NANO-BIOSENSOR TECHNOLOGIES FOR DIAGNOSIS OF INFECTIOUS DISEASES

Suvardhan Kanchi Ayyappa Bathinapatla Anitha Varghese Phumlane Selby Mdluli

VILEY

Nano-Biosensor Technologies for Diagnosis of Infectious Diseases

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Nano-Biosensor Technologies for Diagnosis of Infectious Diseases

Edited by

Suvardhan Kanchi

Dept. of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India

Ayyappa Bathinapatla

Dept. of Chemistry, CMRIT, Bangalore, India

Anitha Varghese

Dept. of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India

and

Phumlane Selby Mdluli

Dept. of Chemistry, Durban University of Technology, Durban, South Africa

This edition first published 2025 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2025 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-28766-6

Front cover art courtesy of Adobe Firefly and Wikimedia Commons Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pı	eface		XV		
Biosensor Technology: Basic Principles, Fundamentals, and History Mariyam Thomas, Mathew George, Derry Holaday M. G. and P. J. Jandas					
	1.1		2		
		References	20		
2		gn and Synthesis of Novel Nanomaterials Emphasizing ctious Diseases	23		
	Pras	ann Kumar and Joginder Singh			
	2.1	Introduction	24		
	2.2	Antifungal Therapy	26		
	2.3	Cutting-Edge Advances in Tailoring the Size, Shape,			
		and Functionality of Nanoparticles and Nanostructures	28		
	2.4	Gold Silver Nanoparticle to Combat Multi-Drug Resistant			
		Pathogen	30		
	2.5	Mechanism of Gold Silver Nanoparticle to Combat			
		Multi-Drug Resistant Pathogen	31		
	2.6	MXenes and Borophene Nanomaterials: Highly Efficient			
		Sensor Activity and Energy Storage Properties	34		
	2.7	Immunomodulatory Nanosystems	39		
	2.8	Lateral Flow Assays (LFAs)	40		
	2.9	Metal-Organic Framework (MOF)	43		
	2.10	Microfluidic Devices: For Detecting Disease-Specific Proteins	45		
	2.11	Comprehensive Overview of Nanomaterials in the Context			
		of Cutaneous Leishmaniasis	47		
	2.12	Graphene Oxide (GO): A Two-Dimensional (2D)			
		Nanomaterial	55		

vi Contents

			lusion	65
			e Prospect	66
			owledgement	67
			ors' Contributions	68
		Refere	ences	68
3			nomaterials in the Development of Nanobiosensors	
			ous Diseases	75
			athinapatla, Ravikumar Mulpuri, Aseena Azeez	
			dhan Kanchi	
	3.1		duction	76
		3.1.1	Classifying SARS-CoV-2	77
		3.1.2	Morphology and Genome Structure of SARS-CoV-2	78
		3.1.3	Characteristics of Nanomaterials in the Development	
			of Nanobiosensors	80
		3.1.4	Current Conventional Methods Used in SARS-CoV-2	
			Diagnostics	82
	3.2		ning Biosensor for SARS-CoV-2	83
			Electrochemical Biosensors	85
			POC Devices	106
	3.3		lusions and Future Perspectives	112
		Refer	ences	113
4	Nar	obiose	ensors: Versatile Tool for Diagnosis of Infectious	
	Dis	eases		121
	Pra	sann K	umar and Joginder Singh	
	4.1	Intro	duction	122
	4.2	Nano	biosensors as Promising Devices for the Diagnosis	
		of Co	ronavirus Family Members	123
	4.3	Nano	biosensors for Plant Analysis	129
	4.4	Three	-Way Junctions Skeleton of Biosensor	135
	4.5		pACE-CCM: Biosensor for Detection of SARS-CoV-2	
			-ACE2 Interaction	142
	4.6	Weara	able Biosensor Nano and Microsystems Have Emerged	
		as Inn	novative Solutions for Medical Diagnostics	146
	4.7	Biose	nsors are Analytical Devices	153
	4.8		lusion	159
		Ackno	owledgement	160
		Autho	ors' Contributions	160
		Refere	ences	160

5	Trends in the Development of Immunosensors for the Diagnosis of Infectious Diseases									
			athinaraj Benjamin, Eli José Miranda Ribeiro Júnior,							
	Sam Phinehas Gnana Sekar, Rosa Fireman Dutra and Geanne Matos de Andrade									
			duction	174						
	3.1		Biosensors	174						
			Immunosensing Components or Bioreceptors	175 176						
			Strategies Towards Immobilization of Antibodies	176						
	5.2		Biotransducer Component							
	5.2	5.2.1	inosensors	178						
		5.2.1	Recent Advances in Immunosensor-Based Virus Detection	170						
		F 2 2	Electrochemical Immunosensor	178						
	5.3			179						
	5.3		ral Immunosensor	180						
		5.3.2	Surface Places Passenger (SPR)	181						
	5.4		Surface Plasma Resonance Sensor (SPR) materials Immunosensor	182						
	5.4			183						
		1	-Based Immunosensors Infectious Diseases	185						
	5.6		COVID-19	185						
				186						
			Dengue	187						
			Human Immunodeficiency Virus (HIV)	187						
			Hepatitis Zika	188						
				188						
			Alphavirus-Chikungunya	190						
			Influenza	190						
	5.7		e Perspectives and Conclusion	190						
			owledgements	191						
		Refer	ences	191						
6	Elec	ctroche	emical Nanobiosensors Approaches for Rapid							
	Diagnosis of Infectious Diseases									
		_	Foyez and Abu Bin Imran							
			duction	198						
	6.2 Conventional Methods for the Determination of Infectiou									
		Patho		199						
	6.3		ing Blocks of Biosensor	202						
		6.3.1	e	203						
		6.3.2	Biorecognition Elements	205						

viii Contents

		6.3.3	Biosensing and Surface Immobility	205
	6.4	Electr	ochemical-Based Biosensors	206
		6.4.1	Potentiometric Biosensors	206
		6.4.2	Amperometric Biosensors	207
		6.4.3	Conductometric Biosensors	207
		6.4.4	Impedimetric Biosensors	207
		6.4.5	Voltammetric Biosensors	209
	6.5	Impa	ct of Nanomaterials on Biosensor Performance	209
	6.6	Noble	e Metal Nanomaterials	210
		6.6.1	Gold Nanoparticles (AuNPs)	210
		6.6.2	Silver Nanoparticles (AgNPS)	212
		6.6.3	Palladium Nanoparticles (PdNPs)	212
		6.6.4	Platinum Nanoparticles (PtNPs)	213
	6.7	Metal	Oxide Nanomaterials	214
		6.7.1	Cerium Oxide Nanomaterials	214
		6.7.2	Copper Oxide Nanomaterials	215
		6.7.3	Magnetic Nanomaterials	215
	6.8	Carbo	on Nanomaterials	216
		6.8.1	CNTs	216
		6.8.2	Graphene	217
	6.9	Polyn	ner Nanomaterials	218
		6.9.1	Dendrimers	218
		6.9.2	CPs	219
		6.9.3	MIPs	219
	6.10	Biona	nomaterials	220
		6.10.1	Aptamers	220
		6.10.2	DNA Nanostructures	221
	6.11	Conc	lusions and Future Perspectives	222
		Ackno	owledgement	223
		Refer	ences	223
7	Fnzy	vmatic	Nanobiosensor Strategies to Contain the Spread	
•			us Diseases	231
			Patra, Harshita Shand, Swarnab Dutta,	201
			ndal and Suvankar Ghorai	
	7.1		duction	232
	7.1		ponents of Enzymatic Biosensor	233
	7.3	-	natic Nanobiosensors for Pathogen Detection	234
	7.3	•	zymes	235
	7.5		e Aspects	237
	1.5	Refere	*	238
		ICICIO	CIICCO	230

8	Development of Optical Nanosensors for the Detection				
	of I	nfectio	us Diseas	ses	241
	Ndi	vhuwo	Shumbul	a, Nosipho Moloto, Phumlane Mdluli	
	and	Mbuse	o Mlambo	,	
	8.1	Intro	duction		242
	8.2	Over	view of Bi	osensor	243
	8.3	Intro	duction to	Optical Nanosensors	246
		8.3.1	Types of	Optical Nanosensors—Towards Detection	
			of Infect	ious Diseases	248
			8.3.1.1	SERS-Based Nanosensors	248
			8.3.1.2	SPR and LSPR-Based Nanosensors	251
			8.3.1.3	Colorimetric Nanosensors	257
			8.3.1.4	Fluorescence Nanosensors	259
	8.4	Rema	ırks		262
		8.4.1	Advanta	ges of Nanosensors for Infectious Disease	
			Detection		263
		8.4.2	Drawba	cks of Nanosensors for Infectious Disease	
			Detection	on	263
		8.4.3	Recent I	Breakthroughs in Nanosensor-Based Disease	
			Detection	on	264
		8.4.4	-	Nanosensor-Based Disease Detection	264
		Refer	ences		265
9	Apt	asenso	rs: Selecti	ive and Powerful Tools for Infectious	
			Diagnosis		279
			•	Walt, H., Sibuyi, N.R.S.	
			rumule, M	,	
			duction		280
	9.2			lective and Powerful Tools for Diagnostics	281
		9.2.1		cture of RNA and DNA Aptamer Molecules	283
		9.2.2		e Conformational Change	284
		9.2.3		of the Electrode Surface on Aptamer	
			Conforn	*	286
		9.2.4	Impact of	of Nucleotide Sequence, Ionic Strength,	
			-	ature, and pH on Functionality of Aptasensors	287
	9.3	Synth	esis of Ap	_ · · · -	288
		9.3.1	-	SELEX Methodologies	289
			9.3.1.1	Isolation-Based Techniques	289
			9.3.1.2	PCR Modification-Based Techniques	290
			9.3.1.3	SELEX Process Modification Techniques	290
			9.3.1.4	Aptamer Modifications-Based Techniques	292

x Contents

9.4	Applica	tion of Aptasensors in PoC Diagnostics	293
	9.4.1	Colorimetric Aptasensors	295
9.5	Aptaser	sors Impact on Infectious Disease Diagnosis	296
	9.5.1 A	Aptasensors for PoC (Vs. Other Clinical Methods	
	C	of Diagnosis)	297
	9.5.2 A	Aptasensors Versus Immunosensors	298
	9.5.3 A	Aptasensors Used in Infectious Disease Diagnosis:	
	J	The Research Versus Commercial Picture	299
	9.5.4 A	Aptasensors in the Commercialization Pipeline	300
	9.5.5 I	Potential Impact	300
9.6	Drawba	cks and Potential Future Work	302
9.7	Conclus	sions	303
	Referen	ces	303
Nan	obiosens	sors: A Platform for the Diagnosis of Microbial	
		10101 11 1 Interest in Diagnosis of Microbia	315
	_	a and Naomi Saniana Sharath	0.20
•		•	316
			317
10.2		· ·	317
			318
			318
10.3			319
	10.3.1	Viruses	319
	10.3.2	Bacteria	320
	10.3.3	Fungi	320
	10.3.4	Parasites	320
10.4	Impor	tance of Pathogen Detection or Disease Diagnosis	320
10.5	Biosen	isors	322
	10.5.1	Optical-Based Biosensors	322
	10.5.2	Electrochemical-Based Biosensors	322
	10.5.3	Thermal Biosensors	323
	10.5.4	Mass-Based Biosensors	323
10.6	Nanob	iosensors as Diagnostic Platform	323
10.7	Stabili	zation of Biomolecules with Nanoparticles	325
	10.7.1	Catalysis of Reactions with Nanoparticles	326
	10.7.2	Improving Electron Transfer with Nanoparticles	326
	10.7.3	Nanoparticles Used in Labelling of Biomolecules	326
		1	327
	10.7.5	Nanomaterials for the Development of Biosensors	327
	9.5 9.6 9.7 Nan Path Ran 10.1 10.2 10.3	9.4.1 C 9.5 Aptasen 9.5.1 A 9.5.2 A 9.5.3 A 9.5.5 F 9.6 Drawba 9.7 Conclus Referen Nanobiosens Pathogens Ranjita Misr 10.1 Introd 10.2 Microl 10.2.1 10.2.2 10.2.3 10.3 Diseas 10.3.1 10.3.2 10.3.3 10.3.4 10.4 Impor 10.5 Biosen 10.5.1 10.5.2 10.5.3 10.5.4 10.6 Nanob 10.7 Stabilis 10.7.1 10.7.2 10.7.3 10.7.4	9.4.1 Colorimetric Aptasensors 9.5 Aptasensors Impact on Infectious Disease Diagnosis 9.5.1 Aptasensors for PoC (Vs. Other Clinical Methods of Diagnosis) 9.5.2 Aptasensors Versus Immunosensors 9.5.3 Aptasensors Used in Infectious Disease Diagnosis: The Research Versus Commercial Picture 9.5.4 Aptasensors in the Commercialization Pipeline 9.5.5 Potential Impact 9.6 Drawbacks and Potential Future Work 9.7 Conclusions References Nanobiosensors: A Platform for the Diagnosis of Microbial Pathogens Ranjita Misra and Naomi Sanjana Sharath 10.1 Introduction 10.2 Microbial Pathogens 10.2.1 Bacteria 10.2.2 Fungi 10.2.3 Parasites 10.3 Diseases Caused by Pathogens 10.3.1 Viruses 10.3.2 Bacteria 10.3.3 Fungi 10.3.4 Parasites 10.4 Importance of Pathogen Detection or Disease Diagnosis 10.5 Biosensors 10.5.1 Optical-Based Biosensors 10.5.2 Electrochemical-Based Biosensors 10.5.3 Thermal Biosensors 10.5.4 Mass-Based Biosensors 10.5.5 Manobiosensors as Diagnostic Platform 10.7 Stabilization of Biomolecules with Nanoparticles 10.7.1 Catalysis of Reactions with Nanoparticles 10.7.2 Improving Electron Transfer with Nanoparticles 10.7.3 Nanoparticles Used in Labelling of Biomolecules

		10.7.5.1 Quantum Dots	328
		10.7.5.2 Carbon Nanotubes	328
		10.7.5.3 Graphene	328
		10.7.5.4 Silicon-Based Nanomaterials	328
	10.8	Types of Nanoparticles Used in Biosensor Development	328
		10.8.1 Metal Nanoparticles	328
		10.8.2 Gold Nanoparticles	329
		10.8.3 Silver Nanoparticles	330
		10.8.4 Other Metal Nanoparticles	330
	10.9	<u>-</u>	332
		Conclusion	333
		References	334
11	Micro	o/Nanofluidics-Integrated Biosensors for Respiratory	
	Viral	l Diseases Diagnosis	341
	Aisw	arya Chandrasekaran and G.H.R. Eranga Karunaratne	
	11.1	Introduction	342
	11.2	Common Respiratory Viruses and Their Detection	
		Components	343
	11.3	Biosensors	345
	11.4	Fluidic Technology	347
		11.4.1 Microfluidics	348
		11.4.1.1 Types of Microfluidic Devices	349
		11.4.2 Nanofluidics	350
	11.5	Applications of Micro/Nanofluidic-Based Biosensors	
		in Respiratory Virus Detection	352
	11.6	Advantages of Micro/Nanofluidic Diagnosis Tools Over	
		the Other Diagnostic Methods	356
	11.7	Conclusion and Future Perspectives	356
		References	357
12	Nano	obiosensor System: A Robust Analytical Tool	
	for P	Pandemics	365
	Moh	ammad Harun-Ur-Rashid, Israt Jahan and Abu Bin Imra	n
		Introduction	366
	12.2	Nanobiosensors for Global Pandemics	369
		12.2.1 Rapid Pathogen Detection and Identification	370
		12.2.2 POC Diagnostics	371
		12.2.3 Multiplexed Detection	372
		12.2.4 Real-Time Monitoring	372
		12.2.5 Integration With Digital Technologies	373
		12.2.6 Environmental Monitoring	373

xii Contents

		12.2.7 Vaccine and Treatment Development	374
		12.2.8 Surveillance and Outbreak Prediction	374
	12.3	Nanobiosensors for COVID-19	375
	12.4	Nanobiosensors for Influenza	378
	12.5	Nanobiosensors for MERS	381
	12.6	Nanobiosensors for HIV/AIDS	383
	12.7	Nanobiosensors for Other Human Viruses	385
	12.8	Selection and Optimization of Nanomaterials	
		for Nanobiosensors	387
	12.9	C I	391
	12.10	Conclusion	392
		References	393
13	Biose	ensing Technologies to Improve Neurological Di	isease
		agement	401
	Poojii	ith Nuthalapati, Arjun Singh, Brinda Niravkuma	r Desai,
		ti Reddy Yendapalli, Reethika Gongireddy, Karan	ı Singh,
	Bhası	wanth Bollu and Dheeraj K. Pinninty	
		Introduction	402
		Trends, Challenges, and the Disease Burden	404
		CNS Diseases	404
		Utility of Neurobiosensors	405
	13.5	07	
		13.5.1 Electrochemical Biosensors	406
		13.5.2 Optical Biosensors	408
		13.5.3 Cyclic Voltammetry (CV)	409
		13.5.4 Biosensors Based on Fluorescence	412
	12.6	13.5.5 Microelectrode Arrays	412
		Clinical Applications Conclusion	413
	13.7	References	415 416
		References	410
14		otechnology-Based Strategies for Improvement of	of Disease
		nostic Systems for Future Outbreaks	423
		swa Dyan, Tintswalo N. Mgwenya,	
		ogelo S. Setlolamathe, Phumlane S. Mdluli	
		Nicole R.S. Sibuyi	
		Introduction	424
	14.2		424
		14.2.1 Significant Epidemics and Pandemics A	
		the Globe	427

	14.3	Pandemic-Potential Priority Diseases for Future Outbreaks 4				
	14.4	•				
			Clinical Methods for Diagnosis of Infectious Diseases	434 s 434		
			LFAs for PoC Diagnostics (PoCD)	436		
	14.5		chnology in Diagnostics	438		
		14.5.1	Rapid AuNPs-Based Diagnostics	438		
			14.5.1.1 AuNPs-Based LFAs	438		
			14.5.1.2 AuNPs-Based In-Solution Assays	439		
	14.6	Conclu	•	440		
		Referer	nces	441		
15	Bioco	mpatib	ility and Toxicity of Nanomaterials			
			ing of Tools for the Diagnosis of			
		tious Di		449		
	Manj	u Manu	el			
	-	Introdu		450		
	15.2	An Ove	erview of Nanomaterials in Infectious Disease			
		Diagno		451		
		15.2.1	Bacteria-Targeting Nanomaterials	451		
		15.2.2	Nanotechnology in Clinical Infectious Diseases	452		
		15.2.3	Nanomaterial Vaccines	452		
	15.3	Biocom	npatibility Assessment	453		
	15.4		nism of Nanoparticles in the Infectious Disease			
		Diagno	osis	455		
		15.4.1	Reactive Oxygen Species (ROS) Formation	455		
			Interaction With Surface-Exposed Groups	455		
			Penetration Into the Cell	457		
	15.5		and <i>In Vivo</i> Evaluation Methods			
			ompatibility Analysis	458		
	15.6		y of Nanomaterials	458		
			Particle Size and Surface Area	460		
			Chemical Composition	460		
			Shape and Crystallinity	460		
		15.6.4		460		
			Exposure Routes	461		
	15.7		vironmental and Health Hazards Caused by	461		
		Nanopa		461		
	15.8		ols Developed for the Diagnosis of Infectious	4.00		
		Disease		462		
		15.8.1	Nanosensors	462		
		15.8.2	Drug Delivery System	462		

xiv Contents

		15.8.3	Biosensors	463
		15.8.4	Biomedical Imaging Tools	463
		15.8.5	In Vitro Diagnostic Platform	463
	15.9	Conclu	sion	464
		Referer	nces	464
16	Stren	gthenin	g the Health System of the Communities	
	in the	Battle	Against Infectious Diseases	469
	Dino	y Mathe	w, Anu P. Mathew, Bobby Simon and Ancy Joseph	
	16.1	Introdu	action	470
	16.2	Primar	y Healthcare	471
		16.2.1	Health Information System	472
		16.2.2	Education and Awareness	473
		16.2.3	Vaccination	474
		16.2.4	Preventive Mechanism	474
		16.2.5	Surveillance	475
		16.2.6	Networking and Collaboration	476
	16.3	Impact	of COVID-19 on Infectious Diseases and Health	
		System	S	476
	16.4	Conclu	sion	480
		Referer	nces	480
In	dex			485

Welcome to *Nano-Biosensor Technologies for Diagnosis of Infectious Diseases*. This comprehensive volume explores the cutting edge of scientific innovation, presenting a curated collection of 16 meticulously crafted chapters that highlight the latest advancements in nano-biosensor technologies—a revolutionary approach to the diagnosis and management of infectious diseases.

Infectious diseases continue to pose significant global health challenges, underlining the critical need for rapid, accurate, and sensitive diagnostic tools. Situated at the intersection of nanotechnology and biomedicine, nano-biosensors offer unparalleled opportunities to meet these challenges by delivering highly sensitive and specific detection capabilities across various clinical settings.

Within these pages, readers will discover a treasure trove of cutting-edge research, ranging from foundational principles to practical applications. Authored by leading experts in the field, each chapter provides insights into current trends, emerging methodologies, and the innovative technologies that are driving the advancement of nano-biosensors for infectious disease diagnosis.

From innovative sensing mechanisms and fabrication techniques to their real-world implementation and clinical translation, this book offers a comprehensive overview of the current state of the art in nano-biosensor technologies. We hope this volume will serve as an invaluable resource for researchers, clinicians, policymakers, and anyone interested in leveraging the power of nanotechnology to combat infectious diseases and enhance global health outcomes.

We extend our sincere thanks to the contributors for sharing their expertise and insights, and to our readers, whose curiosity and commitment to advancing scientific knowledge propel progress in this vital field.

xvi Preface

Finally, our gratitude goes to Martin Scrivener and the team at Scrivener Publishing for their support in bringing this volume to light.

The Editors January 2025

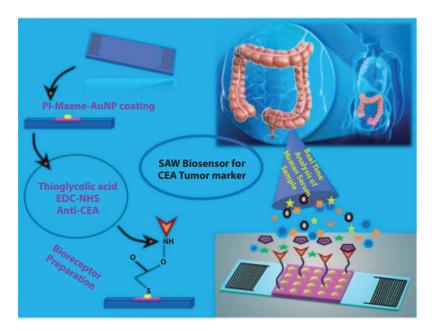
Biosensor Technology: Basic Principles, Fundamentals, and History

Mariyam Thomas¹, Mathew George², Derry Holaday M. G.³ and P. J. Jandas^{4*}

¹Department of Physics, St. Teresa's College, Ernakulam, Kerala, India ²Department of Physics, Sacred Heart College, Kochi, Kerala, India ³Department of Chemistry, University of Calicut, Malappuram, Kerala, India ⁴iNest Bioincubation Centre, Dr. Moopen's Medical College, Wayanad, Kerala, India

Abstract

Fabrication and modification of biosensors is one of the extensively studied areas today due to viable manufacture methods with commercialization potential and excellent performance characteristics in terms of rapid detection, cost effectiveness, high selectivity, and sensitivity. Biosensors have already explored many applications including protein sensing-based disease identification, understanding the stages and medication. Advents in this area show biosensors have the potential to find application in next generation medicine like personalized drug delivery and error free biomarker detection with extreme selectivity and sensitivity. The book chapter summarizes the concept of biosensors, conventional classifications, application areas and potential as a dependable biomedical tool. A special emphasis is given into the recent advancements in biosensors used for glucose sensing. The important role of the nonmaterial-based transducing bioreceptors in a biosensor performance is also discussed in detail.


Keywords: Biosensors, biomarkers, bioreceptor, nanomaterials, SAW, QCM

^{*}Corresponding author: drjandasjanan@gmail.com

1.1 Introduction

Biological sensors, also called biosensors, are defined as analytical devices comprising a biological or biologically derived component [1] that decides their selectivity [2] capable of detecting an analyte [3] by the physiochemical component [2]. The real-time acoustic detection of carcinoembryonic antigen (CEA) was done using a bioreceptor of polyimide thin film doped with nanoparticles of Ti3C2Tx MXene-Au [13]. This work utilized thioglycolic acid arm linker mechanism. According to the immunoassay, biosensor response is linear to the concentration of CEA samples. Figure 1.1 represents the basic working principle of the CEA biosensor. The progress in the field of biosensors from the 1980s is immense with the development of life-essential devices such as pregnancy test kits which utilize biochemical or biological reactions.

The basic component of a biosensor includes a biological recognition element which detects specific analytes, then the transducer which converts the corresponding biological signal to an electrical signal (Figure 1.2). This enables rapid, accurate detection and monitoring of samples from medical, food, agriculture, environmental, and industry-based resources. According to International Union of Pure and Applied Chemistry (IUPAC), a biosensor

Figure 1.1 The real-time acoustic detection of carcinoembryonic antigen with polyimide thin film doped with nanoparticles of $\text{Ti}_3C_2T_x$ MXene-Au bioreceptor [13].

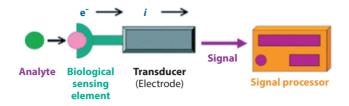


Figure 1.2 Scheme of a biosensor with an electrochemical transducer [14].

is "a device that uses specific biochemical reactions mediated by isolated enzymes, immune systems, tissues, organelles or whole cells to detect chemical compounds usually by electrical, thermal or optical signals" [4].

The three major parts of every biosensor include [1]:

- i) Biological recognition element that facilitates the device to recognize the target molecule from the other chemicals present and the binding is followed [1].
- ii) Signal conversion unit which is a transducer [4] that converts the specific binding process to a measurable signal [1].
- iii) A signal processing system that includes a detector [5] and the detected signal is converted into readable form [1].

Glucose biosensors dominate in the industry by covering about 85% [6] and the work on the principle is based on the detection of disease indicator analytes such as glucose and insulin [7]. The first biosensors were developed in the early 1960s by Dr. Leland C Clarkin where an enzyme electrode with glucose oxidase (GOD) was employed for the measurement of the concentration of glucose [4]. The GOD catalyzes the formation of gluconolactone. The proportional increase in hydrogen peroxide concentration to the glucose concentration during the oxidation of β-D-glucose and the decline in oxygen concentration is detected electrochemically [8]. Effective glycemic monitoring has been achieved ever since the introduction of glucose biosensors. These devices also have a place in various applications such as food analysis and bioprocess monitoring [9]. Though techniques like radio labelling prevail for the measurement, the complications in the procedure, the bulk size of the equipment, sample destruction, and low spatial resolution problems prompt us to look for an effective technique, and biosensors pave its importance in this scenario [7]. Continuous, real-time glucose concentration monitoring in liquid samples ranging in

4 Nano Biosensor Technologies for Infectious Diseases

nanoliters is achieved through modern glucose biosensors which have miniaturized micro/nanoscale range sensors. These sensors achieve the measurement in single cells or isolated organelles because of their high spatial resolution [9].

Working Principle of Glucose Biosensor

The biosensor consists of a biological component that on specific binding produces a response which is transmuted into a quantifiable signal with the help of a transducer [2]. The basic classification of biosensors is given in the Figure 1.4. Most prevailing glucose biosensors have better sensitivity, reproducibility, and easy maintenance, are economical in nature, and are electrochemical in type. Generally, glucose measurements are based on either of the enzyme interactions viz hexokinase, glucose oxidase (GOx), or glucose-1-dehydrogenase, of which GOx is considered superior due to its immense selective nature. Moreover, it is easily available and can withstand extreme temperatures, pH conditions, and ionic strength compared to other enzymes. Figure 1.3 represents the catalysis process by immobilized glucose oxidase. In the process, flavin adenine dinucleotide (FAD) acts as a redox cofactor for the oxidation of β -D-glucose employing molecular oxygen, thus converting it into gluconic acid and peroxide (Figure 1.3). The mechanism of the process is shown in Scheme 1.1.

The FAD on reduction converts to $FADH_2$. Upon oxidation, H_2O_2 is formed which is oxidized at platinum electrode. It detects the electron transfer number thus detecting the concentration of glucose in the sample.

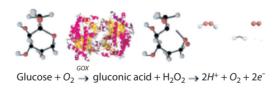


Figure 1.3 Schematic representation of glucose biosensing [10].

Glucose + GOX - FAD+ Glucolactone + GOx - FADH₂

$$GOx - FADH2 + O2 GOx - FAD + H2O2$$

$$H2O2 2H+ + O2 + 2e$$

Scheme 1.1 Mechanism of the glucose detection.

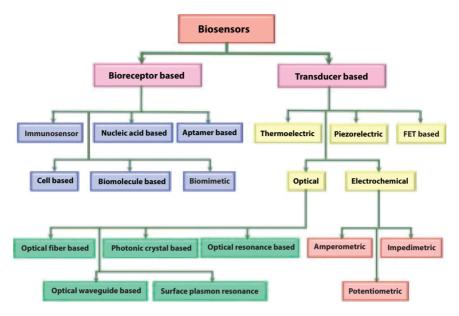


Figure 1.4 Different types of biosensors.

When glutamate dehydrogenase (GDH) with nicotinamide-adenine dinucleotide (NAD) is the cofactor, NADH is produced in the place of $\rm H_2O_2$ [14].

Evolution in Biosensor Technology

A wide variety of biosensor availability is seen today as the principle of working of biosensors is getting changed over the years.

1) First Generation Glucose Biosensors

The first proposed biosensor includes an oxygen electrode, GOx thin layer, semipermeable oxygen inner membrane, and an outer dialysis membrane. Natural oxygen substrate-based biosensors come under the first generation for the detection of the hydrogen peroxide produced as the process is simple but requires higher operation potential for high selectivity. The variation of the O_2 tension due to less solubility O_2 in biofluids is another drawback of these biosensors [1].

1.1) Electroactive Interferences

The hydrogen peroxide amperometric measurement at common working electrodes requires a relatively high potential. The co-existing [9] reducing species [11] like ascorbic acids, uric acids or acetaminophen may interfere

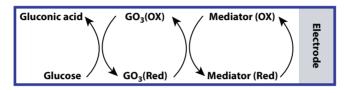
and affect the selectivity and sensitivity of the process. Moreover, other components existing in the sample which can undergo oxidation will also affect the accuracy.

To avoid this, attempts towards reduction of access to the surface of electrodes were made by using selective coating with multi and mixed polymer layers [9]. Their transport properties based on charge, size, or polarity can block the electroactive compounds and surface-active macromolecules. The surface is thus protected which results in higher stability. High selectivity is shown by electro-polymerized films, polyphenol, and over-oxidized polypyrrole by confining GOx onto the surface [11]. Multi-(overlaid) layers that have combining properties of different films can be used for additional advantages, i.e., the intervention of neutral acetaminophen and negatively charged ascorbic and uric acid were eliminated by simultaneous alternate deposition of cellulose acetate and Nafion [9]. The use of metalized carbon transducers (Rh-C or Ru-C) also offers high selectivity through determining H₂O₂ at an optimal potential range of 0.0 V. The surface metal oxide film is converted to free metal using H₂O₂. An anodic current signal is produced when it is reoxidized electrochemically. By including a discriminative layer with metal to a Nafion film, additional improvements can be made. Horseradish peroxidase (HRP) is an enzyme that catalyzes peroxide oxidation thus offering a low potential selection detection of the GOx-generated H₂O₂. The carbon nanotube (CNT)modified electrodes offer high selectivity towards glucose detection. On coupling CNT with platinum nanoparticles shows high efficiency as it has enhanced sensitivity and speed [11].

1.2) Oxygen Dependence

The errors due to the oxygen deficit prevailed in devices based on oxidase as they use oxygen as physiological acceptor of electrons. These errors result in the reduced upper limit of linearity. When normal $\rm O_2$ concentration is lower, around 1 order of magnitude than the physiological level of glucose points out oxygen deficit. This constraint can be overcome by applying mass transport limiting films. Their usage will enhance the flux of the $\rm O_2$ and glucose permeability ratio [11].

2) Second Generation Glucose Biosensors


2.1) Electron Transfer between GOx and Electrode Surfaces
The second-generation glucose sensors, redox mediators, replace oxygen.
The transfer of electrons from enzymes to the surface of the working electrode will lead to further improvements [1].

```
Glucose + GOx(ox) — Gluconic acid + GOx(red)

GOx(red) + 2M(ox) — GOx(ox) + 2M(red) + 2H^+

2M(red) — 2M(ox) + 2e^I
```

Scheme 1.2 Mechanism of synthetic mediators electron transfer process, where $M_{(ox)}$ and $M_{(red)}$ are the oxidized and reduced forms, respectively.

Figure 1.5 Event sequence in 'second generation' of mediator-based glucose biosensors [11].

2.2) Use of Non-Physiological Electron Acceptors

The synthetic mediators transport the electrons from the FAD center to the electrode surface, as shown in Scheme 1.2.

A current signal is produced when the reduced form is reoxidized at the electrode, regenerating the mediator's oxidized form. This is shown in Figure 1.5 [11].

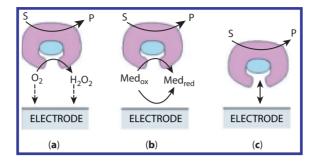
Ferrocene, ferricyanide, quinines, tetrathiafulvalene (TTF), tetracyano-quinodimethane (TCNQ), thionine, methylene blue, and methyl viologen are some of the electron mediators which can improve the sensor performance. The advantages of ferrocenes include ferrocenes inertness towards oxygen, stability in both oxidized and reduced states, resilience across a wide range of pH levels, reacting rapidly with enzymes, and showing electron transfer kinetics [1], which enables them to perform effectively. The oxidation of endogenous species cannot be completely removed but minimized by low potential of most mediators. Further, additional errors will be led by consumption of mediators. For an extended continuous operation, mediated systems display low stability [11].

2.3) Wired Enzyme Electrodes

A redox polymer, coupled with enzyme wiring, enhances electrical conductivity between the redox center of GOx and electrode surfaces. Establishing a communication link between GOx and electrodes is the base of a non-diffusional route of biosensing. This connection is achieved

by tethering the enzyme to the surface using a long, flexible, hydrophilic polymer backbone.

To accomplish this, a dense array of covalently bonded osmium-complex electron relays, such as poly(vinylpyridine) or poly(vinyl imidazole)] are used. This arrangement forms a three-dimensional network that attaches to the surface, minimizing the distance between redox centers and FAD center of the enzyme. Electrons from the redox site of GOx are transported through the gel polymer network to the electrode, providing high current outputs, rapid response times, and stabilizing the mediator to the surface. Ultra small enzyme electrodes can be used with the aid of huge current densities. Wired enzyme electrons are thus particularly attractive for *in vivo* applications [11].


Main advantages are high current outputs, fast response, and stability. Ultra-small enzyme electrodes can be used with the aid of huge current densities. Wired enzyme electrons are thus particularly attractive for *in vivo* applications [11].

2.4) Modification of GOx with Electron Relays

Another approach to facilitate electron transfer between the GOx and the electrode surface involves chemically altering GOx with electron-relay species. The flavin center of GOx undergoes oxidation due to the covalent attachment of the ferrocene group and results in electron tunneling in a number of consecutive steps. Enzyme reconstitution process improves the efficiency of electrical communication with electrodes in the glucose biosensors. The fitment of electron-transfer relays at the boundary of enzymes is also considered in the case of short electron-transfer distances [11].

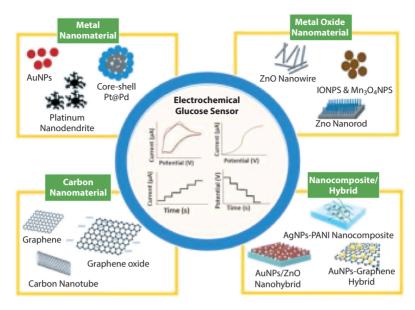
2.5) Nanomaterial Electrical Connectors

The application of nanomaterials in bioanalytical chemistry is a vast field. Nanomaterials offer an effective means for wiring redox enzymes, such as GOx, to electrodes. Gold nanoparticles and CNTs serve as efficient electrical connectors between the electrode and the redox center of Gox (Figure 1.6) [13]. Utilizing a dithiol linker, gold nanoparticles are immobilized onto the gold electrode, acting as nano plugs for electrical wiring to the redox-active center of GOx. This will result in a high electron-transfer turnover (around 5000/s). Moreover, additional nanomaterials can be tethered to enzymes via CNTs, facilitating favorable surface orientation and serving as electrical connectors between their redox center and the electrode surface. The activation of GOx by these requires over potential and this can be reduced, enhancing the contact between nanomaterials and the electrode [11].

Figure 1.6 (a) Redox mediators, (b) Direct electron transfer, and (c) [11] Amperometric enzyme electrodes [10].

3) Third Generation Glucose Biosensors

They operate without reagents or mediators, utilizing a low potential similar to that of the enzyme's redox potential [11]. It is based on the enzyme's active site enabling direct transfer of an electron from glucose to the electrode [11]. Highly toxic mediators are avoided [1] due to very low operating potential and high selectivity is ensured [11]. Only few enzymes peroxidases [1] have been reported that can enable an effective electron transfer at conventional electrodes. Studies were done for new electrode materials as attempts for direct electron transfer of GOx to conventional electrons were futile.


The newly customized optimally designed electrode ensures minimal electron-transfer distance between the immobilized protein and the surface. One approach is by creating third-generation amperometric glucose biosensors utilizing conducting salt electrodes with charge-transfer complexes like TTF-TCNQ [11]. These complexes can facilitate the electrochemistry of pyrrole-quinoline quinone enzymes (GDH-PQQ) and flavoproteins (GOx) [1].

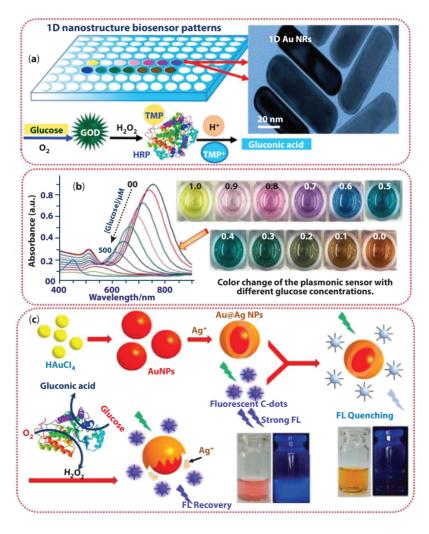
Classification of Glucose Biosensors and Their Properties

1) Based on Transducing Element

1.1) Electrochemical Glucose Biosensors

Detection of the electrochemical signal during a bio-interaction process is the basic working principle of electrochemical biosensors. Detectors can be classified into potentiometric, amperometric, or conductometric types based on their mechanism. The potentiometric sensor measures change in the charge density at the surface of the electrode and amperometric biosensor measures current liberated as a result of transfer of electrons between a biological system and electrode. The change in ionic conduction

Figure 1.7 Schematic of nanomaterial-modified electrode for glucose biosensor cinnamic acid diazonium salt, which, in electrochemically reduced form, is used as the immobilization matrix for the glucose biosensor [15].


between metal electrodes is measured by the conductometric sensors. Miniaturization and simplification of the system are achieved by integrating an immobilized enzyme complex with an electrochemical sensor, thus enabling reagent-less glucose analysis. Modification of the working electrode with various nanomaterials is one of the current developments in glucose biosensors and is depicted in Figure 1.7. Nanomaterials possess unique characteristics, including a large surface area for enhanced reaction activity, excellent catalytic efficiency, and strong adsorption capabilities. This enables them to work as a matrix to modify the electrode surface. This also provides enzyme immobilization biocompatible areas.

The attachment of other biological agents are achieved by modifying the glassy carbon electrode (GCE) with the cinnamic acid group. Miniaturization is accomplished by attaching the enzyme to the self-assembled oligophenylethynylenethiol monolayer, serving as a crosslinker for immobilizing glucose oxidase to the gold electrode [7]. Out of the three most commonly used enzymes for glucose detection, *i.e.*, hexokinase, glucose oxidase (GO), and glucose-1-dehydrogenase, glucose oxidase (GOx) is widely regarded as a standard enzyme for biosensors because of its high selectivity, affordability, and capacity to endure elevated pH levels, temperatures, and ionic strengths. When glucose dehydrogenase is used

instead of GO, amperometric biosensing of glucose can also be carried out. Mediators, which are carriers that can be biologically active or synthetic, are used to enhance the connection between the redox enzymes and electrodes [7].

1.2) Optical Biosensors

Another way for glucose sensing includes the utilization of optical properties of compounds with intrinsic fluorescence and their coenzymes.

Figure 1.8 Disposable strips of optical glucose biosensor and wearable electronic devices [16].

This type of biosensor undergoes changes in its spectral properties when the binding of enzyme takes place. After the binding of the enzyme with the glucose, the fluorescence intensity change is seen for the protein part of the enzyme but no associated change is seen in the absorption spectra of the same. Co-enzymes can contribute to absorption and luminescence changes due to its interaction with glucose. The utilization of oxygen upon the interaction of the enzyme is measured to determine the glucose concentration using probes [7]. Nano/microscale device plays remarkable impacts in developing sensitive visualization assays, low-cost analyses, and home tests of diabetics (Figure 1.8).

Fluorescent-based glucose sensing is an exceptionally sensitive technique for detecting glucose at the molecular level. The sensing schemes include enzymes which include plant lectin, bacteria, or intrinsic cellular fluorescence. The smaller size of probes such as dyes and quantum dots enables biofunctionalization through diffusion rather than endocytosis.

Fluorescent probes are remotely interrogated using an external UV excitation source, and are capable of penetrating tissues to a depth of centimeters. This results in specific and configurable photoluminescence in quantum dots and dyes. Förster resonance energy transfer (FRET) is the key process behind the photoluminescence behavior. Notably, observations are made without interference from light scattering in tissues, and corrections are applied for errors due to photobleaching or fluorophore degradation.

Furthermore, FRET-based biosensors offer spatial resolution of target analytes, as the decay time of acceptor/donor fluorophores depends on the distance as 1/R⁶. When fluorophore-to-fluorophore distances reach above 10 nm, FRET signals attenuate rapidly. For non-invasive, *in vivo* sensing, and continuous monitoring, fluorescent-based glucose sensors are highly advantageous. Additionally, optical glucose sensors can accurately measure fluctuations in glucose level and associated biochemical pathways, including feedback cascade involving glucose catabolism, adenosine triphosphate (ATP) production and other biological processes [9].

A novel optical Prussian blue (PB)-based biosensor is developed which can detect H_2O_2 . It evaluates the pH and acts as an optical transducer in pH-based biosensors. The redox species are detected based on the color change on its reduction. The used film is then renewed on introducing it to a flow injection system. The film system serves as the transducer for optical biosensors. The modified reduced film, combined with glucose oxidase, forms the basis of an optical biosensor. This type is mainly used for the glucose determination in urine samples. This sensor used for the determination of glucose in soft drinks is an optical fiber biosensor. Electroluminescence is the basic working principle of such sensors where