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Preface

The development of vaccines has been a cornerstone of public health, pre-
venting countless diseases and saving millions of lives. However, traditional 
vaccine approaches often face limitations, such as the need for multi-
ple doses, the potential for adverse reactions, and the inability to induce 
long-lasting immunity against complex pathogens. In recent decades, viral 
vectors have emerged as a promising alternative, revolutionizing the field 
of vaccine development.

This book provides a comprehensive overview of viral vectors and their 
applications in vaccine delivery. Its chapters explore various aspects of viral 
vector technology, from the basic principles of viral vector construction to 
the latest advancements in gene editing and manufacturing.

To begin, the book introduces the concept of viral vectors and their 
advantages over traditional vaccine platforms. Subsequent chapters delve 
into the intricacies of viral vector construction, including the selection of 
appropriate viral backbones, the insertion of foreign genes, and the opti-
mization of vector design for maximum immunogenicity. The role of adju-
vants in enhancing the efficacy of viral vector vaccines is also discussed, 
highlighting their importance in boosting immune responses and improv-
ing vaccine potency.

The next section explores the different types of viral vectors used for 
vaccine delivery, including replication-competent and non-replicating 
vectors. Replication-competent vectors mimic natural infections, inducing 
a robust immune response, while non-replicating vectors are safer but may 
require multiple doses. Genetically modified viral vectors, such as those 
engineered for targeted delivery or enhanced antigen presentation, are also 
covered.

The book further delves into the specific applications of viral vectors 
in vaccine development, including their use in veterinary medicine and 
the development of vaccines against emerging infectious diseases. The 



xvi Preface

advantages and challenges associated with viral vector vaccines are dis-
cussed, along with the commercially available viral vector vaccines and the 
future potential of this technology.

This book serves as a valuable resource for researchers, scientists, and 
healthcare professionals working in the field of vaccine development. It 
provides a comprehensive understanding of viral vector technology and 
its potential to address the challenges of vaccine design and delivery. By 
exploring the latest advancements and future prospects, this book aims to 
contribute to the development of safer, more effective, and more accessible 
vaccines for a healthier global population. The editors are grateful to every-
one who has supported their work and also wish to thank Martin Scrivener 
and Scrivener Publishing for their support and publication.

Editors
Vivek P. Chavda

Vasso Apostolopoulos
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Abstract
Viral vector manipulation is the most effective way to transfer genes to modify a 
specific cell type or tissue. Therapeutic genes can also be expressed through this 
technique. Many virus species are currently being studied for their ability to intro-
duce genes into cells for transgenic expression, which can be either temporary 
or permanent. These comprise herpes simplex viruses, baculoviruses, adeno-as-
sociated viruses, poxviruses, γ-retroviruses, lentiviruses, and adenoviruses (Ads). 
The selection of a virus for regular clinical usage depends upon several factors, 
including transgenic expression effectiveness, production ease, safety, toxicity, and 
stability. An introduction to the general properties of viral vectors frequently used 
in gene transfer, as well as their benefits and drawbacks for gene therapy applica-
tions, is given in this chapter.

Keywords: Viral vectors, gene transfer, transgene expression, adenoviruses, gene 
therapy
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2 Viral Vectors for Vaccine Delivery

1.1 Introduction

For decades, traditional vaccination platforms such as live-attenuated or 
killed viral vaccines have been utilized effectively in inducing long-term 
immunity to various kinds of pathogenic human diseases. However, for 
many human infections, such vaccination platforms, especially live- 
attenuated vaccines, are unsuitable for human usage due to safety issues, 
low efficacy, or basic impracticality [1].

In a phase 1 clinical trial of a live-attenuated dengue virus vaccine, 
side effects produced by the vaccine virus strain’s under-attenuation were 
observed [2].

Certain infections, including the Ebola and Marburg viruses belong-
ing to the Filoviridae family, are so deadly that live-attenuated vaccines 
are not even considered because the risk of the vaccine strain becoming 
under-attenuated or reverting to a pathogenic state would be too great. 
The persistent need for developing novel, safer, and more effective vaccine 
platforms has led researchers to explore alternate approaches for vaccine 
production, including DNA vaccines, viral-vectored immunizations, and 
recombinant protein subunit vaccines. One of the most promising plat-
forms for recombinant vaccine research is the viral vector. A viral vector is 
comparable to a small delivery device that can transport genetic material 
to the cell nucleus. The viral vector has the genetic material loaded and 
packaged into it. The purpose of using viral vectors for vaccination is to 
introduce the target pathogen’s naturally existing antigens to the immune 
system without the infectious pathogen [1].

Viral vectors can be categorized into two main groups based on their 
genomic behavior within host cells: those that integrate into the host cel-
lular chromatin, such as oncoretroviruses and lentiviruses, and those that 
primarily exist as extrachromosomal episomes within the cell nucleus, 
including adeno-associated viruses (AAV), adenoviruses (Ads), and her-
pesviruses. This classification is crucial for understanding their mecha-
nisms of action and potential applications in gene therapy and vaccination. 
The selection of viral vectors for clinical use is influenced by several crit-
ical factors, including stability, toxicity, safety, ease of manufacturing, 
and the efficiency of transgene expression. These considerations ensure 
that the chosen vector is suitable for the intended therapeutic application 
while minimizing risks to the patient. Viral vectors encompass both RNA 
and DNA viruses, which can be further divided based on their genomic 
structure into single-stranded (ss) and double-stranded (ds) genomes. For 
instance, retroviruses typically possess an ssRNA genome that must be 
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reverse-transcribed into dsDNA before integration into the host genome. 
In contrast, Ads are characterized by their dsDNA genomes and are known 
for their ability to transiently express genes without integrating into the 
host genome.

The distinct properties of each viral vector type contribute to their effec-
tiveness in various therapeutic contexts. For example, retroviral vectors are 
particularly effective for stable gene integration in dividing cells, while 
AAVs are favored for their low immunogenicity and ability to transduce 
both dividing and nondividing cells. Ads offer high transduction efficiency 
and large packaging capacity, making them suitable for delivering larger 
genetic payloads [3, 4].

1.2 Baculovirus Vectors

A safe, nontoxic, non-integrative vector with a high replication capability 
is the baculovirus. Since baculoviruses may infect both latent and growing 
cells, they are also a highly versatile, inexpensive vector with a wide tis-
sue and host tropism. Additionally, they are more biosafe since they only 
reproduce in insect cells—not in mammalian cells. Baculoviruses are a 
desirable choice for gene transfer due to their advantageous characteris-
tics. Regenerative medicine, anticancer treatments, and vaccine develop-
ment have all benefited greatly from the substantial advancements made 
in using baculoviruses in gene therapy. Nowadays, the main applications 
of baculoviruses are in the manufacture of vaccines and recombinant 
proteins. New avenues for the production of vaccines of the next genera-
tion have been made possible by the stimulation of mucosal and systemic 
immune responses by baculoviruses through oral or intranasal delivery. 
This human-friendly virus will undoubtedly be promoted as a viable vector 
for clinical applications if further knowledge about the biology of baculovi-
ruses and their interactions with non-native hosts is obtained [5, 6].

The term “baculovirus” refers to the unique rod-shaped viral particles 
produced in infected insect cells, known as occlusion bodies. Baculoviruses 
are frequently employed in insect cell culture systems as expression vectors. 
The baculovirus can be modified to include foreign genes in its genome, 
which allows the virus to infect insect cells. This makes it possible to pro-
duce significant quantities of recombinant proteins for scientific or com-
mercial uses.

Baculoviruses have been assessed as potential carriers of antigens to 
elicit immunological responses, making them attractive candidates for the 
production of vaccines [5].
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1.3 Adenovirus Vectors

Adenoviral vectors (AdVs) have emerged as the most widely used vehicle 
for gene therapy in cancer treatment. These vectors are also employed in 
vaccination strategies to deliver foreign antigens and in various gene ther-
apy applications. In many cases, AdVs are engineered to be replication- 
defective; this involves the deletion of essential viral genes, which are then 
replaced with a genetic cassette that expresses a therapeutic gene. Such 
modifications allow for targeted gene delivery while minimizing the risk of 
viral replication in healthy tissues. In the context of cancer therapy, replication- 
competent AdVs, known as oncolytic vectors, have been developed. These 
vectors are specifically designed to replicate within cancer cells, utiliz-
ing the natural lytic cycle of the virus to induce cell death selectively. By 
exploiting the unique vulnerabilities of tumor cells, oncolytic Ads can 
effectively target and destroy malignant tissues while sparing normal cells.

Numerous clinical trials have demonstrated the safety and therapeutic 
efficacy of both replication-defective and replication-competent AdVs. For 
instance, studies have shown that these vectors can elicit robust immune 
responses against tumors, enhancing their potential as therapeutic agents. 
The ability of AdVs to infect a broad range of cell types and their capacity 
to induce strong cellular and humoral immune responses further support 
their utility in cancer treatment. Moreover, AdVs can be engineered to 
express immune-modulatory molecules or tumor-specific antigens, which 
can enhance antitumor immunity. This versatility makes them suitable not 
only for direct cancer therapies but also for combination strategies with 
existing treatments such as immune checkpoint inhibitors [7].

Although Ads have been used as gene delivery vehicles since the inven-
tion of gene therapy, Ad vaccines, like mRNA vaccines, are a more recent 
approach [8, 9]. The viral replication genes E1 and/or E3 are removed and 
substituted for the desired transgene, like an antigen, to form a vector. This 
prevents the virus from expressing the desired antigen and stops it from 
replicating its genome after infection. In comparison to mRNA vaccines, 
Ads have a number of advantages, such as the previously mentioned low 
cost and thermostability [10].

Ad vector vaccinations generally elicit robust transgenic antigen-specific 
cellular (specifically, CD8+ T cells) and/or humoral immune responses, 
making them immunogenic vaccines [11].

The potential of AdVs to elicit a potent and well-balanced immune 
response makes them ideal for use in the COVID-19 pandemic. These vec-
tors have been studied as vaccine agents for a variety of infectious diseases 
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[12, 13]. Early AdV systems faced biological challenges, but the distinct 
molecular characteristics of these vectors facilitated the rapid development 
of vaccines with complex designs [10, 14].

AdVs have the benefit of high infection effectiveness and a significant 
cargo limit. AdVs have a significant disadvantage in that they are highly 
cytotoxic; nevertheless, this characteristic can be useful when the vectors 
are employed as oncolytic viruses. Although there are drawbacks of tran-
sient gene expression, safety benefits outweigh them as gene expression on 
unintentional targets would be transient [14].

AdVs are categorized into first, second, and third generations based on 
their genetic makeup. First-generation AdVs can only be produced using 
a packaging cell line that expresses the E1 protein; they are not capable 
of self-replication. The most widely utilized packaging cells are human 
embryonic kidney 293 cells.

Most human cells produce E1A-like proteins; therefore, even first- 
generation AdVs with deleted E1 sections can cause robust host immune 
responses and persistent cytotoxicity in transduced host cells. Another 
strategy was to develop a second-generation Ad without E2 and E4 dele-
tions in order to lessen the host cell’s immune response to the vector. The 
E2 section encodes genes related to Ad replication, while the E4 region 
encodes regulatory proteins related to DNA transcription.

Second-generation Ads continue to elicit host immune responses and 
reduce transgenic expression in target cells by expressing adenoviral pro-
teins through the remaining genes. The production of third- generation 
AdVs, often referred to as “helper-dependent vectors,” involves co- 
introducing a “helper adenovirus”—a virus that carries the genes required 
for replication—into the packed cells. Third-generation Ads can be con-
taminated by helper Ads, and self-propagating Ads can result from homol-
ogous recombination between helper viruses and packing cells [15].

Gendicine, a recombinant human p53 adenovirus, was approved by the 
China Food and Drug Administration (CFDA) in 2003 as a first-in-class 
gene therapy product for head and neck cancer treatment. Gendicine is a 
biological medication that can be given in three different ways: intravascu-
lar infusion, intracavity, or minimally invasive intratumoral injection. The 
wild-type (wt) p53 protein produced by Gendicine-transduced cells has a 
tumor-suppressive role in response to cellular stress. It induces apoptosis, 
senescence, and/or autophagy, depending on the conditions of the cellular 
stress. It also promotes cell-cycle arrest and DNA repair. Gentacine has 
demonstrated notably higher response rates when combined with radia-
tion and chemotherapy than when used with traditional therapies alone. 
Additionally, its safety record is really good. Apart from head and neck 



6 Viral Vectors for Vaccine Delivery

cancer, other cancer types and illness stages have also been effectively 
treated with metronidazole. No major side effects have been noted, with 
the exception of 50 to 60% of patients experiencing vector-associated tran-
sient fever, which persisted for a few hours [16].

1.4 Poxvirus Vectors

Poxviruses are a large, complex virus belonging to the Poxviridae family 
that can affect both vertebrates and invertebrates. Poxviruses are compara-
tively large and oval-shaped viruses. Poxviridae is subdivided into two sub-
families: Chordopoxvirinae (vertebrate poxviruses) and Entomopoxvirinae 
(insect poxviruses). The subfamily Chordopoxvirinae has been further 
divided into nine genera, four of which contain viruses that cause dis-
eases in humans (Orthopoxvirus, Parapoxvirus, Molluscipoxvirus, and 
Yatapoxvirus). Smallpox and molluscum contagiosum are diseases that 
affect humans, whereas the other two are zoonotic infections. The virion 
is enclosed, and the genome is protected in a protein sheath. Among all 
DNA viruses, poxviruses are distinct in that they can only reproduce out-
side of the nucleus, in the cytoplasm of the host cell. To encode the various 
enzymes and proteins involved in viral DNA replication and gene tran-
scription, a large genome is therefore required [17].

Poxvirus infections can cause lesions, skin nodules, or a severe rash. 
Variola virus, the causative agent of smallpox, caused enormous morbidity 
and mortality in human communities before its effective eradication. The 
smallpox vaccine, which was essential in the eradication of smallpox, is 
based on the vaccinia virus (VV), a poxvirus closely related to the variola 
virus. The vaccination protected against smallpox without developing it. 
Though smallpox is no longer around, other poxviruses can infect humans. 
Monkeypox and VVs are two examples. Monkeypox is related to smallpox 
but produces a less severe sickness in humans. The smallpox vaccine is 
based on the VV.

Poxviruses have been utilized as vectors for foreign gene expression in 
mammalian cells. Modified poxviruses, such as modified vaccinia Ankara 
(MVA), are used as vaccine vectors in the treatment of a variety of infec-
tious diseases. Poxviruses are open to genetic modification because of their 
enormous genomes. This has been used for various applications, includ-
ing gene delivery vector application in research and the development of 
recombinant vaccines [18].

The ability of poxviruses to produce cellular and humoral immunity, 
their huge genome size with several immunomodulatory genes, and their 
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tolerance for significant heterologous gene insertions are the major char-
acteristics that make them good antigen delivery platforms and vaccine 
vectors. Initially, the VV was designed to express heterologous genes. Later, 
with promising results, the potential of using swinepox, parapoxvirus, and 
avipoxvirus as vectors was additionally examined. In order to mitigate the 
safety risks associated with wt poxviruses, a variety of severely attenuated 
strains with replication defects have been created, primarily by repetitive 
cycles in cell culture [19].

The thymidine kinase (TK) gene has been specifically targeted for inser-
tional inactivation in the majority of recombinant poxviruses produced 
too far. This involves introducing a heterologous gene into the TK locus 
within the poxvirus genome. Poxviridae family recombinant VV vectors 
proliferate and transcribe their genome in infected cells’ cytosol. Thus, it 
is important that viral DNA is incorporated into the host’s genome. VV is 
the preferred vector for transient gene expression since it infects almost all 
types of mammalian cells. Its massive, adaptable genome makes it possible 
to insert large DNA segments up to 25 kb in size. This virus has three dis-
tinct stages in its infectious cycle. Genes in the early phase code for enzyme 
proteins, while genes in the intermediate phase control the expression of 
genes in the late phase, which codes for structural proteins. Promoting the 
expression of the inserted gene of interest is possible by means of the 7.5-
kDa protein that encodes the promoter gene, which is active during both 
the early and late phases of infection. The wt VV is cytolytic, while less 
virulent poxvirus vectors like MVA or fowl pox virus are commonly used 
for cell transduction.

To create safer and more versatile poxvirus-vectored vaccine candidates, 
other immunomodulatory genes have also been used recently. In heter-
ologous prime-boost vaccination regimens, in which poxvirus vectors 
are combined with other killed or DNA vaccine formulations, it has been 
demonstrated that poxvirus vectors are highly effective. The number of 
vaccinations based on the poxvirus has been approved for use against var-
ious animal infections, such as the canine distemper virus (CDV), rabies 
virus (RabV), avian influenza virus (AIV), and West Nile virus (WNV) 
[19].

VV is a member of the poxvirus family. An icosahedral papovavirus is 
called Simian virus-40(SV40). Recently, alterations have been implemented 
in Simian virus-40 (SV40) to enable it to serve as a vector for gene delivery. 
Gene transfer vectors that exhibit certain distinctive characteristics include 
recombinant SV40 (rSV40) vectors: SV40 is a widely recognized virus, 
and it is simple to create nonreplicative vectors at titers of 1012 IU/ml. 
Additionally, these successfully transduce both dormant and proliferating 
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cells, are nonimmunogenic, and provide a broad variety of cell types with 
sustained transgene expression. The limited ability to clone viruses and the 
potential risks associated with the random integration of the viral genome 
into the host genome are currently the drawbacks of using rSV40 vectors 
for gene therapy [20].

1.5 Herpes Virus Vectors

Herpesviruses are well known for being able to cause latent infections. 
Some cells may experience the virus going dormant after an initial active 
infection, and subsequent reactivations can result in recurring infections. 
Many individuals carry herpes viruses without showing any symptoms, 
and these kinds of viruses are very widespread. Some people, particularly 
those with compromised immune systems, may experience more severe 
herpesvirus infections and consequent complications [21].

Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae are 
the three subfamilies of the nine herpes viruses that are known to infect 
humans (Figure 1.1).

Herpesviruses with reduced virulence are engineered to carry heter-
ologous immunogens that specifically target a number of hazardous and 
important infections. These compounds are remarkable for their ability to 
elicit humoral and cell-mediated immune responses, as well as to accept 
large amounts of foreign DNA.

Envelope Protein

Tegument

Capsid
DNA

Herpesviruses

Alphaherpesvirinae

Betaherpesvirinae

Gammaherpesvirinae

Figure 1.1 Structure and types of herpesviruses.
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A strong basis for the advancement of herpesvirus-based vectors is 
established by a better understanding of the interaction between the vec-
tor and the host. Currently, a variety of molecular techniques, including 
codon optimization, homologous and two-step en passant mutagenesis, 
BAC technology, and the CRISPR/Cas9 system, are used to facilitate the 
generation of herpesvirus-based recombinant vaccine vectors [22].

Herpes simplex virus (HSV) vectors are appropriate for transferring 
and expressing several large therapeutic genes in brain neurons over an 
extended period of time, even in the total absence of viral gene expres-
sion. The advanced vector technologies are safe, long-lasting, and non- 
inflammatory within the nucleus of nerve cells. HSV may eventually be 
utilized to treat a number of neurodegenerative disorders with an identi-
fied inherited cause [21].

1.6 Epstein-Barr Virus Vectors

The Epstein-Barr virus (EBV) vector is characterized by its ability to persist 
in the host cell nucleus as an episome, rather than integrating into the host 
genome. This property renders it a highly accessible and efficient vector 
for use in human cell lines. The EBV vector comprises two key DNA com-
ponents: the nuclear antigen-1 (EBNA1) gene, which is expressed by the 
virus, and the OriP sequence, which serves as the origin of plasmid repli-
cation. The EBNA1 protein plays a crucial role in maintaining the stability 
of the episome by binding to the OriP sequence. This interaction facilitates 
the anchoring of OriP-containing plasmids to nuclear proteins within the 
host cell, allowing them to remain stable episomes during cell division. As 
a result, these plasmids can replicate alongside the host’s cellular machin-
ery without disrupting genomic integrity. The unique characteristics of 
EBV vectors make them particularly suitable for various applications in 
gene therapy and vaccine development. Their episomal nature allows for 
sustained expression of therapeutic genes without the risks associated with 
genomic integration, such as insertional mutagenesis. This aspect is espe-
cially important in therapeutic contexts where long-term gene expression 
is desired. Furthermore, EBV vectors can be engineered to enhance their 
functionality. For instance, modifications can be made to improve their 
replication efficiency or to include additional regulatory elements that 
enhance transgene expression. This adaptability makes EBV vectors a valu-
able tool in both research and clinical settings [23].

Research on alpha herpes virus has significantly improved several 
genetic techniques, and EBV replication is comparable to that of other 
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herpes viruses. However, EBV is distinct from alpha herpes viruses in that 
it induces latency in human B cells and modifies their growth [24].

EBV vectors with OriP-containing plasmid replicate once throughout 
the cell cycle in parallel with the host chromosomes. The high-affinity 
matrix attachment area containing oriP is responsible for anchoring EBV 
vectors, which have a chromatin-like structure, to the nuclear matrix in 
latently infected cells.

The two noncontiguous portions that make up OriP are the dyad sym-
metry (DS) element and the family of repetitions (FR). A 30-bp repeat 
sequence is present in 20 tandem flawed copies in the FR and four similar 
copies in the DS, the other region. The majority of sequences for EBNA1 
binding are present in these 30-bp repeats.

With the use of EBV-based vectors, deficient human cell lines can be 
effectively corrected by cDNA or genomic DNA transfections leading to 
complementation and cloning of the correcting gene. It is possible to target 
tumor cells that express EBNA-1 specifically with vectors containing only 
oriP in EBV-associated neoplasms such as nasopharyngeal carcinoma and 
Burkitt’s lymphoma [25].

1.7 Retrovirus Vectors

Gene therapy commonly uses viruses, specifically retroviruses, as vectors. The 
genetic material found in retroviruses is RNA. Reverse transcription is the pro-
cess by which the retrovirus converts RNA into DNA once it enters the host 
cell. The provirus, which is the viral DNA that has been created, is integrated 
into the host cell’s DNA. Proviruses often provide no risk to users. There is a 
significant risk, though, as some retroviruses have the ability to turn healthy 
cells malignant.

Retroviruses must render them harmless prior to using them as a vec-
tor. For instance, by deliberately deleting a gene that codes for the viral 
envelope, the retrovirus can be made inert. A retrovirus cannot enter the 
host cell if it does not have the envelope. A single envelope-defective retro-
virus can multiply into many viral particles with the help of helper viruses. 
Helper viruses possess the usual genes that produce envelopes. Because the 
vector virus has a malfunctioning envelope gene, it can multiply together 
with the helper virus when it infects host cells (Figure 1.2). The vector and 
helper viruses multiply billions of times by repeatedly replicating in the 
host cells. It is possible to isolate and purify the vector viruses from the 
helper viruses. It is crucial to isolate vector viruses and ensure they are 



Introduction to Viral Vectors 11

completely free of helper viruses. The health of patients receiving gene 
therapy is seriously threatened by helper virus contamination.

A retroviral vector carrying a maximum 8-kb size therapeutic DNA is 
useful for transforming the cells. However, the integration and delivery 
efficiency of therapeutic DNA is poor. To achieve high efficiency of inte-
gration, packaged retroviral RNA particles are used.

1.8 Lentivirus Vectors

Lentiviruses are among the most popular and useful viral vectors in the 
laboratory. Lentiviruses have two advantages: they have a large genetic 
capacity and can transduce both proliferating and nondividing cells. At the 
beginning of the 1990s, investigators developed viral vector systems based 
on retroviruses, such as the Moloney murine leukemia virus (MMLV).

Only actively dividing cells were susceptible to infection by the vec-
tors, but they also had the ability to integrate into the genome and sup-
port transgenic expression for a long time. While nondividing cells might 
be infected by a different type of adenovirus-based vector, transgenic 
expression would not be produced over time. The packaging, envelope, 
and transfer plasmids constituted the original lentiviral vector system. The 
HIV-1 provirus mutant included in the packaging plasmid was unable to 
package itself because it lacked a few necessary proteins. The cell types that 
the vector could infect were determined by the viral envelope present on 
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Figure 1.2 Large-scale production of vector viruses using helper viruses.
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the envelope plasmid. Finally, the necessary transgene and HIV-1 long- 
terminal repeats (LTRs) were included in the transfer plasmid, helping to 
facilitate the integration of the virus into the host genome. After these plas-
mids were co-transfected, 293T cells released transgene-containing lentivi-
ral particles into the medium, which could be collected for use in research. 
Lentiviral vectors are still widely used for tracing and targeting brain cells 
because they can carry a significantly larger genetic cargo (8 kb versus 4.5 
kb) than adeno-associated viral vectors, even though the latter can also 
target nondividing cells (Figure 1.3) [26, 27].

Lentiviruses have been studied for decades by researchers. Because it 
naturally inserts genetic material into cells, especially stem cells, HIV is 
the most well-known lentivirus. The lentiviral vector is built using an HIV 
virus blueprint. The HIV virus is made up of nine genes. Researchers take 
three or four different genes from the HIV virus’s blueprint to create the 
lentiviral vector, which increases the vector’s ability to transfer genetic 
material. Now, more genes will be added in order to produce the desired 
therapeutic effect. Since only a small portion of the nine genes from the 
original viral blueprint are used, HIV infection is impossible due to incom-
plete genomes.

HIV GENOME AND LENTIVIRAL
VECTOR

3 OR 4 DIFFERENT GENES from the HIV genome.
The highlighted genes are responsible for the packaging and

delivering of genetic materials to the cell.

Additional genes that
help the vector reach

target cells.

Lentiviral vector
carrying genetic
material

Figure 1.3 HIV genome and lentiviral vector.


