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PREFACE 

Optimization is central to any problem involving decision making, whether 
in engineering or in economics. The task of decision making entails choosing 
among various alternatives. This choice is governed by our desire to make the 
"best" decision. The measure of goodness of the alternatives is described by an 
objective function or performance index. Optimization theory and methods 
deal with selecting the best alternative in the sense of the given objective 
function. 

The area of optimization has received enormous attention in recent years, 
primarily because of the rapid progress in computer technology, including 
the development and availability of user-friendly software, high-speed and 
parallel processors, and artificial neural networks. A clear example of this 
phenomenon is the wide accessibility of optimization software tools such as the 
Optimization Toolbox of MATLAB1and the many other commercial software 
packages. 

There are currently several excellent graduate textbooks on optimization 
theory and methods (e.g., [3], [39], [43], [51], [87], [88], [104], [129]), as well 
as undergraduate textbooks on the subject with an emphasis on engineering 
design (e.g., [1] and [109]). However, there is a need for an introductory 

1MATLAB is a registered trademark of The MathWorks, Inc. 

xiii 



XIV PREFACE 

textbook on optimization theory and methods at a senior undergraduate or 
beginning graduate level. The present text was written with this goal in mind. 
The material is an outgrowth of our lecture notes for a one-semester course in 
optimization methods for seniors and beginning graduate students at Purdue 
University, West Lafayette, Indiana. In our presentation, we assume a working 
knowledge of basic linear algebra and multivariable calculus. For the reader's 
convenience, a part of this book (Part I) is devoted to a review of the required 
mathematical background material. Numerous figures throughout the text 
complement the written presentation of the material. We also include a variety 
of exercises at the end of each chapter. A solutions manual with complete 
solutions to the exercises is available from the publisher to instructors who 
adopt this text. Some of the exercises require using MATLAB. The student 
edition of MATLAB is sufficient for all of the MATLAB exercises included in 
the text. The MATLAB source listings for the MATLAB exercises are also 
included in the solutions manual. 

The purpose of the book is to give the reader a working knowledge of 
optimization theory and methods. To accomplish this goal, we include many 
examples that illustrate the theory and algorithms discussed in the text. How-
ever, it is not our intention to provide a cookbook of the most recent numerical 
techniques for optimization; rather, our goal is to equip the reader with suffi-
cient background for further study of advanced topics in optimization. 

The field of optimization is still a very active research area. In recent years, 
various new approaches to optimization have been proposed. In this text, we 
have tried to reflect at least some of the flavor of recent activity in the area. 
For example, we include a discussion of randomized search methods—these in-
clude particle swarm optimization and genetic algorithms, topics of increasing 
importance in the study of complex adaptive systems. There has also been 
a recent surge of applications of optimization methods to a variety of new 
problems. An example of this is the use of descent algorithms for the training 
of feedforward neural networks. An entire chapter in the book is devoted to 
this topic. The area of neural networks is an active area of ongoing research, 
and many books have been devoted to this subject. The topic of neural net-
work training fits perfectly into the framework of unconstrained optimization 
methods. Therefore, the chapter on feedforward neural networks not only pro-
vides an example of application of unconstrained optimization methods but 
also gives the reader an accessible introduction to what is currently a topic of 
wide interest. 

The material in this book is organized into four parts. Part I contains a 
review of some basic definitions, notations, and relations from linear algebra, 
geometry, and calculus that we use frequently throughout the book. In Part II 
we consider unconstrained optimization problems. We first discuss some theo-
retical foundations of set-constrained and unconstrained optimization, includ-
ing necessary and sufficient conditions for minimizers and maximizers. This is 
followed by a treatment of various iterative optimization algorithms, includ-
ing line search methods, together with their properties. A discussion of global 
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search algorithms is included in this part. We also analyze the least-squares 
optimization problem and the associated recursive least-squares algorithm. 
Parts III and IV are devoted to constrained optimization. Part III deals with 
linear programming problems, which form an important class of constrained 
optimization problems. We give examples and analyze properties of linear pro-
grams, and then discuss the simplex method for solving linear programs. We 
also provide a brief treatment of dual linear programming problems. We then 
describe some nonsimplex algorithms for solving linear programs: Khachiyan's 
method, the affine scaling method, and Karmarkar's method. We wrap up 
Part III by discussing integer linear programming problems. In Part IV we 
treat nonlinear constrained optimization. Here, as in Part II, we first present 
some theoretical foundations of nonlinear constrained optimization problems, 
including convex optimization problems. We then discuss different algorithms 
for solving constrained optimization problems. We also treat multiobjective 
optimization. 

Although we have made every effort to ensure an error-free text, we suspect 
that some errors remain undetected. For this purpose, we provide online 
updated errata that can be found at the Web site for the book, accessible via 

http://www.wiley.com/mathematics 

We are grateful to several people for their help during the course of writing 
this book. In particular, we thank Dennis Goodman of Lawrence Livermore 
Laboratories for his comments on early versions of Part II and for making 
available to us his lecture notes on nonlinear optimization. We thank Moshe 
Kam of Drexel University for pointing out some useful references on nonsim-
plex methods. We are grateful to Ed Silverman and Russell Quong for their 
valuable remarks on Part I of the first edition. We also thank the students 
of ECE 580 at Purdue University and ECE 520 and MATH 520 at Colorado 
State University for their many helpful comments and suggestions. In par-
ticular, we are grateful to Christopher Taylor for his diligent proofreading of 
early manuscripts of this book. This fourth edition incorporates many valu-
able suggestions of users of the first, second, and third editions, to whom we 
are grateful. 

E. K. P. CHONG AND S. H. ZAK 
Fort Collins, Colorado, and West Lafayette, Indiana 

http://www.wiley.com/mathematics




PART I 

MATHEMATICAL REVIEW 





CHAPTER 1 

METHODS OF PROOF AND SOME 
NOTATION 

1.1 Methods of Proof 

Consider two statements, "A" and "B," which could be either true or false. 
For example, let "A" be the statement "John is an engineering student," and 
let "B" be the statement "John is taking a course on optimization." We can 
combine these statements to form other statements, such as "A and B" or "A 
or B." In our example, "A and B" means "John is an engineering student, and 
he is taking a course on optimization." We can also form statements such as 
"not A," "not B," "not (A and B)," and so on. For example, "not A" means 
"John is not an engineering student." The truth or falsity of the combined 
statements depend on the truth or falsity of the original statements, "A" and 
"B." This relationship is expressed by means of truth tables; see Tables 1.1 
and 1.2. 

From the tables, it is easy to see that the statement "not (A and B)" is 
equivalent to "(not A) or (not B)" (see Exercise 1.3). This is called DeMor-
gan's law. 

In proving statements, it is convenient to express a combined statement by a 
conditional, such as "A implies B," which we denote "A=>B." The conditional 

An Introduction to Optimization, Fourth Edition. 3 
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4 METHODS OF PROOF AND SOME NOTATION 

Table 1.1 Truth Table for "A and B" and "A or B" 

A B A and B A or B 
F F F F 
F T F T 
T F F T 
T T T T 

Table 1.2 Truth Table for "not A" 

A not A 
F Y~ 
T F 

Table 1.3 Truth Table for Conditionals and Biconditionals 

A 

F 
F 
T 
T 

B 

F 
T 
F 
T 

A ^ B 

T 
T 
F 
T 

A <=B 

T 
F 
T 
T 

A < ^ B 

T 
F 
F 
T 

"A=>B" is simply the combined statement "(not A) or B" and is often also 
read "A only if B," or "if A then B," or "A is sufficient for B," or "B is 
necessary for A." 

We can combine two conditional statements to form a biconditional state-
ment of the form "A<i=>B," which simply means "(A=*-B) and (B=>A)." The 
statement "ΑΦ^Β" reads "A if and only if B," or "A is equivalent to B," or 
"A is necessary and sufficient for B." Truth tables for conditional and bicon-
ditional statements are given in Table 1.3. 

It is easy to verify, using the truth table, that the statement "A=>B" is 
equivalent to the statement "(not B)=>(not A)." The latter is called the con-
trapositive of the former. If we take the contrapositive to DeMorgan's law, we 
obtain the assertion that "not (A or B)" is equivalent to "(not A) and (not 
B)." 

Most statements we deal with have the form "A=>B." To prove such a 
statement, we may use one of the following three different techniques: 

1. The direct method 
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2. Proof by contraposition 

3. Proof by contradiction or reductio ad absurdum 

In the case of the direct method, we start with "A," then deduce a chain of 
various consequences to end with "B." 

A useful method for proving statements is proof by contraposition, based 
on the equivalence of the statements "A=>B" and "(not B)=>(not A)." We 
start with "not B," then deduce various consequences to end with "not A" as 
a conclusion. 

Another method of proof that we use is proof by contradiction, based on 
the equivalence of the statements "A=>B" and "not (A and (not B))." Here 
we begin with "A and (not B)" and derive a contradiction. 

Occasionally, we use the principle of induction to prove statements. This 
principle may be stated as follows. Assume that a given property of positive 
integers satisfies the following conditions: 

■ The number 1 possesses this property. 

■ If the number n possesses this property, then the number n + 1 possesses 
it too. 

The principle of induction states that under these assumptions any positive 
integer possesses the property. 

The principle of induction is easily understood using the following intuitive 
argument. If the number 1 possesses the given property, then the second 
condition implies that the number 2 possesses the property. But, then again, 
the second condition implies that the number 3 possesses this property, and so 
on. The principle of induction is a formal statement of this intuitive reasoning. 

For a detailed treatment of different methods of proof, see [130]. 

1.2 Notation 

Throughout, we use the following notation. If X is a set, then we write x € X 
to mean that x is an element of X. When an object x is not an element 
of a set X, we write x $. X. We also use the "curly bracket notation" for 
sets, writing down the first few elements of a set followed by three dots. For 
example, {xi,X2,^3,. · ·} is the set containing the elements χ\,Χ2,χζ, and so 
on. Alternatively, we can explicitly display the law of formation. For example, 
{x : x £ R, x > 5} reads "the set of all x such that x is real and x is greater 
than 5." The colon following x reads "such that." An alternative, notation 
for the same set is {x £ M : x > 5}. 

If X and Y are sets, then we write X C Y to mean that every element 
of X is also an element of Y. In this case, we say that X is a subset of Y. 
If X and Y are sets, then we denote by X \ Y ("X minus Y") the set of 
all points in X that are not in Y. Note that X \ Y is a subset of X. The 
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notation / : X —■> Y means " / is a function from the set X into the set V." 
The symbol := denotes arithmetic assignment. Thus, a statement of the form 
x := y means "x becomes y." The symbol = means "equals by definition." 

Throughout the text, we mark the end of theorems, lemmas, propositions, 
and corollaries using the symbol □. We mark the end of proofs, definitions, 
and examples by | . 

We use the IEEE style when citing reference items. For example, [77] 
represents reference number 77 in the list of references at the end of the book. 

EXERCISES 

1.1 Construct the truth table for the statement "(not B)=>(not A)," and use 
it to show that this statement is equivalent to the statement "A=^B." 

1.2 Construct the truth table for the statement "not (A and (not B))," and 
use it to show that this statement is equivalent to the statement "A=>B." 

1.3 Prove DeMorgan's law by constructing the appropriate truth tables. 

1.4 Prove that for any statements A and B, we have "A <^ (A and B) or 
(A and (not B))." This is useful because it allows us to prove a statement A 
by proving the two separate cases "(A and B)" and "(A and (not B))." For 
example, to prove that \x\ > x for any x G M, we separately prove the cases 
"|x| > x and x > 0" and "|x| > x and x < 0." Proving the two cases turns 
out to be easier than proving the statement \x\ > x directly (see Section 2.4 
and Exercise 2.7). 

1.5 (This exercise is adopted from [22, pp. 80-81]) Suppose that you are 
shown four cards, laid out in a row. Each card has a letter on one side and a 
number on the other. On the visible side of the cards are printed the symbols 

S 8 3 A 

Determine which cards you should turn over to decide if the following rule 
is true or false: "If there is a vowel on one side of the card, then there is an 
even number on the other side." 



CHAPTER 2 

VECTOR SPACES AND MATRICES 

2.1 Vector and Matrix 

We define a column n-vector to be an array of n numbers, denoted 

ai 

. a<2 

a — 

The number α̂  is called the zth component of the vector a. Denote by R 
the set of real numbers and by Rn the set of column n-vectors with real 
components. We call Rn an n-dimensional real vector space. We commonly 
denote elements of Rn by lowercase bold letters (e.g., x). The components of 
x £ Rn are denoted # i , . . . , xn. 

We define a row n-vector as 

[αι,α2 , . . ·,αη]· 

An Introduction to Optimization, Fourth Edition. 
By E. K. P. Chong and S. H. Zak. Copyright © 2013 John Wiley & Sons, Inc. 



8 VECTOR SPACES AND MATRICES 

The transpose of a given column vector a is a row vector with corresponding 
elements, denoted aT. For example, if 

a 
02 

ii - · · i ^n\ 

then 
aT = [αι,α2, 

Equivalently, we may write a = [αχ, α2 , . . . , α η ] τ . Throughout the text we 
adopt the convention that the term vector (without the qualifier row or col-
umn) refers to a column vector. 

Two vectors a = [ai, a 2 , . . . , an]
T and b = [b\, 62, · · · ? M T a r e eQual if 

ai — bi, i = 1,2,... ,n. 
The sum of the vectors a and 6, denoted a + 6, is the vector 

a + b= [ai H-6i,a2 + 6 2 , . . . , a n + 6n]T . 

The operation of addition of vectors has the following properties: 

1. The operation is commutative: 

a + b = b + a. 

2. The operation is associative: 

(a + b)-\-c = a + (b + c). 

3. There is a zero vector 

such that 

The vector 

0 = [0 ,0 , . . . ,0 ] T 

a + Q = 0-\-a = a. 

[Oi - & ι , α 2 - &2 ? · . · , Α η - &n] 

is called the difference between a and b and is denoted a — b. 
The vector 0 - b is denoted —6. Note that 

b + (a — b) — a, 

— (a — b) = b — a. 
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The vector b — a is the unique solution of the vector equation 

a + x = b. 

Indeed, suppose that x = [xi, x2,..., xn]
T is a solution to a + x = b. Then, 

a\+x\ =h, 

a2 + X2 = fo, 

an -\- xn — on, 

and thus 
x = b — a. 

We define an operation of multiplication of a vector a G Mn by a real scalar 
a G R a s 

αα = [ααι, αα2,. · ·, α;αη] . 

This operation has the following properties: 

1. The operation is distributive: for any real scalars a and /?, 

a(a + 6) = aa + α&, 
(a + β)α — aa + /3a. 

2. The operation is associative: 

α(βα) = (α/3)α. 

3. The scalar 1 satisfies 

4. Any scalar a satisfies 

5. The scalar 0 satisfies 

6. The scalar —1 satisfies 

l a = a. 

a0 = 0. 

0a = 0. 

(—l)a = —a. 

Note that aa = 0 if and only if a = 0 or a = 0. To see this, observe that 
aa = 0 is equivalent to ααι = aa2 = · · · = ααη = 0. If a = 0 or a = 0, 
then aa = 0. If a ^ 0, then at least one of its components α^ φ 0. For this 
component, αα^ = 0, and hence we must have a = 0. Similar arguments can 
be applied to the case when a / 0 . 
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A set of vectors {αχ, . . . ,ak} is said to be linearly independent if the equal-
ity 

a\a\ + a2a2 + l· akak = 0 
implies that all coefficients a*, i = 1 , . . . , fc, are equal to zero. A set of the 
vectors {αχ, . . . , ak} is linearly dependent if it is not linearly independent. 

Note that the set composed of the single vector 0 is linearly dependent, for 
if a φ 0, then aO — 0. In fact, any set of vectors containing the vector 0 is 
linearly dependent. 

A set composed of a single nonzero vector a φ 0 is linearly independent 
since aa = 0 implies that a = 0. 

A vector a is said to be a linear combination of vectors αχ, a 2 , . . . , ak if 
there are scalars αχ , . . . , α^ such that 

a = OL\a\ + α 2 α 2 Η + QfcOfc. 

Proposition 2.1 A set of vectors { α ι , α 2 , . . . ,ak} is linearly dependent if 
and only if one of the vectors from the set is a linear combination of the 
remaining vectors. □ 

Proof. =>: If {αι, a 2 , . . . , a^} is linearly dependent, then 

OLICLI + a2a2 H l· α^α^ = 0, 

where at least one of the scalars α; Φ 0, whence 
OL\ OL2 OLk 

di = αι a2 — · · · α^. 

<=: Suppose that 

αχ = α2α2 + α3α3 Η h α^α^, 

then 
( - l ) a i + a2a2 H l· akak = 0. 

Because the first scalar is nonzero, the set of vectors { α ι , α 2 , . . . ,α/c} is lin-
early dependent. The same argument holds if α ,̂ i = 2, . . . , /c, is a linear 
combination of the remaining vectors. I 

A subset V of Rn is called a subspace of Rn if V is closed under the op-
erations of vector addition and scalar multiplication. That is, if a and b are 
vectors in V, then the vectors a + b and aa are also in V for every scalar a. 

Every subspace contains the zero vector 0, for if a is an element of the 
subspace, so is (—I)a = — a. Hence, a — a — 0 also belongs to the subspace. 

Let α ι , α 2 , . . . ,α^ be arbitrary vectors in W1. The set of all their linear 
combinations is called the span of αχ, α 2 , . . . , ak and is denoted 

span[ai ,a2 , . . . ,a /e] = < ^ α ^ : a x , . . . ,ak £ R > . 
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Given a vector a, the subspace span [a] is composed of the vectors ao , where 
a is an arbitrary real number (a G R). Also observe that if a is a linear 
combination of αι, α 2 , . . . , α/~, then 

span[a i , a 2 , . . . , α^,α] — span[a i , a 2 , . . . , α&]. 

The span of any set of vectors is a subspace. 
Given a subspace V, any set of linearly independent vectors 

{oi, C&2,. · ·, a>k} C V such that V = span[ai, a 2 , . . . , a/-] is referred to as a 
basis of the subspace V. All bases of a subspace V contain the same number 
of vectors. This number is called the dimension of V, denoted dim V. 

Proposition 2.2 If {ai, a 2 , . . . , a / J zs a fraszs 0/ V, t/ien an?/ vector aofV 
can be represented uniquely as 

a = OL\CL\ + a 2 a 2 H h α^α^, 

where a^ G R, z = 1, 2 , . . . , k. □ 

Proof To prove the uniqueness of the representation of a in terms of the basis 
vectors, assume that 

a = OL\a\ + α2α2 + · · · + ο^α/c 

and 
α = βια,ι + ß 2a 2 H h Αα^ . 

We now show that ai — βι, i = 1 , . . . , k. We have 

α ια ι + a 2 a 2 H h α^α^ = /^«l H- β2α2 Η h /3fcafc 

or 
(ai - )3i)ai + (a2 - Α )α 2 + · · · + (afc ~ ßk)ak = 0. 

Because the set {a* : z = 1,2,.. . , A:} is linearly independent, OL\ — β\ = 
a2 — /?2 = · · · = a/e — ßk — 0, which implies that a* = /?*, 2 = 1 , . . . , fc. I 

Suppose that we are given a basis {αχ, α 2 , . . . , α^} of V and a vector a G V 
such that 

α = αχθι + a 2 a 2 H h α^α^. 
The coefficients a*, i = 1 , . . . , /c, are called the coordinates of a with respect 
to the basis {ai, a 2 , . . . , α^}. 

The natural basis for Rn is the set of vectors 

"1" 
0 
0 

0 
_0. 

, e2 = 

Ό" 
1 
0 

0 
.0. 



1 2 VECTOR SPACES AND MATRICES 

The reason for calling these vectors the natural basis is that 

x 

Xl 

X2 
X\e\ + £2^2 + · · · + Xn^n 

We can similarly define complex vector spaces. For this, let C denote the 
set of complex numbers and C n the set of column n-vectors with complex 
components. As the reader can easily verify, the set C n has properties similar 
to those of Rn, where scalars can take complex values. 

A matrix is a rectangular array of numbers, commonly denoted by upper-
case bold letters (e.g., A). A matrix with m rows and n columns is called an 
m x n matrix, and we write 

a n 
Ö21 

«12 

Ö22 

a\n 

d2n 

G m l Om2 

The real number α^ located in the ith row and jth column is called the (i, j ) th 
entry. We can think of A in terms of its n columns, each of which is a column 
vector in Rm . Alternatively, we can think of A in terms of its m rows, each 
of which is a row n-vector. 

Consider the ra x n matrix A above. The transpose of matrix A, denoted 
A , is the n x m matrix 

A 1 = 

a n a2i 

Ö12 «22 

G i n 0,2η 

0>ml 

«7712 

that is, the columns of A are the rows of A , and vice versa. 
Let the symbol Mm X n denote the set oimxn matrices whose entries are real 

numbers. We treat column vectors in IRn as elements of R n x l . Similarly, we 
treat row n-vectors as elements of R l x n . Accordingly, vector transposition is 
simply a special case of matrix transposition, and we will no longer distinguish 
between the two. Note that there is a slight inconsistency in the notation of 
row vectors when identified as 1 x n matrices: We separate the components of 
the row vector with commas, whereas in matrix notation we do not generally 
use commas. However, the use of commas in separating elements in a row 
helps to clarify their separation. We use use such commas even in separating 
matrices arranged in a horizontal row. 


