

UNLOCKING PYTHON

▸▸ PART I	 PROGRAMMING

CHAPTER 1	 Introduction to Programming . . 3

CHAPTER 2	 Programming Tools . . 21

CHAPTER 3	 About Python. . 37

▸▸ PART II	 PYTHON

CHAPTER 4	 Installing and Running Python. . 47

CHAPTER 5	 Python Quickstart . . 59

CHAPTER 6	 Lists and Strings. . 91

CHAPTER 7	 Dictionaries, Sets, and Tuples . . 105

CHAPTER 8	 Other Types of Objects. . 119

CHAPTER 9	 Iterables, Iterators, Generators, and Loops. 135

CHAPTER 10	 Functions . . 149

CHAPTER 11	 Classes . . 171

CHAPTER 12	 Writing Cleaner Code . . 189

▸▸ PART III	 ADVANCED TOPICS

CHAPTER 13	 Errors and Exceptions . . 207

CHAPTER 14	 Modules and Packages . . 225

CHAPTER 15	 Working with Files . . 243

CHAPTER 16	 Logging. 261

CHAPTER 17	 Threads and Processes. . 275

CHAPTER 18	 Databases. . 293

CHAPTER 19	 Unit Testing. 307

▸▸ PART IV	 PYTHON FRAMEWORKS

CHAPTER 20	 REST APIs and Flask. . 323

CHAPTER 21	 Django . . 345

CHAPTER 22	 Web Scraping and Scrapy . . 363

CHAPTER 23	 Data Analysis with NumPy and Pandas. . 379

CHAPTER 24	 Machine Learning with Matplotlib and Scikit-Learn 397

INDEX. . 421

Unlocking Python
A COMPREHENSIVE GUIDE FOR BEGINNERS

Ryan Mitchell

Copyright © 2025 by John Wiley & Sons, Inc. All rights, including for text and data mining, AI training, and similar
technologies, are reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394288496 (Paperback), 9781394288519 (ePDF), 9781394288502 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH,
Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. Python is a trademark or registered trademark of Python Software Foundation. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damage.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
For product technical support, you can find answers to frequently asked questions or reach us via live chat at https://
support.wiley.com.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader support team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2024950121

Cover design: Wiley
Cover image: © CSA-Printstock/Getty Images

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:Product_Safety@wiley.com
https://support.wiley.com
https://support.wiley.com
mailto:wileysupport@wiley.com
http://www.wiley.com

ABOUT THE AUTHOR

RYAN MITCHELL is the author of Unlocking Python (Wiley) and Web Scraping with Python
(O’Reilly). She has six LinkedIn Learning courses, including Python Essential Training, the leading
Python course on the platform. An expert in web scraping, application security, and data science,
Ryan has hosted workshops and spoken at many events, including Data Day Texas and DEF CON.

Ryan holds a master’s degree in software engineering from Harvard University Extension School and
a bachelor’s in engineering from Olin College of Engineering. She is currently a principal software
engineer at the Gerson Lehrman Group, where she does back-end development and data science on
the AI & Data Platform team.

ABOUT THE TECHNICAL EDITORS

PETER HENSTOCK is now a Senior Machine Learning Engineer at Incyte, after leading AI/ML efforts
at Pfizer. His work has focused on the intersection of AI, visualization, statistics, and software engi-
neering applied to drug R&D. Peter holds a PhD in artificial intelligence from Purdue University,
along with seven master’s degrees. He was recognized as being among the top 12 leaders in AI and
pharma globally by the Deep Knowledge Analytics Group. He also currently teaches graduate AI and
software engineering courses at Harvard.

DAVIN POTTS became a CPython Core Developer in March 2016. When he is not fielding questions
about or helping folks do more with the Python language, he can be observed visiting large, danger-
ous snakes at the local zoo or watching episodes of Monty Python’s Flying Circus on repeat.

ACKNOWLEDGMENTS

THE BEST TECHNICAL EDITORS ARE  the ones you dread bringing onto a project because you know
it’s going to be a lot of work. My extreme gratitude to Dr. Peter Henstock and Davin Potts for their
voluminous and accurate feedback chapter after chapter. If any errata are sent in for this book, it’s
almost certainly because I overlooked one of their notes.

Thanks to James Minatel at Wiley for suggesting this book and seeing the project through. Thanks to
Elizabeth Britten for cracking the whip over many months of writing and editing. Her flexibility and
occasional crisis management were crucial.

My thanks and love to Edson Lacerda, John Mitchell, and Valinda Mitchell. You all hold my life
together because I apparently haven’t developed the skill of doing it myself yet. Love also to Viola and
Hazel, who are my life.

Finally, thanks to Jim Waldo, who started this whole project many years ago when he mailed a Linux
box and a copy of The Art and Science of C to a young and impressionable teenager.

CONTENTS

PART I: PROGRAMMING

CHAPTER 1: INTRODUCTION TO PROGRAMMING	 3

Programming as a Career	 4
Myths About Programmers	 4

How Computers Work	 7
A Brief History of Modern Computing	 12

The Unix Operating System	 12
Modern Programming	 13

Talking About Programming Languages	 14
Problem-Solving as a Programmer	 17

CHAPTER 2: PROGRAMMING TOOLS	 21

Shell	 21
Version Control Systems	 25

Authenticating with GitHub with SSH Keys	 27
Integrated Development Environments	 33
Web Browsers	 34

CHAPTER 3: ABOUT PYTHON	 37

The Python Software Foundation	 38
The Zen of Python	 39
The Python Interpreter	 40
The Python Standard Library	 41
Third-Party Libraries	 42
Versions and Development	 43

PART II: PYTHON

CHAPTER 4: INSTALLING AND RUNNING PYTHON	 47

Installing Python	 47
Windows	 48

macOS	 48
Linux	 49

Installing and Using pip	 50
Windows	 51
macOS	 51
Linux	 51

Installing and Using Jupyter for IPython files	 52
Virtual Environments	 54
Anaconda	 56

CHAPTER 5: PYTHON QUICKSTART	 59

Variables	 59
Data Types	 62
Operators	 67

Arithmetic Operators	 67
Operators and Assignments	 69
Comparison Operators	 70
Identity Operators	 71
Boolean Operators	 73
Membership Operators	 73

Control Flow	 74
If and Else	 75
For	 76
While	 76

Functions	 78
Classes	 80

Everything Is an Object	 82
Data Structures	 82

Lists	 83
Dictionaries	 84
Tuples	 86
Sets	 86

Exercises	 88

CHAPTER 6: LISTS AND STRINGS	 91

String Operations	 91
String Methods	 92

List Operations	 95
Slicing	 97

Contents

x

Contents

xi

List Comprehensions	 100
Exercises	 103

CHAPTER 7: DICTIONARIES, SETS, AND TUPLES	 105

Dictionaries	 105
Dictionary Comprehensions	 108
Reducing to Dictionaries	 110

Sets	 112
Tuples	 114
Exercises	 116

CHAPTER 8: OTHER TYPES OF OBJECTS	 119

Other Numbers	 119
Dates	 124
Bytes	 129
Exercises	 132

CHAPTER 9: ITERABLES, ITERATORS, GENERATORS, AND LOOPS	 135

Iterables and Iterators	 135
Generators	 137
Looping with Pass, Break, Else, and Continue	 139
Assignment Expressions	 143
Walrus Operators	 143
Recursion	 144
Exercises	 148

CHAPTER 10: FUNCTIONS	 149

Positional Arguments and Keyword Arguments	 149
Functions as First-Class Objects	 155
Lambda Functions	 158
Namespaces	 160
Decorators	 163
Exercises	 168

CHAPTER 11: CLASSES	 171

Static Methods and Attributes	 173
Inheritance	 175
Multiple Inheritance	 178

Contents

xii

Encapsulation	 182
Polymorphism	 186
Exercises	 188

CHAPTER 12: WRITING CLEANER CODE	 189

PEP 8 and Code Styles	 189
Comments and Docstrings	 190
Documentation	 194
Linting	 196
Formatting	 199
Type Hints	 200

PART III: ADVANCED TOPICS

CHAPTER 13: ERRORS AND EXCEPTIONS	 207

Handling Exceptions	 207
Else and Finally	 210
Raising Exceptions	 212
Custom Exceptions	 214
Exception Handling Patterns	 217
Exercises	 223

CHAPTER 14: MODULES AND PACKAGES	 225

Modules	 225
Import This	 228

Packages	 229
Installing Packages	 235
Exercises	 240

CHAPTER 15: WORKING WITH FILES	 243

Reading Files	 243
Writing Files	 247
Binary Files	 250
Buffering Data	 252
Creating and Deleting Files and Directories	 254
Serializing, Deserializing, and Pickling Data	 256
Exercises	 259

Contents

xiii

CHAPTER 16: LOGGING	 261

The Logging Module	 261
Handlers	 266
Formatting	 269
Exercises	 272

CHAPTER 17: THREADS AND PROCESSES	 275

How Threads and Processes Work	 275
Threading Module	 276
Locking	 280
Queues	 283
Multiprocessing Module	 285
Exercises	 292

CHAPTER 18: DATABASES	 293

Installing and Using SQLite	 294
Installing SQLite	 294
Using SQLite	 296

Query Language Syntax	 297
Using SQLite with Python	 300

Object Relational Mapping	 303
Exercises	 306

CHAPTER 19: UNIT TESTING	 307

The Unit Testing Framework	 309
Setting Up and Tearing Down	 312
Mocking Methods	 314
Mocking with Side Effects	 318

PART IV: PYTHON FRAMEWORKS	

CHAPTER 20: REST APIS AND FLASK	 323

HTTP and APIs	 323
Getting Started with Flask Applications	 327
APIs in Flask	 330
Databases	 333
Authentication	 336

Contents

xiv

Sessions	 338
Templates	 342

CHAPTER 21: DJANGO	 345

Installing Django and Starting Django	 346
Databases and Migrations	 351
Django Admin Interface	 353
Models	 355
More Views and Templates	 358
More Resources	 361

CHAPTER 22: WEB SCRAPING AND SCRAPY	 363

Installing and Using Scrapy	 364
Parsing HTML	 366
Items	 371
Crawling with Scrapy	 372
Item Pipelines	 376

CHAPTER 23: DATA ANALYSIS WITH NUMPY AND PANDAS	 379

NumPy Arrays	 380
Pandas DataFrames	 383
Cleaning	 387
Filtering and Querying	 391
Grouping and Aggregating	 393

CHAPTER 24: MACHINE LEARNING WITH MATPLOTLIB
AND SCIKIT-LEARN	 397

Types of Machine Learning Models	 398
Exploratory Analysis with Matplotlib	 400
Building Supervised Models with Scikit-Learn	 409
Evaluating Classification Models with Scikit-Learn	 415

INDEX	 421

Programming

➤➤CHAPTER 1: Introduction to Programming

➤➤CHAPTER 2: Programming Tools

➤➤CHAPTER 3: About Python

PART I

Introduction to Programming
The computer programmer is a creator of universes for which he alone is the lawgiver. No

playwright, no stage director, no emperor, however powerful, has ever exercised such absolute

authority to arrange a stage or field of battle and to command such unswervingly dutiful actors

or troops.

— Joseph Weizenbaum

The programming book has a curious place in the modern world. With Python documenta-
tion, tutorials, and entire courses available online, what is the purpose of long-form text on
the subject?

Similarly, what is the purpose of, say, historian John Keegan’s book The First World War when
a straightforward timeline of battles is readily available? This question is, obviously (at least, I
hope), rhetorical. Books convey the author’s point of view, insights, colorful commentary, and
perhaps even add a little entertainment to the mix. They present facts, expand on those facts,
and bring them to life.

For most people, the concept of “bringing history to life” probably makes more visceral and
immediate sense than the concept of “bringing programming to life.” This is unfortunate.

The goal of this book is to teach you to write Python programs, yes, and also to discuss the his-
tory, culture, and context of Python, the machines that run it, and the people who write it. The
first step to understanding a programming language isn’t simply copying that first line of code
and hitting the Go button—it’s learning what the computer is doing while that first line of code
is running.

Whatever your motivations for learning Python, I hope this text can inspire in you the same
enthusiasm I have for Python, and programming in general. In some small way, perhaps it can
bring it to life.

1

4  ❘  CHAPTER 1   Introduction to Programming

PROGRAMMING AS A CAREER

“If you could be anyone in King Arthur’s court, who would you be?” was the question posed to me
one weekend afternoon in the kitchen of my childhood home by my uncle, a software engineer visit-
ing from Massachusetts.

As a teenager, my knowledge of King Arthur was mainly limited to the film Monty Python and the
Holy Grail, so even thinking of suitable answers was difficult. There was Lancelot, Galahad, and all
the rest of the knights, but none of them seemed especially worth becoming. “King Arthur” himself
would have been a fun way to respond, but surely, there must be a more interesting character. What
about the Lady of the Lake—the kingmaker herself?

Of course, in some versions, such as the 1963 Disney classic The Sword in the Stone, Arthur becomes
king, not by women in ponds distributing swords, but by pulling Excalibur out of a stone. I thought
about that movie, too.

And, certain that my answer was cheating somehow, I finally gave my uncle the snarky
response: “Merlin.”

This, of course, is the correct answer. Years later, my uncle said that it was because of this answer that
he knew my future profession as a programmer was inevitable.

The association between programming and wizardry is a long one. And the association between pro-
grammers and snarky responses is even longer.

Programmers shape the world we view through our screens and create new realities seemingly out of
thin air. They realize that the boundaries of the virtual world are artificially constructed. They either
implement the rules passed down by kings or subvert them as they choose. They perform feats by
mastering the arcane languages.

The power of King Arthur depends on external factors: his fame, wealth, political clout, and societal
recognition of his authority. The power that Merlin has is intrinsic.

Of course, even if my response had been “King Arthur,” I still would have become a programmer.
Software engineers giving single-question personality tests to teenagers is no basis for career determi-
nation, just like yanking a sword out of a rock doesn’t make you a king.

Myths About Programmers
Let’s be honest: Many aspiring programmers get interested in the field tempted by big paychecks,
job security, great benefits, and favorable working conditions. These things are all nice, to be sure.
But getting hundreds of thousands of dollars a year from a big-name company is far more challeng-
ing than most programming bootcamps would have you believe. Also very common (but less lauded
in the media) are entry-level programmers working long hours for small companies, nonprofits, and
start-ups whose funding allows them a runway measured in months.

As a programmer you will experience both good times and bad times. Times when you are work-
ing from your couch on very easy and enjoyable projects for lots of money. And times when you are,
perhaps volunteering (or working for so little in return that it’s essentially volunteering), on stressful
projects in an office with a long commute and a strict dress code.

Programming as a Career  ❘  5

So, what really differentiates programmers and nonprogrammers? The people who stick it out and
have long, happy careers, and the ones who give up in frustration? I want to address a few industry
misconceptions about what’s “required” to be a programmer:

They Are Very Smart  I can’t blame you if you think that programmers need to be very
smart, based on typical media depictions of programmers. Programmers are not required to
be geniuses, or even to be particularly nerdy.

For the vast majority of you learning to program, there are going to be certain problems
you’re not going to understand right away, certain concepts you’re just not going to get. And
these have nothing to do with some fundamental deficiency in your brain.

Programming is a marathon, not a sprint. Determination and consistency with always be
more valuable in programing than genius.

They Work Very Hard  This stereotype is shifting somewhat thanks to an increase in remote
work and contract jobs available for programmers. However, there is still a perception that
programmers are glued to their computers all day, every day, working insane hours under lots
of pressure to fix a bug or add a feature.

There is also the complicating factor that it can be difficult to estimate how much time is
required to add a feature or fix a bug. If you are working for a small and/or mismanaged
company, you may occasionally find yourself in a situation where a feature is required to be
added by a certain deadline; complications arise, ballooning the hours required to add it; and
you are the only one who can rescue the project.

But this is not a common situation, and if you find yourself doing this more than once or
perhaps twice a year, consider finding new employment. In general, working as a programmer
is the same as working anywhere else; in a well-managed company with good work-life bal-
ance, the hours are about the same as they are for any other profession.

Programmers do sometimes face pressure at “FAANG” companies: Facebook, Apple,
Amazon, Netflix, and Google.1 Depending on your team, company, position, and the current
politics and/or economic environment, you may find yourself coasting into an easy retirement
or under constant pressure to perform at the threat of losing your job. I have heard many ver-
sions of both stories, even from employees within the same company! But, again, a high-stress
job is not a given, even at a large and competitive company while getting a large paycheck.

They Have Meticulous Attention to Detail  If a program is off by even a single character,
it will not perform as expected. No typos or errant logic is allowed. Even an insignificant-
seeming bug can bring down a system that people’s lives depend on.

Technically, the above is all true. However, it’s also a very disingenuous view of the reali-
ties of modern programming. For starters, we have software that finds and highlights errors
as we write the code (for more information, see Chapter 12, “Writing Cleaner Code”). It’s
somewhat difficult to make a simple syntax error or to forget a character—the code must still
be syntactically valid in order for it to run at all. At the very least, you should probably make
sure it runs—not that it produces the correct output but merely runs at all—before it goes
anywhere important.

1 There are a variety of acronyms for these companies, and definitions of the “top” tech companies, and even the names
of the companies themselves, change frequently. Some have also suggested replacing FAANG with MAMAA for Meta,
Amazon, Microsoft, Alphabet, and Apple, reflecting the parent companies of Facebook and Google, as well as replacing
Netflix with Microsoft. With this in mind, feel free to mentally replace “FAANG” with whatever definition of “popular
tech giants” you see fit.

6  ❘  CHAPTER 1   Introduction to Programming

Programs are usually run in various testing environments over many scenarios. New features
get multiple stages of testing and review before they go to production. And that’s just for the
code that doesn’t have any lives depending on it!

I know many meticulous, detail-oriented programmers. But to be honest, I don’t know any-
one who would describe me similarly.

The great thing about computers is that, when something does go wrong, it will tell you what
went wrong and where (at least to some extent). You see an error message, a stack trace, or
at least an output that’s different than what you were expecting. Nothing blows up, nobody
dies, you’re just sitting there at your computer with a puzzle to solve and something to fix.

Can extreme conscientiousness be an asset in programming? Absolutely! Is it required?
Not at all.

They Are Good at Math  The nice thing about computers is that they do the math for you.
If you frequently find yourself struggling with arithmetic, you can rest assured that “mental
math” has no bearing on programming aptitude.

However, there is one intersection between programming and what most people may have
encountered in a high school math class, and that is word problems. Programming is, in
many ways, the art of modeling real-world scenarios with algorithms. If you had an aptitude
for word problems, you may enjoy programming.

They Start Young  Many well-educated and affluent parents are flocking to programming
toys, books, and games as a way to get their children—even toddlers—a leg up in program-
ming and computer science. Toy manufacturers are, of course, extremely happy to meet
this demand.

But is it necessary or even beneficial to give a three-year-old a Fisher Price Code-a-Pillar?
Will your programming career suffer because you never learned Scratch in middle school or
played with toy robots?

STEM (science, technology, engineering, and math)-branded toys are relatively new, rising in
popularity in the early 2010’s. Because of their relatively-recent appearance, there aren’t any
studies (at least none that I could find), that link early use of programming toys with success-
ful programming careers in later life.

A study comparing groups of children playing with robot programming toys to groups play-
ing with blocks2 found that the “robot” group did slightly better on tests of computational
thinking afterwards. However, both groups improved overall. You don’t need robots to teach
computational thinking—you can use wooden blocks.

When I think back on formative experiences that helped me become a better programmer,
I think of volunteering at my school library. I had to reshelve books (where I invented the
insertion sort), use a card catalog (a secondary index), and look up things in the giant dic-
tionary (binary search).

It isn’t surprising to me that some of the best programmers I know majored in library science,
philosophy, and journalism rather than computer science or software engineering and only
started programming as part of a career change in adulthood.

2 Yang, W., Ng, D. T. K., & Gao, H. (2022). Robot programming versus block play in early childhood education: Effects
on computational thinking, sequencing ability, and self-regulation. British Journal of Educational Technology, 53,
1817–1841. https://doi.org/10.1111/bjet.13215

How Computers Work  ❘  7

Programming is simply applied logic, with a smattering of easy-to-learn syntax. This book
will teach you the syntax (and a few best practices), but programming is really a skill that
takes a lifetime to master. I think that childhood is better spent practicing logic, algo-
rithmic thinking, and creative problem-solving outside the context of programming than
it is spent learning some invented and infantilizing syntax for a nonsense programming
language that will never be used again.

HOW COMPUTERS WORK

I do not know how computers work. I’ve met very few people who might know how they work, but
I’m sure that even those rare individuals have blind spots. Computers work because of math, yes, but
also because of physics and chemistry. Silicon impregnated with boron has interesting interactions
with electrons, which ultimately allow us to do math.

As you might suspect, you don’t need to know any of this to do programming, which is why not very
many people know how computers work.

What this section is really about is the mental models that programmers rely on to understand what’s
appearing on the screen in front of us and how to control it. The shorthand, the analogies, and even
the occasional lore. While none of these stories may be completely precise, my goal is that you find
them useful.

The first computers were essentially calculators that took input in the form of switches and dials that
could be set to one value or another. You input the numbers you want with the dials, and the opera-
tion you want performed on them (addition, subtraction, multiplication, etc.), press the “go” button,
and the output is calculated.

Then, an innovation: What if, instead of setting these with switches and dials each time we wanted to
use them, the computer could “write the numbers down” for later use? The numbers would be stored
in some section of the computer’s memory, and then we tell the computer to perform an operation on
those stored numbers.

But what is an “operation”? Could that be written down as well, alongside the numbers and stored
until we want to access it? Perhaps we could write down and save whole lines of numbers and opera-
tions and call them “instructions.”

Retrieve value at memory location 31415
Retrieve value at memory location 27182
Add the two values together

It’s important to understand these two concepts of storing and retrieving data as well as performing
operations on that data. These two things are at the core of what computers do. In fact, they’re really
all that computers do. A computer is simply a machine that stores and retrieves values and performs
operations on those retrieved values.

The values have changed significantly in the last 90 or so years that digital computers have been
around. Instead of numbers we want to add, they may also be images, keyboard input, mouse clicks,
streaming data from a remote server on the internet, and so on.

8  ❘  CHAPTER 1   Introduction to Programming

The operations have changed as well. Instead of adding two numbers together, we are compressing
files, doing machine learning, or running Adobe Photoshop. However, at their core, computers and
the programming languages that control them are still doing the same thing: setting values, retrieving
values, and performing operations on those values. Take for example, this line of Python:

a = 2

The equals sign here is called an assignment in programming. It assigns values into variables. Here,
the integer value 2 is being assigned to the variable a. The computer stores the value 2 in memory and
then records the variable a as pointing to the location in memory where that value 2 is stored.

Not only is the value, 2, stored, but stored alongside it is information that tells us that it is a number,
as opposed to a piece of text, or an MP4 file, or some other data. This tells the computer what things
can be done with it, as an integer. We can use Python to perform addition and multiplication on the
integer 2, but cannot, say, play it in a video player.

We can perform an operation:

a = a + 1

This tells the computer to retrieve whatever value the variable a is referencing, add the number 1 to it,
and then store it back in memory so that the variable a is pointing to the new value.

As we’re programming, we don’t literally need to think about these things all of the time. But having
this mental model does come in handy. Take this situation, for example:

a = [1,2,3,4]

The square bracket notation with comma-separated numbers denotes a list in Python. Rather than a
single number, like 1 or 2, we can store a whole array of them. This entire list, [1,2,3,4], is assigned
to the variable a.

Let’s make another assignment:

b = a

This introduces a new variable, b, and assigns it to the same location in memory that a is pointing to.
They both point to this same exact list of numbers. This is illustrated in Figure 1.1, which shows the
variables a and b in a piece of Python code, pointing to a shared location in memory.

1, 2, 3, 4

MEMORYPYTHON

b

a

FIGURE 1.1:  Variables a and b both point to the same location in memory when a is assigned to b.

How Computers Work  ❘  9

Let’s create a new instruction, written in the English language for the sake of example, and which we
can pretend the computer understands how to execute:

append the number 5 to the end of list b

This adds the number 5 to the end of the list that variable b is referencing. Now, what happens when
we view the list referenced by variable a? Because both variables are assigned to the same location in
memory, both a and b now contain the list value:

[1,2,3,4,5]

This is because variables contain references, or pointers, to values rather than containing intrinsic
values themselves. Every variable references a location in the computer’s memory, and variables can
also reference the same locations in memory if they’re assigned to each other.

Files work in much the same way as values in memory. When you store a file, such as an image or
text document, you may think that you are storing it at a “location” like C:\Users\RMitchell\
Documents or /Users/RMitchell/Documents.

However, what this file path directly references is not the file data itself, but a disk location for where
that file data starts and also a file size—how many bits must be read past the starting point in order
to load the entire file.

The contents of a file in your Documents folder might be mixed in on disk right next to a bunch of
files from your Pictures folder or Downloads folder. It’s only because of the organized way your
computer tracks all of these references to disk locations and accurately retrieves them that gives the
appearance of an orderly nested filesystem.

Although data in memory and files on a disk work in similar ways, using pointers and references,
they are very different things. Files are stored on your computer’s hard drive; this is often called
storage. Files in storage persist when the computer turns off. Data in memory is faster to access and
use, but it does not persist when the power turns off. Data in a running program is lost if the com-
puter reboots and the program is not able to save it to storage.

Granted, as technology progresses, the line between “storage” and “memory” does get somewhat
blurred. Some computers may have nonvolatile or persistent memory that does not get erased when
the computers turn off. Some computers may have persistent file storage that is faster than the memory
of most other computers. Hardware technicalities aside, most operating systems still carry these con-
cepts of memory and storage forward, and so this is how we tend to think of them as programmers.

Importantly, the data that computers place into both memory and storage is in the form of binary
values, 1s and 0s. If you open a computer, you’re not literally going to see the character “1” and the
character “0” written into a disk anywhere, but they’re stored as an electrical or magnetic charge. You
can think of a 1 as “high charge” and a 0 as “low” or “no charge.”3

3 As with many of the concepts we encounter in this section, exactly how these are stored with electricity, magnets, and
silicon is highly dependent on the technology and is of little importance for our purposes. But it may be helpful to think
of a 1 as “charged” and a 0 as “uncharged.”

10  ❘  CHAPTER 1   Introduction to Programming

Human language is made up of more than just 1s and 0s, so if you want to store letters, books, or just
about anything else, you’re going to need some sort of substitution. The clever computer scientists
came up with just that:

A - 01000001 a - 01100001
B - 01000010 b - 01100010
C - 01000011 c - 01100011

And so on. This is called the ASCII (American Standard Code for Information Interchange) alphabet,
and it’s how text files are stored.

Each one of these letters (or characters as computer scientists call them) is composed of 8 binary val-
ues, or 8 bits. The measurement 8 bits is so commonly used that it has its own special name: a byte.
Count all the possible combinations you could make out of a byte: 00000000, 00000001, 00000010,
00000011, etc. You will arrive at the value 256. There are 256 possible combinations in 8 bits, which
means there are 256 possible characters you can represent with an 8-bit block of memory.

It’s not a coincidence that 28 = 256, and the number of bits we are working with is 8. In general, if
you have n bits there are 2n possible combinations. This is because the first bit gives you two options
(0 or 1), the second bit doubles that (0 or 1 with a 0 or a 1 in front of it), the third bit doubles it
again, until you end up with 2 × 2 × 2 ×. . . however many bits you have.

When computers store numbers, rather than characters or letters, they also have to use a binary rep-
resentation of the number. When we write numbers, we use the base 10 or decimal system to do it.

In the decimal system, the number 1,234 has a 1 in the thousands place, a 2 in the hundreds place, a
3 in the tens place, and a 4 in the ones place. Or, more mathematically, it has a 1 in the 103’s place,
a 2 in the 102’s place, a 3 in the 101’s place, and a 1 in the 100’s place (see Figure 1.2).

We can write decimal numbers like this because there are 10 possible characters for us to choose
from for each “place.” But what if there were only two possible characters, a 1 and a 0? In that case,

1000 200 30 4

1 × 1000 2 × 100 3 × 10 4 × 1

1 × 103 2 × 102 3 × 101 4 × 100

1 , 2 3 4

FIGURE 1.2:  The number 1,234 broken down into the “ten to the thirds” place, “ten squareds” place, “ten to
the firsts” place, and “ten to the zeroth” place

How Computers Work  ❘  11

we would have to use the binary or base 2 system. The number 10101 has a 1 in the 24’s place, a
0 in the 23’s place, a 1 in the 22’s place, a 0 in the 21’s place, and a 1 in the 20’s place (see Figure 1.3).
Therefore:

10101 (binary) = 1 * 24 + 0 * 23 + 1 * 22 + 2 * 21 + 1 * 20 = 21 (decimal)

In the same way that humans can write down any possible number with only the 10 digits 0 through
9, computers can store any possible number with just 2 bits (binary digits): 0 and 1. The bits just take
up a little more space.

Very rarely do programmers need to actually do any of this binary math. But understanding exactly
how the data is represented is invaluable. For example, the word four as text will take more room to
store on disk than the number 4. The word four has four ASCII characters in it, where each character
requires 8 bits, for a total of 32 bits:

01100110 01101111 01110101 01110010
 f o u r

The number 4 can be represented simply as 100, for a total of 3 bits.

Theoretically, this is correct and important to understand. However, in practice, it’s a little bit dis-
ingenuous. Although the number 4 only needs 3 bits, the number 1,000,000 needs 19 bits. And the
computer doesn’t know how big the number is we’re trying to store or how to separate the numbers
in memory. For instance, the sequence 100101 could be read separately as 100 and 101 (4 and 5 in
decimal), or it could be read as a single number, 100101 (37 in decimal), or some other combination.

10000 0000 100

1 0 1 0 1

00 1

1 × 24 0 × 23 1 × 22 0 × 21 1 × 20

1 × 16 0 × 8 1 × 4 0 × 2 1 × 1

16 0 4 0 1

FIGURE 1.3:  The binary number 10101 broken down into the "two to the fourths" place, "two to the thirds"
place, "two squareds" place, "two to the firsts" place, and "two to the zeroth" place

12  ❘  CHAPTER 1   Introduction to Programming

To solve this problem, integers in many programming languages are declared to be 4 bytes, or 32 bits,
in length. This allows integer numbers up to 232 or 4,294,967,296 to be stored.4 Therefore, the integer
number 4 would be:

00000000 00000000 00000000 00000100

This makes it just as long, in practice, as the ASCII word representation four. However, when deal-
ing with larger numbers, you’ll find that storing them as integers is far more efficient. Consider, for
example, that 1,234,567 written out as “one million two hundred thirty four thousand five
hundred sixty seven” is 69 bytes long!

A BRIEF HISTORY OF MODERN COMPUTING

There is a long and rich history of programming before 1970. However, the development of the lan-
guages and software that still impact us today began in the early 1970s with the release of the operat-
ing system Unix and the programming language C.

In fact, the date January 1, 1970, itself has important significance in modern computing. When
computers store dates and times, they often store them as “the number of seconds since midnight on
January 1st 1970.” The time 0 is 01/01/1970 00:00:00, the time 3600 is 01/01/1970 01:00:00, and
the time 1,000,000,000 is 09/09/2001 01:46:40. This is called Unix time or epoch time and it is a
standard recognized by every computing system today.

So, for all intents and purposes, I like to think of the world as beginning at time 0 on midnight January
1, 1970. Back then, operating systems weren’t much more than a command-line interface. You get a
prompt, give it a command to execute, and the operating system interprets the command and executes it.

Operating systems themselves were varied and were often developed by computer manufacturers for
their specific hardware. Therefore, the commands that were interpreted by these operating systems
were also extremely varied, as were the programming languages they used and understood.

The Unix Operating System
Unix was originally developed by three programmers at Bell Labs in a relatively small-scale and mod-
est project. Fortunately for the history of computing, an antitrust case in 1956 brought against AT&T
by the Eisenhower administration meant that any non-telecommunications patents and documenta-
tion had to be licensed to all applicants at reasonable royalty rates. Because Bell Labs was a subsidi-
ary of AT&T and Unix was definitely not a piece of telecommunications software, this meant that
Unix had to be licensed and made open source and could not be kept as proprietary and expensive
like many other operating systems of the time.

Unix quickly spread throughout academia, which welcomed a cheap and universal operating system.
Academics, after graduating, spread it to the companies they worked at, where it gained popularity in
the corporate world as well.

4 This is an oversimplification and ignores the existence of negative numbers. In Python, the size of integers is compli-
cated and not something you generally need to worry about. However, the concept of numbers being a relatively large
default size (often 4 bytes) does hold true across programming languages.

A Brief History of Modern Computing  ❘  13

A large part of Unix’s appeal was that it was written in the C programming language, which was also
gaining popularity. Although C was not the first high-level5 modern programming language, or even
the first high-level famous language (that would be FORTRAN), C has outlasted its predecessors and
is still in common use today. C is also what most popular modern languages, such as C#, C++, Go,
Haskell, Java, JavaScript, Perl, PHP, and Python, are derived from today.

Although modern operating systems are not derived from, or “based on” Unix in the sense that they
directly use Unix, many of their principles of operation and the commands they use are based on
Unix commands. In fact, many of the commands you’ll learn and work with later in this book such as
cd, ls, and mkdir, were developed for Unix and later adopted by many other operating systems.

Modern Programming
When you write a Python program, the Python code that you write gets translated by the computer
into C code before being executed. In fact, much of the Python language itself is written in C.
You can see an example of some of the C code that runs Python on the Python GitHub page:
https://github.com/python/cpython/blob/main/Python/getversion.c

If the computer has to translate Python into C code before it can be run, why don’t we simply write
all programs in C? If written correctly and competently, a program written in C will usually be faster
than the same program written in Python. However, C’s syntax is much more complex. It also relies
on the programmer to perform low-level tasks, such as allocating and releasing memory, that are
taken care of in Python.

Prior to 1970, programming was very hardware-specific. A programmer might have to learn new lan-
guages or new ways to write those languages as new computers were released. The wide adoption and
portability of C led to a flourishing of new programming languages that focused on style and archi-
tecture of the code, rather than the underlying hardware. Programming languages could be designed
for specific types of applications and specific types of programming philosophies.

In the mid-1980s, higher-level languages like Objective-C and C++ were released. These languages
used a programming style that focused on relationships between, and attributes of, objects or enti-
ties.6 This style is called object-oriented programming, and it grew quickly in popularity over the next
decades, led by languages like Java and C#, which came on the scene in the mid-1990s.

In 1995 JavaScript was introduced, which revolutionized a completely different area of computing:
the internet. JavaScript allowed web pages to become dynamic and have programmable content for
the first time.

5 “High-level” and “low-level” languages will be discussed in more detail later; for now, know that a high-level program-
ming language is, essentially, one that is written more like plain English. It has many abstractions and features that hide
details of the underlying operating system and hardware, making it easier to write programs. Python is considered a
high-level language, whereas assembly is considered a low-level language.
6 Objects are values in computer science that have a complex structure to them. Unlike simple values like numbers
or words, objects might have an elaborate schema with many attributes and functionality associated with them. For
example, you might have a “user” object or a “blog post” object which contains all the information associated with that
user or blog post. Don’t worry about objects too much for now; we’ll be revisiting them shortly and throughout the rest
of the book!

https://github.com/python/cpython/blob/main/Python/getversion.c

14  ❘  CHAPTER 1   Introduction to Programming

Up until now, programs had to be executed by specialized software that the user purposefully
installed and ran. Or it was compiled into an executable file that could only be run by a very specific
operating system. Now, no special software or specific operating system was needed, the web browser
itself executed JavaScript. If you had a web browser, you could run JavaScript on a web page.

This required cooperation from every company that had a web browser. The JavaScript code had to
execute in the same way whether users visited a website with Internet Explorer or Netscape. How-
ever, it provided tremendous benefit to users, who could now use dynamic web applications powered
by JavaScript.

Although the name “JavaScript” is similar to “Java,” the two languages have nothing to do with each
other. A popular saying in programming is that “Java is similar to JavaScript in the same way that a
car is similar to a carpet.” This isn’t completely true, after all, Java and JavaScript are at least both
programming languages. However, JavaScript was named after Java for marketing reasons, rather
than any meaningful connection between the two languages.

Although several other languages attempted to compete with, or at least complement, JavaScript on
the web (notably Java Applets and Flash Player), none succeeded in the long run. Today, JavaScript is
the only in-browser language available for programming websites.

In 2009, Node JS was released; which allowed JavaScript to be run outside a web browser and power
any code running on a computer. Now, it is one of the most popular general-purpose programming
languages, alongside Python, Java, and C#.

TALKING ABOUT PROGRAMMING LANGUAGES

With so many programming languages in the world, a set of jargon was developed to help quickly
describe and differentiate programming languages. If one programmer is trying to explain to another
why they should learn Python, they might say, “It’s a dynamically typed, garbage-collected multipara-
digm language.”

But what does this mean? Understanding these words doesn’t just help us understand Python—it
helps us understand how programmers think about programming languages in general.

This section, at first glance, may look more like a glossary to be used as needed than something to be
seriously perused. However, I encourage you to read each term and try to understand it, at least in an
abstract way. I’ve put the terms into logical groupings for ease of comparisons.

Open Source  An open source programming language, like any piece of open source soft-
ware, is one where you can read the source code. It’s a popular misconception that open
source necessarily means “free.” This is usually the case; however, you must still check the
software’s license, which will dictate its terms of use.

If you cannot read the source code, the software is called closed-source. Java, .NET, and C++
are all closed-source programming languages.

Garbage-Collected  Previously, we looked at how computers store values in memory. Before
the values can be written in memory, that memory must be allocated for the values that will
be stored. This allocation process makes sure that no other programs are using the memory
(the memory is free) and then reserves the memory so that no other programs can use it.

