an easy read for you, where you might get clarity
on certain aspects you might have missed out earlier. On the other hand, if this
is your first exposure to a microcontroller, the concepts in these chapters will
guide you to program a real microcontroller. Appendix D provides header files
for the abstract microcontroller, which can be used to implement peripheral
API on a real hardware.

The companion website provides a template project along with the startup
code to carry out the assembly programming exercises in this book.

The chapter map is shown in figure 1.

xvi

How to Read This Book xvii

Begin here I 1

2
Jump directly into

architecture concepts

Assembly
programming

Exception

3

Introduction and
hardware basics

Instruction-set architecture
and RISC fundamentals

Application-level
architecture

System-level
architecture

C programming on
Cortex-M0 processor

Comprehensive introduction
to microprocessorD1918

1514

10

4 5 6 7 8 9

11

1312 16

17

C

B

A

C
programming

Micorcontroller and
IO programming

FIGURE 1 Chapter map.

We believe this structure will help you to navigate through the content
effectively and select your engagement with the book according to your back-
ground and interests.

Acknowledgements

We express our heartfelt thanks to all our students and the many teachers who
almost forced us to write this book, without whom this book would not have
happened!

Our thanks to Professors T Matthew Jacob and YN Srikanth of IISc,
Bangalore, for their thoughtful insights at the formative stage of the book. A
big thank-you to Arun Hiregange for the working discussions and meticulous
technical review.

Our sincere thanks to the Arm team: Joseph Yiu for the comprehensive tech-
nical review, Andrew Pickard for the code template, and Christopher Seidl and
Andreas Barth for valuable inputs on Keil MDK. Special thanks to Liz Warman,
Arm Education, for organizing such an accomplished team of reviewers. And
thank you, our friends in Arm India, Apurva Varma and Neeraj Singh, for your
guidance at the pre-publication stage of the book.

Working with Sandra Grayson at John Wiley Inc. has been an absolute plea-
sure. Thank you for your enthusiasm, commitment and unwavering support
throughout the publication process. Journey from the first draft to the publi-
cation was arduous, but you made it so comfortable! Our thanks to the pro-
duction team for their diligence in shaping this book through its refinements.

Finally, we owe our deepest gratitude to our students at the Indian Institute
of Science. Their passion for learning and affection for us have been the source
of energy, fuelling the journey from the conception of the book to its realization.

xviii

About the Companion
Website

This book is accompanied by a companion website:

www.wiley.com/go/vasavada/Microprocessor

xix

https://www.wiley.com/go/vasavada/Microprocessor

Introduction

Let us begin by asking:
What is a microprocessor?
Intel, which is credited with the first microprocessor (4004, in 1971), answers

this question thus: “The microprocessor, also known as the central processing
unit (CPU), is the brain of all computers.”

This comparison of microprocessor with the human brain is quite apt. In
a human mind–body system, the brain receives inputs from sensory organs
(eyes, ears, skin), processes the information received and takes decisions. To
the outside world, the decisions taken by our brain are reflected in what we
speak, how we walk, etc.

We do not see our brain. And we do not see the microprocessor in a com-
puter system – it is hidden inside the system and not directly accessible to the
user. What we get to work with are the inputs and outputs of the system.

However, this comparison ends here! We have a very limited understand-
ing of our brain. But we understand microprocessors very well. By the time we
complete our journey, you will know much more about microprocessors than
you do about your brain!

1 MICROPROCESSOR SYSTEM

Figure I.1 shows a diagram of a microprocessor system, simplified for the
purpose of learning.

Input
Devices

Output
Devices

Microprocessor

Microprocessor System

P
o
r
t
s

P
o
r
t
s

P
o
r
t
s

Memory

FIGURE I.1 A simplified microprocessor system

xxi

xxii Introduction

As shown in the figure, a microprocessor system receives inputs and
produces outputs. An input device can be as simple as a push button, or
very complex as a video camera. Similarly, an output device can be a sim-
ple two-lead LED, or a far more complex LCD screen. Processor may also
interact with electro-mechanical devices, for example, motors in a robotic
system. Such systems may involve inputs from a variety of sensors: distance,
speed, acceleration, etc. Many systems use communication devices such as
Universal Serial Bus (USB) or Ethernet for exchanging information with the
external world. To interact with an input/output (IO) device, a microprocessor
uses an IO port, which acts as a bridge between the processor and an IO
device.

A microprocessor system processes the inputs and generates the out-
puts according to a program stored in the memory. A program could be
an algorithm, a set of equations, or logical statements, typically written
in a high-level language such as C or C++. Since the microprocessor can
‘understand’ only binary language, we convert a C/C++ program into binary
machine codes using a software tool called a compiler. Just as our brain uses
memory cells to remember various algorithms (for example, how to speak)
and related data (various words that we speak), the microprocessor system
uses memory devices to store the program instructions and the associated
data.

Apart from being used in desktop and mobile computers, microprocessors
are used in a large number of systems where they are embedded deep within
the system. Examples of embedded applications are numerous, such as play-
ing music or displaying pictures, controlling air-fuel mixture in a car’s engine,
managing the autopilot mode of an aeroplane, processing a variety of biomed-
ical signals such as in an ECG or a blood-pressure monitor, processing camera
information to drive motors in a robot, processing pressure and temperature
in an industrial control system, processing enormous amounts of data on the
servers – the list is endless.

Depending on the applications in which they are used, microprocessors
vary in their capabilities. For example, a microprocessor that controls mixing
air and fuel in a car engine has to be a lot more powerful than a micropro-
cessor in a digital thermometer, but at the same time, it does not require
capability to process audio, video and image data like the ones in our mobile
phones do.

To understand this spectrum of microprocessors, ranging from a tiny micro-
controller inside a remote control to the one powering a cloud server, let us
divide them into three broad categories:

1. Microcontroller processors
2. Real-time processors
3. Application processors

Let us discuss each briefly.

Introduction xxiii

2 MICROCONTROLLER PROCESSORS

Microcontrollers deploy the simplest form of microprocessors. They are used in
many everyday devices such as remote controllers, digital thermometers, wear-
able devices and home appliances.

2.1 Hardware

Microcontrollers are designed for compact and power-efficient applications.
They integrate a processor, memory and IO interfaces on a single chip. Micro-
controllers are implemented as Systems-on-Chip (SoCs), reducing the overall
system complexity and cost, and, at the same time, improving hardware relia-
bility. Their small size and low power consumption make them ideal for appli-
cations where space and energy are at a premium.

2.2 Software

Microcontrollers are typically used in dedicated systems that perform specific
tasks. Simple systems carry out repetitive activities running in a loop. Often
known as ‘bare-metal’ systems, these are standalone systems without an oper-
ating system (OS). More complex systems deploy a real-time operating system
(RTOS) to implement multitasking applications.

Power-sensitive systems go into a sleep state after completing their task,
exploiting power-saving modes available in microcontrollers, and wake up
again when new inputs are available.

2.3 Applications

Microcontroller processors are characterized by low software complexity, high
power efficiency and small silicon area on the chip. They are tiny little brains
that run numerous devices in automotive, industrial, medical, building automa-
tion and many more segments. Let us take a few examples:

Tens of microcontrollers are used inside a car, to carry out various tasks,
such as checking seat-belt status, measuring tire pressure, controlling door
lock, winding up window glass etc.

Microcontrollers are used extensively in home appliances. For example,
microwave ovens use microcontrollers for on/off and timing control. Washing
machines use them to control the speed and timings of their motors and
operate water inlet and outlet valves.

Microcontrollers also proliferate medical equipment such as digital ther-
mometers, blood-pressure meters, pulse-oximeters and so on, measuring vari-
ous body parameters and displaying them on a small display.

Finally, microcontrollers play a major role in enabling the last leg of Internet
of Things (IoT) systems. They provide the interface between the digital world
and the physical sensors and actuators, enabling real-time data collection,
processing and control in a variety of interconnected devices.

xxiv Introduction

3 REAL-TIME PROCESSORS

Moving up the complexity scale, next in the series are the real-time proces-
sors. They are used in time-critical systems, where a significant amount of data
needs to be processed within a specific deadline, such as an aircraft landing
system or performing a robotic surgery. Often characterised as the systems
where ‘a late answer is a wrong answer’, real-time processors are critically
important in automotive, industrial, networking and many other systems.

3.1 Hardware

Real-time data-processing systems require significantly more computa-
tion power to process large volumes of data within a specific time frame.
Hence, these processors run at a higher clock frequency compared to the
microcontroller processors.

Real-time processors are accompanied by on-chip memories to store
time-critical data and code. However, the on-chip memories are limited in
size, and hence, such systems typically need a storage device (such as an SD
card or a solid-state drive) to store the program, and a large external memory
(RAM) to run the program. Since external memories are slow in speed, many
systems also deploy on-chip cache memory that stores frequently accessed
code and data to improve system performance.

3.2 Software

A real-time application is implemented as multiple threads running concur-
rently. Such systems use an RTOS that schedules threads according to their
priorities to meet the deadlines. An RTOS is a very lightweight OS that provides
multi-tasking capability to a system. Since it has little overheads, an RTOS is sig-
nificantly more responsive to external inputs compared to a desktop OS, and
hence, well-suited to meet real-time requirements.

Such systems often use a boot-loader code that loads the program from
the storage device to the memory. Bootloaders often have the capability to
upgrade the program for bug fixes and feature enhancements.

3.3 Applications

Real-time processors are used where time is of essence. These processors are
designed to perform tasks within very strict time constraints, often requiring
precision down to nanoseconds. Here are some examples of systems imple-
mented using a real-time processor.

A power-train control module, also known as an engine control unit (ECU),
processes signals from numerous sensors, including those measuring air and
fuel intake, oxygen levels in the exhaust, and various shaft positions in the
engine. It uses this data to control air and fuel injection and ignition timings,

Introduction xxv

ensuring precise operations that result in high fuel efficiency, even at high vehi-
cle speeds.

A wireless modem in a mobile phone converts digital data into radio signals
for transmission and vice versa at very high data rates. It runs sophisticated
algorithms to improve reliability in the presence of interference and noise. Since
the same medium is used by multiple devices for communication, these activi-
ties must be carried out with a very high degree of precision.

A solid-state drive (SSD) controller provides an interface between the pro-
cessor and the storage device. It implements error correction, wear-levelling
and garbage collection algorithms to improve the lifespan and efficiency of the
storage device. These operations are carried out at a very high speed, allowing
us to enjoy watching a video stored in an SSD without a glitch!

☛ Microcontrollers vs Real-Time Processors

Please note that while real-time processors are specifically designed to build
high-speed, time-critical systems, many real-time systems are also imple-
mented using microcontrollers. Audio equipment, ECG monitor, precision cut-
ting machines are some of the examples that can be implemented using
microcontrollers.

The key difference between microcontrollers and real-time processors
lies in their data processing capabilities. Real-time processors are required
when we need to process large amount of data within a very short time
frame. In such scenarios, the processing power and the small size of the
on-chip memory become limiting factors for microcontrollers.

With the advancement of technology, microcontrollers run at higher
clock speeds and pack more on-chip memory. Hence, they are being
increasingly used for applications in the real-time world, blurring the line
between microcontrollers and real-time processors.

4 APPLICATION PROCESSORS

At the high end of the spectrum are application processors, the powerhouses
behind computing devices like smartphones, tablets and cloud servers. Unlike
the microcontrollers or real-time processors that run dedicated applications,
application processors execute multiple applications using a general-purpose
OS, which requires processing power, combined with the ability to manage
large amounts of memory.

4.1 Hardware

Application processors use one or more powerful processor cores operating at
a few GHz clock speed. These processors are accompanied by special-purpose

xxvi Introduction

coprocessors for high-speed computations required in graphics, multimedia
processing and machine-learning algorithms.

Application processors typically use several GBs of RAM, shared between
multiple applications. They contain a memory management unit (MMU) that
allows an OS to implement virtual memory to share the memory between mul-
tiple applications. An MMU is also a key component in providing security, and
protects the OS and applications from unauthorized access either by a mal-
functioning application or attacks from harmful programs.

Lastly, application processors are accompanied by high-speed peripheral
ports for networking, storage and high data-rate IO devices such as a camera
or a display.

4.2 Software Configuration

Application processors are designed to run operating systems that can run mul-
tiple application programs. Some of these processors also support hardware
virtualization, allowing them to run multiple operating systems simultaneously
on the same hardware.

An OS is a complex piece of software, typically spanning millions of lines of
code that manages various resources in the system. At the heart of the OS is
a scheduler that schedules different applications in a way that they appear to
be running simultaneously to us. OS also includes a memory management sub-
system to share memory between multiple applications, and file subsystems to
efficiently store applications and related data on storage devices. Not directly
visible to us are various low-level device drivers that communicate with net-
working and IO devices.

The system contains a large number of programs stored in the file system.
Some of these are system programs that run continuously, while others run as
required by the user. Many of such systems have the facility to download new
applications and update them over the network on an ongoing basis.

4.3 Applications

Application processors are at the forefront, powering the cutting-edge devices
such as mobile phones, personal computers and servers. With Linux kernel run-
ning on these processors, they are used in a vast number of embedded appli-
cations as well.

In consumer electronics, these processors enable multimedia functionalities
in set-top boxes and in-car infotainment systems, supporting high-definition
media playback, efficient content management and advanced user interfaces.

For networking devices like routers and firewalls, application processors
perform complex routing and implement advanced security protocols.

In healthcare, application processors are used in patient monitoring
systems and medical imaging devices to process biomedical signals and
high-resolution images.

Introduction xxvii

Application processors form the backbone of IoT systems; they process
large volumes of data, run sophisticated algorithms and take complex
decisions.

Many applications, such as kiosks or automatic teller machines (ATMs), run
on application processors as they provide a desktop or a tablet-like environ-
ment for user interactions, even though the application themselves may not
require high data-processing capabilities.

These are a few examples to give you an idea. The actual usage of applica-
tion processors in embedded applications is vast and diverse, likely to explode
with the use of AI and machine learning in years to come.

☛ Are application processors suited for real-time applications?

Traditionally, real-time applications have been designed with a stringent
focus on guaranteeing response times and never missing deadlines. Use of
a general-purpose OS for real-time systems was unacceptable – they were
considered too ‘bulky’ as they could not respond to deadlines fast enough.

However, application processors are becoming more powerful, and
hence, they are able to respond to the deadlines much better, even while
running a general-purpose OS. At the same time, modern real-time systems
require sophisticated user interfaces (including cameras, displays and
speech recognition) and network connectivity for data analysis and running
AI/ML algorithms. Hence, many software architects find it convenient to
use an OS that provides all these features, and additionally, allows easy
application updates, resulting in constantly evolving software.

It is important to note, however, that general-purpose OS is not designed
to meet real-time requirements, and can miss deadlines once in a while. To
address these, some systems simply use more processor cores, faster clock
and more memory to reduce the chances of missing deadlines. They also
implement acceptable workarounds in case the system occasionally misses
a deadline.

Time-critical systems often deploy a combination of one or more appli-
cation processors and a microcontroller on the same chip. The application
processor runs the OS and applications, while the microcontroller is used to
run time-critical tasks. This dual approach combines features of a modern
system, while meeting the hard deadlines of a real-time system.

5 OVERVIEW OF ARM CORTEX PROCESSORS

Arm architecture has been constantly evolving over time.
Armv1 and Armv2 were early versions designed for personal computers,

with processors running at lower tens of MHz. They established the founda-
tional reduced instruction set computer (RISC) principles, achieving similar
performance to more complex architectures but with significantly fewer

xxviii Introduction

transistors. This efficiency was the key to their low power consumption and
cost-effectiveness.

Armv3 onwards, cores were licensed to third-party vendors. Armv4 and
Armv5 were extensively used in mobile phones for their power efficiency
and compact design, evolving from feature phones to smartphones due to
their multimedia capabilities. Beyond phones, these processors also powered
embedded systems, automotive applications, and consumer electronics such
as set-top boxes and digital cameras.

Armv6 introduced Cortex-A processors aimed at high-performance com-
puting, and Cortex-M processors for low-power and cost-sensitive applications.

Armv7 further expanded Cortex-M family to include signal processing and
floating-point computation capabilities. It also introduced Cortex-R processors,
optimized for time-critical applications.

Armv8 introduced 64-bit processing with the AArch64 instruction set, along-
side enhanced security features. It also included vector processing capabilities
for signal processing and machine-learning tasks.

Armv9 is the latest architecture at the time of writing, building on Armv8
with further enhancements in security and performance optimizations for AI
and machine learning computations.

Arm defines three architecture profiles for their Arm® Cortex® processors:

1. Arm Cortex-A, application processors
2. Arm Cortex-R, real-time processors
3. Arm Cortex-M, microcontroller processors

Let us discuss each briefly.

5.1 Cortex-A

Cortex-A processors are a series of high-performance processors designed to
run multiple applications using a general-purpose OS.

High-end Cortex-A processors drive consumer products such as mobile
phones, tablets and laptops. In embedded systems, they are ideal for
demanding applications such as robotics and computer vision.

Mid-range Cortex-A processors provide reasonable computation power to
entry-level phones as well as embedded systems that require moderate com-
putation power, such as infotainment systems and smart-home devices.

Entry-level Cortex-A processors are power-efficient and often used in
embedded systems primarily due to their ability to run an OS, for example, in
point-of-sales terminals and industrial control panels.

5.2 Cortex-R

Cortex-R series includes a range of high-performance processors optimized for
hard real-time applications. Unlike Cortex-A processors, which are designed for

