

Table of Contents
Chapter 1: Getting Started

A QUICK INTRODUCTION TO ASP.NET MVC
ASP.NET MVC 5 OVERVIEW
INSTALLING MVC 5 AND CREATING APPLICATIONS
THE MVC APPLICATION STRUCTURE
SUMMARY

Chapter 2: Controllers
THE CONTROLLER'S ROLE
A SAMPLE APPLICATION: THE MVC MUSIC STORE
CONTROLLER BASICS
SUMMARY

Chapter 3: Views
THE PURPOSE OF VIEWS
VIEW BASICS
UNDERSTANDING VIEW CONVENTIONS
STRONGLY TYPED VIEWS
VIEW MODELS
ADDING A VIEW
THE RAZOR VIEW ENGINE
SPECIFYING A PARTIAL VIEW
SUMMARY

Chapter 4: Models
MODELING THE MUSIC STORE
SCAFFOLDING A STORE MANAGER
EDITING AN ALBUM

MODEL BINDING
SUMMARY

Chapter 5: Forms and HTML Helpers
USING FORMS
HTML HELPERS
OTHER INPUT HELPERS
RENDERING HELPERS
SUMMARY

Chapter 6: Data Annotations and Validation
ANNOTATING ORDERS FOR VALIDATION
CUSTOM VALIDATION LOGIC
DISPLAY AND EDIT ANNOTATIONS
SUMMARY

Chapter 7: Membership, Authorization, and Security
SECURITY: NOT FUN, BUT INCREDIBLY
IMPORTANT
USING THE AUTHORIZE ATTRIBUTE TO REQUIRE
LOGIN
USING AUTHORIZEATTRIBUTE TO REQUIRE ROLE
MEMBERSHIP
EXTENDING USER IDENTITY
EXTERNAL LOGIN VIA OAUTH AND OPENID
UNDERSTANDING THE SECURITY VECTORS IN A
WEB APPLICATION
PROPER ERROR REPORTING AND THE STACK
TRACE
SECURITY RECAP AND HELPFUL RESOURCES
SUMMARY

Chapter 8: Ajax

JQUERY
AJAX HELPERS
CLIENT VALIDATION
BEYOND HELPERS
IMPROVING AJAX PERFORMANCE
SUMMARY

Chapter 9: Routing
UNIFORM RESOURCE LOCATORS
INTRODUCTION TO ROUTING
INSIDE ROUTING: HOW ROUTES GENERATE URLS
INSIDE ROUTING: HOW ROUTES TIE YOUR URL TO
AN ACTION
CUSTOM ROUTE CONSTRAINTS
USING ROUTING WITH WEB FORMS
SUMMARY

Chapter 10: NuGet
INTRODUCTION TO NUGET
ADDING A LIBRARY AS A PACKAGE
CREATING PACKAGES
PUBLISHING PACKAGES
SUMMARY

Chapter 11: ASP.NET Web API
DEFINING ASP.NET WEB API
GETTING STARTED WITH WEB API
WRITING AN API CONTROLLER
CONFIGURING WEB API
ADDING ROUTES TO YOUR WEB API
BINDING PARAMETERS

FILTERING REQUESTS
ENABLING DEPENDENCY INJECTION
EXPLORING APIS PROGRAMMATICALLY
TRACING THE APPLICATION
WEB API EXAMPLE: PRODUCTSCONTROLLER
SUMMARY

Chapter 12: Single Page Applications with AngularJS
UNDERSTANDING AND SETTING UP ANGULARJS
BUILDING THE WEB API
BUILDING APPLICATIONS AND MODULES
SUMMARY

Chapter 13: Dependency Injection
SOFTWARE DESIGN PATTERNS
DEPENDENCY RESOLUTION IN MVC
DEPENDENCY RESOLUTION IN WEB API
SUMMARY

Chapter 14: Unit Testing
UNDERSTANDING UNIT TESTING AND TEST-
DRIVEN DEVELOPMENT
BUILDING A UNIT TEST PROJECT
ADVICE FOR UNIT TESTING YOUR ASP.NET MVC
AND ASP.NET WEB API APPLICATIONS
SUMMARY

Chapter 15: Extending MVC
EXTENDING MODELS
EXTENDING VIEWS
EXTENDING CONTROLLERS
SUMMARY

Chapter 16: Advanced Topics

MOBILE SUPPORT
ADVANCED RAZOR
ADVANCED VIEW ENGINES
ADVANCED SCAFFOLDING
ADVANCED ROUTING
ADVANCED TEMPLATES
ADVANCED CONTROLLERS
SUMMARY

Chapter 17: Real-World ASP.NET MVC: Building the
NuGet.org Website

MAY THE SOURCE BE WITH YOU
WEBACTIVATOR
ASP.NET DYNAMIC DATA
EXCEPTION LOGGING
PROFILING
DATA ACCESS
EF CODE–BASED MIGRATIONS
DEPLOYMENTS WITH OCTOPUS DEPLOY
AUTOMATED BROWSER TESTING WITH FLUENT
AUTOMATION
OTHER USEFUL NUGET PACKAGES
SUMMARY

Appendix: ASP.NET MVC 5.1
ASP.NET MVC 5.1 RELEASE DESCRIPTION
ENUM SUPPORT IN ASP.NET MVC VIEWS
ATTRIBUTE ROUTING WITH CUSTOM
CONSTRAINTS
BOOTSTRAP AND JAVASCRIPT ENHANCEMENTS
SUMMARY

Foreword
Introduction

Who This Book Is For
How This Book Is Structured
What You Need to Use This Book
Conventions
Source Code
Errata
p2p.wrox.com

Advertisement
End User License Agreement

List of Illustrations
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13

Figure 1.14
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.12
Figure 4.13
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 8.1
Figure 8.2

Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12

Figure 10.13
Figure 10.14
Figure 10.15
Figure 10.16
Figure 10.17
Figure 10.18
Figure 10.19
Figure 10.20
Figure 10.21
Figure 10.22
Figure 10.23
Figure 10.24
Figure 10.25
Figure 10.26
Figure 11.1
Figure 11.2
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9

Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 14.1
Figure 15.1
Figure 15.2
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4
Figure 16.5
Figure 16.6
Figure 16.7
Figure 16.8
Figure 16.9
Figure 16.10
Figure 16.11
Figure 16.12
Figure 16.13
Figure 16.14
Figure 16.15
Figure 16.16
Figure 16.17

Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 17.6
Figure 17.7
Figure 17.8
Figure 17.9
Figure 17.10
Figure 17.11
Figure 17.12
Figure 17.13
Figure 17.14
Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5
Figure A.6
Figure A.7
Figure A.8
Figure A.9
Figure A.10
Figure A.11

Figure A.12
Figure A.13

List of Tables
Table 1.1
Table 3.1
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6
Table 9.7
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 13.1

Table 13.2
Table 13.3
Table 14.1
Table 14.2
Table 14.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Chapter 1
Getting Started

—by Jon Galloway

What's In This Chapter?

Understanding ASP.NET MVC
An overview of ASP.NET MVC 5
How to create MVC 5 applications
How MVC applications are structured

This chapter gives you a quick introduction to ASP.NET
MVC, explains how ASP.NET MVC 5 fits into the ASP.NET
MVC release history, summarizes what's new in ASP.NET
MVC 5, and shows you how to set up your development
environment to build ASP.NET MVC 5 applications.
This is a Professional Series book about a version 5 web
framework, so we keep the introductions short. We're not
going to spend any time convincing you that you should
learn ASP.NET MVC. We assume that you've bought this
book for that reason, and that the best proof of software
frameworks and patterns is in showing how they're used in
real-world scenarios.

A QUICK INTRODUCTION TO ASP.NET
MVC
ASP.NET MVC is a framework for building web applications
that applies the general Model-View-Controller pattern to
the ASP.NET framework. Let's break that down by first

looking at how ASP.NET MVC and the ASP.NET framework
are related.

How ASP.NET MVC Fits in with ASP.NET
When ASP.NET 1.0 was first released in 2002, it was easy
to think of ASP.NET and Web Forms as one and the same
thing. ASP.NET has always supported two layers of
abstraction, though:

System.Web.UI: The Web Forms layer, comprising server
controls, ViewState, and so on
System.Web: The plumbing, which supplies the basic web
stack, including modules, handlers, the HTTP stack, and
so on

The mainstream method of developing with ASP.NET
included the whole Web Forms stack—taking advantage of
drag-and-drop server controls and semi-magical
statefulness, while dealing with the complications behind
the scenes (an often confusing page lifecycle, less than
optimal HTML that was difficult to customize, and so on).
However, there was always the possibility of getting below
all that—responding directly to HTTP requests, building out
web frameworks just the way you wanted them to work,
crafting beautiful HTML—using handlers, modules, and
other handwritten code. You could do it, but it was painful;
there just wasn't a built-in pattern that supported any of
those things. It wasn't for lack of patterns in the broader
computer science world, though. By the time ASP.NET MVC
was announced in 2007, the MVC pattern was becoming
one of the most popular ways of building web frameworks.

The MVC Pattern

Model-View-Controller (MVC) has been an important
architectural pattern in computer science for many years.
Originally named Thing-Model-View-Editor in 1979, it was
later simplified to Model-View-Controller. It is a powerful
and elegant means of separating concerns within an
application (for example, separating data access logic from
display logic) and applies itself extremely well to web
applications. Its explicit separation of concerns does add a
small amount of extra complexity to an application's design,
but the extraordinary benefits outweigh the extra effort. It
has been used in dozens of frameworks since its
introduction. You'll find MVC in Java and C++, on Mac and
on Windows, and inside literally dozens of frameworks.
The MVC separates the user interface (UI) of an application
into three main aspects:

The Model: A set of classes that describes the data
you're working with as well as the business rules for
how the data can be changed and manipulated
The View: Defines how the application's UI will be
displayed
The Controller: A set of classes that handles
communication from the user, overall application flow,
and application-specific logic

MVC as a User Interface Pattern
Notice that we've referred to MVC as a pattern for the
UI. The MVC pattern presents a solution for handling
user interaction, but says nothing about how you will
handle other application concerns like data access,
service interactions, and so on. It's helpful to keep this
in mind as you approach MVC: It is a useful pattern, but
likely one of many patterns you will use in developing an
application.

MVC as Applied to Web Frameworks
The MVC pattern is used frequently in web programming.
With ASP.NET MVC, it's translated roughly as:

Models: These are the classes that represent the
domain you are interested in. These domain objects
often encapsulate data stored in a database as well as
code that manipulates the data and enforces domain-
specific business logic. With ASP.NET MVC, this is most
likely a Data Access Layer of some kind, using a tool like
Entity Framework or NHibernate combined with custom
code containing domain-specific logic.
View: This is a template to dynamically generate HTML.
We cover more on that in Chapter 3 when we dig into
views.
Controller: This is a special class that manages the
relationship between the View and the Model. It
responds to user input, talks to the Model, and decides
which view to render (if any). In ASP.NET MVC, this
class is conventionally denoted by the suffix Controller.

Note
It's important to keep in mind that MVC is a high-level
architectural pattern, and its application varies
depending on use. ASP.NET MVC is contextualized both
to the problem domain (a stateless web environment)
and the host system (ASP.NET).
Occasionally I talk to developers who have used the
MVC pattern in very different environments, and they
get confused, frustrated, or both (confustrated?)
because they assume that ASP.NET MVC works the
exact same way it worked in their mainframe account
processing system 15 years ago. It doesn't, and that's a
good thing—ASP.NET MVC is focused on providing a
great web development framework using the MVC
pattern and running on the .NET platform, and that
contextualization is part of what makes it great.
ASP.NET MVC relies on many of the same core
strategies that the other MVC platforms use, plus it
offers the benefits of compiled and managed code and
exploits newer .NET language features, such as lambdas
and dynamic and anonymous types. At its heart, though,
ASP.NET applies the fundamental tenets found in most
MVC-based web frameworks:

Convention over configuration
Don't repeat yourself (also known as the “DRY”
principle)
Pluggability wherever possible
Try to be helpful, but if necessary, get out of the
developer's way

The Road to MVC 5
In the five years since ASP.NET MVC 1 was released in
March 2009, we've seen five major releases of ASP.NET
MVC and several more interim releases. To understand
ASP.NET MVC 5, it's important to understand how we got
here. This section describes the contents and background
of each of the three major ASP.NET MVC releases.

Don't Panic!
We list some MVC-specific features in this section that
might not all make sense to you if you're new to MVC.
Don't worry! We explain some context behind the MVC 5
release, but if this doesn't all make sense, you can just
skim or even skip until the “Creating an MVC 5
Application” section. We'll get you up to speed in the
following chapters.

ASP.NET MVC 1 Overview
In February 2007, Scott Guthrie (“ScottGu”) of Microsoft
sketched out the core of ASP.NET MVC while flying on a
plane to a conference on the East Coast of the United
States. It was a simple application, containing a few
hundred lines of code, but the promise and potential it
offered for parts of the Microsoft web developer audience
was huge.
As the legend goes, at the Austin ALT.NET conference in
October 2007 in Redmond, Washington, ScottGu showed a
group of developers “this cool thing I wrote on a plane” and
asked whether they saw the need and what they thought of
it. It was a hit. In fact, many people were involved with the
original prototype, codenamed Scalene. Eilon Lipton e-
mailed the first prototype to the team in September 2007,

and he and ScottGu bounced prototypes, code, and ideas
back and forth.
Even before the official release, it was clear that ASP.NET
MVC wasn't your standard Microsoft product. The
development cycle was highly interactive: There were nine
preview releases before the official release, unit tests were
made available, and the code shipped under an open-source
license. All these highlighted a philosophy that placed a
high value on community interaction throughout the
development process. The end result was that the official
MVC 1.0 release—including code and unit tests—had
already been used and reviewed by the developers who
would be using it. ASP.NET MVC 1.0 was released on
March 13, 2009.

ASP.NET MVC 2 Overview
ASP.NET MVC 2 was released just one year later, in March
2010. Some of the main features in MVC 2 included:

UI helpers with automatic scaffolding with customizable
templates
Attribute-based model validation on both the client and
server
Strongly typed HTML helpers
Improved Visual Studio tooling

It also had lots of API enhancements and “pro” features,
based on feedback from developers building a variety of
applications on ASP.NET MVC 1, such as:

Support for partitioning large applications into areas
Asynchronous controllers support

Support for rendering subsections of a page/site using
Html.RenderAction

Lots of new helper functions, utilities, and API
enhancements

One important precedent set by the MVC 2 release was
that there were very few breaking changes. I think this is a
testament to the architectural design of ASP.NET MVC,
which allows for a lot of extensibility without requiring core
changes.

ASP.NET MVC 3 Overview
ASP.NET MVC 3 shipped just 10 months after MVC 2,
driven by the release date for Web Matrix. Some of the top
features in MVC 3 included:

The Razor view engine
Support for .NET 4 Data Annotations
Improved model validation
Greater control and flexibility with support for
dependency resolution and global action filters
Better JavaScript support with unobtrusive JavaScript,
jQuery Validation, and JSON binding
Use of NuGet to deliver software and manage
dependencies throughout the platform

Razor is the first major update to rendering HTML since
ASP.NET 1 shipped almost a decade ago. The default view
engine used in MVC 1 and 2 was commonly called the Web
Forms view engine, because it uses the same
ASPX/ASCX/MASTER files and syntax used in Web Forms.
It works, but it was designed to support editing controls in

a graphical editor, and that legacy shows. An example of
this syntax in a Web Forms page is shown here:
<%@ Page Language="C#"
 MasterPageFile="∼/Views/Shared/Site.Master" Inherits=

"System.Web.Mvc.ViewPage<MvcMusicStore.ViewModels.StoreBrowseVi
ewModel>"
%>
<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent"
runat="server">
 Browse Albums
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"
runat="server">
 <div class="genre">
 <h3><%: Model.Genre.Name %> Albums</h3>
 <ul id="album-list">
 <% foreach (var album in Model.Albums) { %>

 <a href="<%: Url.Action("Details", new { id =
album.AlbumId }) %>">
 <img alt="<%: album.Title %>" src="<%:
album.AlbumArtUrl %>" />
 <%: album.Title %>

 <% } %>

 </div>
</asp:Content>

Razor was designed specifically as a view engine syntax. It
has one main focus: code-focused templating for HTML
generation. Here's how that same markup would be
generated using Razor:
@model MvcMusicStore.Models.Genre
@{ViewBag.Title = "Browse Albums";}
<div class="genre">
 <h3>@Model.Name Albums</h3>
 <ul id="album-list">
 @foreach (var album in Model.Albums)
 {

 <a href="@Url.Action("Details", new { id =
album.AlbumId })">
 <img alt="@album.Title"
src="@album.AlbumArtUrl" />
 @album.Title

 }

</div>

The Razor syntax is easier to type, and easier to read.
Razor doesn't have the XML-like heavy syntax of the Web
Forms view engine. We talk about Razor in a lot more depth
in Chapter 3.

MVC 4 Overview
The MVC 4 release built on a pretty mature base and is
able to focus on some more advanced scenarios. Some top
features include:

ASP.NET Web API
Enhancements to default project templates
Mobile project template using jQuery Mobile
Display modes
Task support for asynchronous controllers
Bundling and minification

Because MVC 4 is still a pretty recent release, we explain a
few of these features in a little more detail here and
describe them in more detail throughout the book.

ASP.NET Web API
ASP.NET MVC was designed for creating websites.
Throughout the platform are obvious design decisions that

indicate the assumed usage: responding to requests from
browsers and returning HTML.
However, ASP.NET MVC made it really easy to control the
response down to the byte, and the MVC pattern was useful
in creating a service layer. ASP.NET developers found that
they could use it to create web services that returned XML,
JSON, or other non-HTML formats, and it was a lot easier
than grappling with other service frameworks, such as
Windows Communication Foundation (WCF), or writing raw
HTTP handlers. It still had some quirks, as you were using
a website framework to deliver services, but many found
that it was better than the alternatives.
MVC 4 included a better solution: ASP.NET Web API
(referred to as Web API), a framework that offers the
ASP.NET MVC development style but is tailored to writing
HTTP services. This includes both modifying some ASP.NET
MVC concepts to the HTTP service domain and supplying
some new service-oriented features.
Here are some of the Web API features that are similar to
MVC, just adapted for the HTTP service domain:

Routing: ASP.NET Web API uses the same routing
system for mapping URLs to controller actions. It
contextualizes the routing to HTTP services by mapping
HTTP verbs to actions by convention, which both makes
the code easier to read and encourages following
RESTful service design.
Model binding and validation: Just as MVC simplifies
the process of mapping input values (form fields,
cookies, URL parameters, and so on) to model values,
Web API automatically maps HTTP request values to
models. The binding system is extensible and includes
the same attribute-based validation that you use in MVC
model binding.

Filters: MVC uses filters (discussed in Chapter 15) to
allow for adding behaviors to actions via attributes. For
instance, adding an [Authorize] attribute to an MVC
action will prohibit anonymous access, automatically
redirecting to the login page. Web API also supports
some of the standard MVC filters (like a service-
optimized [Authorize] attribute) and custom filters.
Scaffolding: You add new Web API controllers using the
same dialog used to add an MVC controller (as
described later this chapter). You have the option to use
the Add Controller dialog to quickly scaffold a Web API
controller based on an Entity Framework–based model
type.
Easy unit testability: Much like MVC, Web API is built
around the concepts of dependency injection and
avoiding the use of global state.

Web API also adds some new concepts and features specific
to HTTP service development:

HTTP programming model: The Web API development
experience is optimized for working with HTTP requests
and responses. There's a strongly typed HTTP object
model, HTTP status codes and headers are easily
accessible, and so on.
Action dispatching based on HTTP verbs: In MVC
the dispatching of action methods is based on their
names. In Web API, methods can be automatically
dispatched based on the HTTP verb. So, for example, a
GET request would be automatically dispatched to a
controller action named GetItem.
Content negotiation: HTTP has long supported a
system of content negotiation, in which browsers (and
other HTTP clients) indicate their response format

preferences, and the server responds with the highest
preferred format that it can support. This means that
your controller can supply XML, JSON, and other
formats (you can add your own), responding to
whichever the client most prefers. This allows you to
add support for new formats without having to change
any of your controller code.
Code-based configuration: Service configuration can
be complex. Unlike WCF's verbose and complex
configuration file approach, Web API is configured
entirely via code.

Although ASP.NET Web API is included with MVC, it can be
used separately. In fact, it has no dependencies on ASP.NET
at all, and can be self-hosted—that is, hosted outside of
ASP.NET and IIS. This means you can run Web API in any
.NET application, including a Windows Service or even a
simple console application. For a more detailed look at
ASP.NET Web API, see Chapter 11.

Note
As described previously, MVC and Web API have a lot in
common (model-controller patterns, routing, filters,
etc.). Architectural reasons dictated that they would be
separate frameworks which shared common models and
paradigms in MVC 4 and 5. For example, MVC has
maintained compatibility and a common codebase (e.g.
the System.Web's HttpContext) with ASP.NET, which didn't
fit the long term goals of Web API.
However, in May 2014 the ASP.NET team announced
their plans to merge MVC, Web API and Web Pages in
MVC 6. This next release is part of what is being called
ASP.NET vNext, which is planned to run on a “cloud
optimized” version of the .NET Framework. These
framework changes provide a good
opportunity to move MVC beyond System.Web, which
means it can more easily merge with Web API to form a
next generation web stack. The goal is to support MVC 5
with minimal breaking changes. The.NET Web
Development and Tools blog announcement post lists
some of these plans as follows:

MVC, Web API, and Web Pages will be merged into
one framework, called MVC 6. MVC 6 has no
dependency on System.Web.
ASP.NET vNext includes new cloud-optimized
versions of MVC 6, SignalR 3, and Entity Framework
7.
ASP.NET vNext will support true side-by-side
deployment for all dependencies, including .NET for
cloud. Nothing will be in the GAC.

