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Preface

Welcome to “The Microprocessor: A Practical Introduction.”
This is an entry-level book on microprocessor architecture, with a focus

on Arm architecture for Cortex-M processors due to their widespread use in
today’s microcontrollers. The objective is to build a strong understanding of
the core concepts that can serve as a foundation to study more complex
processors and systems.

We have used Cortex-M0 processor as an example to explain the under-
lying concepts. We have chosen it for its simplicity; it allows us to cover all
the fundamental concepts without overwhelming readers with complex details.
Cortex-M0 has a small instruction set that includes all the key aspects of a
typical RISC processor: pipelined execution, arithmetic and logic instructions,
load-store and stack operations, and program flow control. It uses an intuitive
exception model that remains consistent across all Cortex-M processors. Once
learned with Cortex-M0, these same concepts will be applicable while working
on more complex processors within Cortex-M family.

We believe that the best way to learn about microprocessor internals is
through assembly language programming. Therefore, each chapter is orga-
nized as a set of topics, where each topic describes one basic concept, explains
the relevant details from the reference manual, and then provides a program-
ming exercise for clarity.

Subsequently, we introduce C programming and demonstrate how various
constructs in C are implemented on the processor. The book also describes
how a C program is compiled and debugged on a target hardware, providing
insights into the internals of a compiler tool chain.

Lastly, we have defined an abstract microcontroller to illustrate an
implementation of an Arm processor. We use this microcontroller to explain
register-level peripheral programming and peripheral APIs, and demonstrate
how real-world applications can be implemented on a microprocessor.

The assembly programming examples are based on the free version of Keil
MDK, using the built-in simulator without requiring an additional hardware.
At the same time, these programs can also run on any Cortex-M-based
hardware, thanks to the compatibility of Cortex-M0 with all the Cortex-M
processors.

Darshak S. Vasavada and S. K. Sinha
Bangalore, India

24 December 2024
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About This Book

The book begins with an introduction that provides an overview of different
categories of microprocessors and introduces Cortex-M processors.

Chapter 1 provides the hardware basics: the processor, memory and bus
system, input/output (IO) ports and interrupts, and reset, clock and power
management.

The following two chapters present the microprocessor architecture
concepts. Chapter 2 describes the instruction-set architecture for Cortex-M0
processor, and chapter 3 explains how these instructions get executed inside
a typical RISC processor.

Chapter 4 provides an introduction to assembly programming. Chapters
5–9 get into the details of various types of operations carried out by the pro-
cessor: arithmetic and logic operations, load-store operations, program control
and stack operations.

Chapter 10 introduces the exception model and explains the vector table,
exception handling and reset processing. Chapter 11 describes SysTick timer
and core interrupts.

Chapter 12 introduces C programming and describes the structure of a C
program. Chapters 13, 14 and 15 demonstrate how various C elements get
implemented and executed on the processor. Chapter 16 explains the compi-
lation process, from source files to the binary program loaded in the processor’s
memory.

Chapter 17 introduces the microcontroller using an abstract imple-
mentation, simplified to explain the basic structure. Chapter 18 explains
IO programming, and chapter 19 illustrates a few examples of real-world
applications using the abstract microcontroller.

Appendix A describes Keil MDK development environment, used to carry
out the programming exercises in this book.

Appendix B describes a few topics which are part of Cortex-M0 processor
but beyond the scope of this book, included for completeness.

Appendix C lists the startup code used in the programming exercises in
this book.

Appendix D lists the header files for the abstract microcontroller used in
chapters 17–19.
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How to Read This Book

If you are already familiar with microprocessor basics and are particularly
interested in the architecture for Cortex-M0 processor, the introduction and
chapters 2 and 10 will provide a comprehensive overview. The introduction
provides a high-level overview of Arm Cortex processors, while chapter 2
covers Cortex-M0 instruction-set architecture and chapter 11 explains the
core exception model. Additionally, chapter 11 describes SysTick timer and
core interrupt handling.

If this is your first exposure to a microprocessor system, chapter 1 will intro-
duce you to the necessary hardware basics. Following this, chapters 2, 3 and 10
explain the core architectural concepts. Chapters 4–9 will take you deeper into
Cortex-M0 instruction set through hands-on programming, and chapters 10
and 11 will introduce you to system-level programming. Collectively, chapters
1–11 provide a strong foundation for the architectural concepts. Appendix A
will get you started with assembly programming, and appendix B introduces
advanced topics from Cortex-M0 processor for you to continue explorations
beyond this book.

Chapters 12–16 are optional. These chapters introduce C programming
constructs and show how they are implemented on Cortex-M0 processor. You
may glance through them first, and then revisit them as you get deeper into
embedded C programming. Appendix C explains the startup code, completing
the overall picture of program execution.

Chapters 17–19 provide an introduction to the microcontroller. Here, we
have defined an abstract microcontroller that explains the working principles
without overwhelming you with details. If you have worked on a real microcon-
troller, these chapters may be an easy read for you, where you might get clarity
on certain aspects you might have missed out earlier. On the other hand, if this
is your first exposure to a microcontroller, the concepts in these chapters will
guide you to program a real microcontroller. Appendix D provides header files
for the abstract microcontroller, which can be used to implement peripheral
API on a real hardware.

The companion website provides a template project along with the startup
code to carry out the assembly programming exercises in this book.

The chapter map is shown in figure 1.
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We believe this structure will help you to navigate through the content
effectively and select your engagement with the book according to your back-
ground and interests.
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Introduction

Let us begin by asking:
What is a microprocessor?
Intel, which is credited with the first microprocessor (4004, in 1971), answers

this question thus: “The microprocessor, also known as the central processing
unit (CPU), is the brain of all computers.”

This comparison of microprocessor with the human brain is quite apt. In
a human mind–body system, the brain receives inputs from sensory organs
(eyes, ears, skin), processes the information received and takes decisions. To
the outside world, the decisions taken by our brain are reflected in what we
speak, how we walk, etc.

We do not see our brain. And we do not see the microprocessor in a com-
puter system – it is hidden inside the system and not directly accessible to the
user. What we get to work with are the inputs and outputs of the system.

However, this comparison ends here! We have a very limited understand-
ing of our brain. But we understand microprocessors very well. By the time we
complete our journey, you will know much more about microprocessors than
you do about your brain!

1 MICROPROCESSOR SYSTEM

Figure I.1 shows a diagram of a microprocessor system, simplified for the
purpose of learning.

Input
Devices

Output
Devices

Microprocessor

Microprocessor System

P
o
r
t
s

P
o
r
t
s

P
o
r
t
s

Memory

FIGURE I.1 A simplified microprocessor system
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As shown in the figure, a microprocessor system receives inputs and
produces outputs. An input device can be as simple as a push button, or
very complex as a video camera. Similarly, an output device can be a sim-
ple two-lead LED, or a far more complex LCD screen. Processor may also
interact with electro-mechanical devices, for example, motors in a robotic
system. Such systems may involve inputs from a variety of sensors: distance,
speed, acceleration, etc. Many systems use communication devices such as
Universal Serial Bus (USB) or Ethernet for exchanging information with the
external world. To interact with an input/output (IO) device, a microprocessor
uses an IO port, which acts as a bridge between the processor and an IO
device.

A microprocessor system processes the inputs and generates the out-
puts according to a program stored in the memory. A program could be
an algorithm, a set of equations, or logical statements, typically written
in a high-level language such as C or C++. Since the microprocessor can
‘understand’ only binary language, we convert a C/C++ program into binary
machine codes using a software tool called a compiler. Just as our brain uses
memory cells to remember various algorithms (for example, how to speak)
and related data (various words that we speak), the microprocessor system
uses memory devices to store the program instructions and the associated
data.

Apart from being used in desktop and mobile computers, microprocessors
are used in a large number of systems where they are embedded deep within
the system. Examples of embedded applications are numerous, such as play-
ing music or displaying pictures, controlling air-fuel mixture in a car’s engine,
managing the autopilot mode of an aeroplane, processing a variety of biomed-
ical signals such as in an ECG or a blood-pressure monitor, processing camera
information to drive motors in a robot, processing pressure and temperature
in an industrial control system, processing enormous amounts of data on the
servers – the list is endless.

Depending on the applications in which they are used, microprocessors
vary in their capabilities. For example, a microprocessor that controls mixing
air and fuel in a car engine has to be a lot more powerful than a micropro-
cessor in a digital thermometer, but at the same time, it does not require
capability to process audio, video and image data like the ones in our mobile
phones do.

To understand this spectrum of microprocessors, ranging from a tiny micro-
controller inside a remote control to the one powering a cloud server, let us
divide them into three broad categories:

1. Microcontroller processors
2. Real-time processors
3. Application processors

Let us discuss each briefly.
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2 MICROCONTROLLER PROCESSORS

Microcontrollers deploy the simplest form of microprocessors. They are used in
many everyday devices such as remote controllers, digital thermometers, wear-
able devices and home appliances.

2.1 Hardware

Microcontrollers are designed for compact and power-efficient applications.
They integrate a processor, memory and IO interfaces on a single chip. Micro-
controllers are implemented as Systems-on-Chip (SoCs), reducing the overall
system complexity and cost, and, at the same time, improving hardware relia-
bility. Their small size and low power consumption make them ideal for appli-
cations where space and energy are at a premium.

2.2 Software

Microcontrollers are typically used in dedicated systems that perform specific
tasks. Simple systems carry out repetitive activities running in a loop. Often
known as ‘bare-metal’ systems, these are standalone systems without an oper-
ating system (OS). More complex systems deploy a real-time operating system
(RTOS) to implement multitasking applications.

Power-sensitive systems go into a sleep state after completing their task,
exploiting power-saving modes available in microcontrollers, and wake up
again when new inputs are available.

2.3 Applications

Microcontroller processors are characterized by low software complexity, high
power efficiency and small silicon area on the chip. They are tiny little brains
that run numerous devices in automotive, industrial, medical, building automa-
tion and many more segments. Let us take a few examples:

Tens of microcontrollers are used inside a car, to carry out various tasks,
such as checking seat-belt status, measuring tire pressure, controlling door
lock, winding up window glass etc.

Microcontrollers are used extensively in home appliances. For example,
microwave ovens use microcontrollers for on/off and timing control. Washing
machines use them to control the speed and timings of their motors and
operate water inlet and outlet valves.

Microcontrollers also proliferate medical equipment such as digital ther-
mometers, blood-pressure meters, pulse-oximeters and so on, measuring vari-
ous body parameters and displaying them on a small display.

Finally, microcontrollers play a major role in enabling the last leg of Internet
of Things (IoT) systems. They provide the interface between the digital world
and the physical sensors and actuators, enabling real-time data collection,
processing and control in a variety of interconnected devices.
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3 REAL-TIME PROCESSORS

Moving up the complexity scale, next in the series are the real-time proces-
sors. They are used in time-critical systems, where a significant amount of data
needs to be processed within a specific deadline, such as an aircraft landing
system or performing a robotic surgery. Often characterised as the systems
where ‘a late answer is a wrong answer’, real-time processors are critically
important in automotive, industrial, networking and many other systems.

3.1 Hardware

Real-time data-processing systems require significantly more computa-
tion power to process large volumes of data within a specific time frame.
Hence, these processors run at a higher clock frequency compared to the
microcontroller processors.

Real-time processors are accompanied by on-chip memories to store
time-critical data and code. However, the on-chip memories are limited in
size, and hence, such systems typically need a storage device (such as an SD
card or a solid-state drive) to store the program, and a large external memory
(RAM) to run the program. Since external memories are slow in speed, many
systems also deploy on-chip cache memory that stores frequently accessed
code and data to improve system performance.

3.2 Software

A real-time application is implemented as multiple threads running concur-
rently. Such systems use an RTOS that schedules threads according to their
priorities to meet the deadlines. An RTOS is a very lightweight OS that provides
multi-tasking capability to a system. Since it has little overheads, an RTOS is sig-
nificantly more responsive to external inputs compared to a desktop OS, and
hence, well-suited to meet real-time requirements.

Such systems often use a boot-loader code that loads the program from
the storage device to the memory. Bootloaders often have the capability to
upgrade the program for bug fixes and feature enhancements.

3.3 Applications

Real-time processors are used where time is of essence. These processors are
designed to perform tasks within very strict time constraints, often requiring
precision down to nanoseconds. Here are some examples of systems imple-
mented using a real-time processor.

A power-train control module, also known as an engine control unit (ECU),
processes signals from numerous sensors, including those measuring air and
fuel intake, oxygen levels in the exhaust, and various shaft positions in the
engine. It uses this data to control air and fuel injection and ignition timings,
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ensuring precise operations that result in high fuel efficiency, even at high vehi-
cle speeds.

A wireless modem in a mobile phone converts digital data into radio signals
for transmission and vice versa at very high data rates. It runs sophisticated
algorithms to improve reliability in the presence of interference and noise. Since
the same medium is used by multiple devices for communication, these activi-
ties must be carried out with a very high degree of precision.

A solid-state drive (SSD) controller provides an interface between the pro-
cessor and the storage device. It implements error correction, wear-levelling
and garbage collection algorithms to improve the lifespan and efficiency of the
storage device. These operations are carried out at a very high speed, allowing
us to enjoy watching a video stored in an SSD without a glitch!

☛ Microcontrollers vs Real-Time Processors

Please note that while real-time processors are specifically designed to build
high-speed, time-critical systems, many real-time systems are also imple-
mented using microcontrollers. Audio equipment, ECG monitor, precision cut-
ting machines are some of the examples that can be implemented using
microcontrollers.

The key difference between microcontrollers and real-time processors
lies in their data processing capabilities. Real-time processors are required
when we need to process large amount of data within a very short time
frame. In such scenarios, the processing power and the small size of the
on-chip memory become limiting factors for microcontrollers.

With the advancement of technology, microcontrollers run at higher
clock speeds and pack more on-chip memory. Hence, they are being
increasingly used for applications in the real-time world, blurring the line
between microcontrollers and real-time processors.

4 APPLICATION PROCESSORS

At the high end of the spectrum are application processors, the powerhouses
behind computing devices like smartphones, tablets and cloud servers. Unlike
the microcontrollers or real-time processors that run dedicated applications,
application processors execute multiple applications using a general-purpose
OS, which requires processing power, combined with the ability to manage
large amounts of memory.

4.1 Hardware

Application processors use one or more powerful processor cores operating at
a few GHz clock speed. These processors are accompanied by special-purpose
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coprocessors for high-speed computations required in graphics, multimedia
processing and machine-learning algorithms.

Application processors typically use several GBs of RAM, shared between
multiple applications. They contain a memory management unit (MMU) that
allows an OS to implement virtual memory to share the memory between mul-
tiple applications. An MMU is also a key component in providing security, and
protects the OS and applications from unauthorized access either by a mal-
functioning application or attacks from harmful programs.

Lastly, application processors are accompanied by high-speed peripheral
ports for networking, storage and high data-rate IO devices such as a camera
or a display.

4.2 Software Configuration

Application processors are designed to run operating systems that can run mul-
tiple application programs. Some of these processors also support hardware
virtualization, allowing them to run multiple operating systems simultaneously
on the same hardware.

An OS is a complex piece of software, typically spanning millions of lines of
code that manages various resources in the system. At the heart of the OS is
a scheduler that schedules different applications in a way that they appear to
be running simultaneously to us. OS also includes a memory management sub-
system to share memory between multiple applications, and file subsystems to
efficiently store applications and related data on storage devices. Not directly
visible to us are various low-level device drivers that communicate with net-
working and IO devices.

The system contains a large number of programs stored in the file system.
Some of these are system programs that run continuously, while others run as
required by the user. Many of such systems have the facility to download new
applications and update them over the network on an ongoing basis.

4.3 Applications

Application processors are at the forefront, powering the cutting-edge devices
such as mobile phones, personal computers and servers. With Linux kernel run-
ning on these processors, they are used in a vast number of embedded appli-
cations as well.

In consumer electronics, these processors enable multimedia functionalities
in set-top boxes and in-car infotainment systems, supporting high-definition
media playback, efficient content management and advanced user interfaces.

For networking devices like routers and firewalls, application processors
perform complex routing and implement advanced security protocols.

In healthcare, application processors are used in patient monitoring
systems and medical imaging devices to process biomedical signals and
high-resolution images.
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Application processors form the backbone of IoT systems; they process
large volumes of data, run sophisticated algorithms and take complex
decisions.

Many applications, such as kiosks or automatic teller machines (ATMs), run
on application processors as they provide a desktop or a tablet-like environ-
ment for user interactions, even though the application themselves may not
require high data-processing capabilities.

These are a few examples to give you an idea. The actual usage of applica-
tion processors in embedded applications is vast and diverse, likely to explode
with the use of AI and machine learning in years to come.

☛ Are application processors suited for real-time applications?

Traditionally, real-time applications have been designed with a stringent
focus on guaranteeing response times and never missing deadlines. Use of
a general-purpose OS for real-time systems was unacceptable – they were
considered too ‘bulky’ as they could not respond to deadlines fast enough.

However, application processors are becoming more powerful, and
hence, they are able to respond to the deadlines much better, even while
running a general-purpose OS. At the same time, modern real-time systems
require sophisticated user interfaces (including cameras, displays and
speech recognition) and network connectivity for data analysis and running
AI/ML algorithms. Hence, many software architects find it convenient to
use an OS that provides all these features, and additionally, allows easy
application updates, resulting in constantly evolving software.

It is important to note, however, that general-purpose OS is not designed
to meet real-time requirements, and can miss deadlines once in a while. To
address these, some systems simply use more processor cores, faster clock
and more memory to reduce the chances of missing deadlines. They also
implement acceptable workarounds in case the system occasionally misses
a deadline.

Time-critical systems often deploy a combination of one or more appli-
cation processors and a microcontroller on the same chip. The application
processor runs the OS and applications, while the microcontroller is used to
run time-critical tasks. This dual approach combines features of a modern
system, while meeting the hard deadlines of a real-time system.

5 OVERVIEW OF ARM CORTEX PROCESSORS

Arm architecture has been constantly evolving over time.
Armv1 and Armv2 were early versions designed for personal computers,

with processors running at lower tens of MHz. They established the founda-
tional reduced instruction set computer (RISC) principles, achieving similar
performance to more complex architectures but with significantly fewer
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transistors. This efficiency was the key to their low power consumption and
cost-effectiveness.

Armv3 onwards, cores were licensed to third-party vendors. Armv4 and
Armv5 were extensively used in mobile phones for their power efficiency
and compact design, evolving from feature phones to smartphones due to
their multimedia capabilities. Beyond phones, these processors also powered
embedded systems, automotive applications, and consumer electronics such
as set-top boxes and digital cameras.

Armv6 introduced Cortex-A processors aimed at high-performance com-
puting, and Cortex-M processors for low-power and cost-sensitive applications.

Armv7 further expanded Cortex-M family to include signal processing and
floating-point computation capabilities. It also introduced Cortex-R processors,
optimized for time-critical applications.

Armv8 introduced 64-bit processing with the AArch64 instruction set, along-
side enhanced security features. It also included vector processing capabilities
for signal processing and machine-learning tasks.

Armv9 is the latest architecture at the time of writing, building on Armv8
with further enhancements in security and performance optimizations for AI
and machine learning computations.

Arm defines three architecture profiles for their Arm® Cortex® processors:

1. Arm Cortex-A, application processors
2. Arm Cortex-R, real-time processors
3. Arm Cortex-M, microcontroller processors

Let us discuss each briefly.

5.1 Cortex-A

Cortex-A processors are a series of high-performance processors designed to
run multiple applications using a general-purpose OS.

High-end Cortex-A processors drive consumer products such as mobile
phones, tablets and laptops. In embedded systems, they are ideal for
demanding applications such as robotics and computer vision.

Mid-range Cortex-A processors provide reasonable computation power to
entry-level phones as well as embedded systems that require moderate com-
putation power, such as infotainment systems and smart-home devices.

Entry-level Cortex-A processors are power-efficient and often used in
embedded systems primarily due to their ability to run an OS, for example, in
point-of-sales terminals and industrial control panels.

5.2 Cortex-R

Cortex-R series includes a range of high-performance processors optimized for
hard real-time applications. Unlike Cortex-A processors, which are designed for


