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Preface

Welcome to Nano-Biosensor Technologies for Diagnosis of Infectious 
Diseases. This comprehensive volume explores the cutting edge of scien-
tific innovation, presenting a curated collection of 16 meticulously crafted 
chapters that highlight the latest advancements in nano-biosensor tech-
nologies—a revolutionary approach to the diagnosis and management of 
infectious diseases.

Infectious diseases continue to pose significant global health challenges, 
underlining the critical need for rapid, accurate, and sensitive diagnostic 
tools. Situated at the intersection of nanotechnology and biomedicine, 
nano-biosensors offer unparalleled opportunities to meet these challenges 
by delivering highly sensitive and specific detection capabilities across var-
ious clinical settings.

Within these pages, readers will discover a treasure trove of cutting-edge 
research, ranging from foundational principles to practical applications. 
Authored by leading experts in the field, each chapter provides insights 
into current trends, emerging methodologies, and the innovative technol-
ogies that are driving the advancement of nano-biosensors for infectious 
disease diagnosis.

From innovative sensing mechanisms and fabrication techniques to 
their real-world implementation and clinical translation, this book offers a 
comprehensive overview of the current state of the art in nano-biosensor 
technologies. We hope this volume will serve as an invaluable resource for 
researchers, clinicians, policymakers, and anyone interested in leveraging 
the power of nanotechnology to combat infectious diseases and enhance 
global health outcomes.

We extend our sincere thanks to the contributors for sharing their 
expertise and insights, and to our readers, whose curiosity and commit-
ment to advancing scientific knowledge propel progress in this vital field. 



xvi  Preface

Finally, our gratitude goes to Martin Scrivener and the team at Scrivener 
Publishing for their support in bringing this volume to light.

The Editors
January 2025
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Biosensor Technology: Basic Principles, 
Fundamentals, and History
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Abstract
Fabrication and modification of biosensors is one of the extensively studied areas 
today due to viable manufacture methods with commercialization potential and 
excellent performance characteristics in terms of rapid detection, cost effective-
ness, high selectivity, and sensitivity. Biosensors have already explored many appli-
cations including protein sensing-based disease identification, understanding the 
stages and medication. Advents in this area show biosensors have the potential to 
find application in next generation medicine like personalized drug delivery and 
error free biomarker detection with extreme selectivity and sensitivity. The book 
chapter summarizes the concept of biosensors, conventional classifications, appli-
cation areas and potential as a dependable biomedical tool. A special emphasis is 
given into the recent advancements in biosensors used for glucose sensing. The 
important role of the nonmaterial-based transducing bioreceptors in a biosensor 
performance is also discussed in detail.

Keywords:  Biosensors, biomarkers, bioreceptor, nanomaterials, SAW, QCM

*Corresponding author: drjandasjanan@gmail.com
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2  Nano Biosensor Technologies for Infectious Diseases

1.1	 Introduction

Biological sensors, also called biosensors, are defined as analytical devices 
comprising a biological or biologically derived component [1] that decides 
their selectivity [2] capable of detecting an analyte [3] by the physiochemical 
component [2]. The real-time acoustic detection of carcinoembryonic anti-
gen (CEA) was done using a bioreceptor of polyimide thin film doped with 
nanoparticles of Ti3C2Tx MXene-Au [13]. This work utilized thioglycolic acid 
arm linker mechanism. According to the immunoassay, biosensor response 
is linear to the concentration of CEA samples. Figure 1.1 represents the basic 
working principle of the CEA biosensor. The progress in the field of biosensors 
from the 1980s is immense with the development of life-essential devices such 
as pregnancy test kits which utilize biochemical or biological reactions.

The basic component of a biosensor includes a biological recognition 
element which detects specific analytes, then the transducer which converts 
the corresponding biological signal to an electrical signal (Figure 1.2). This 
enables rapid, accurate detection and monitoring of samples from medical, 
food, agriculture, environmental, and industry-based resources. According 
to International Union of Pure and Applied Chemistry (IUPAC), a biosensor 

Thioglycolic acid
EDC-NHS
Anti-CEA

PI-Mxene-AuNP coating

SAW Biosensor for
CEA Tumor marker

Real Tim
e

Analysis of

Hum
an Serum

Sam
ple

Bioreceptor

Preparation

NH

OO

S

Figure 1.1  The real-time acoustic detection of carcinoembryonic antigen with polyimide 
thin film doped with nanoparticles of Ti3C2Tx MXene-Au bioreceptor [13].
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is “a device that uses specific biochemical reactions mediated by isolated 
enzymes, immune systems, tissues, organelles or whole cells to detect chem-
ical compounds usually by electrical, thermal or optical signals” [4].

The three major parts of every biosensor include [1]:

 i)	 Biological recognition element that facilitates the device 
to recognize the target molecule from the other chemicals 
present and the binding is followed [1].

 ii)	 Signal conversion unit which is a transducer [4] that con-
verts the specific binding process to a measurable signal 
[1].

 iii)	 A signal processing system that includes a detector [5] and 
the detected signal is converted into readable form [1].

Glucose biosensors dominate in the industry by covering about 85% [6] 

and the work on the principle is based on the detection of disease indi-
cator analytes such as glucose and insulin [7]. The first biosensors were 
developed in the early 1960s by Dr. Leland C Clarkin where an enzyme 
electrode with glucose oxidase (GOD) was employed for the measurement 
of the concentration of glucose [4]. The GOD catalyzes the formation of 
gluconolactone. The proportional increase in hydrogen peroxide concen-
tration to the glucose concentration during the oxidation of β-D-glucose 
and the decline in oxygen concentration is detected electrochemically [8]. 
Effective glycemic monitoring has been achieved ever since the intro-
duction of glucose biosensors. These devices also have a place in various 
applications such as food analysis and bioprocess monitoring [9]. Though 
techniques like radio labelling prevail for the measurement, the complica-
tions in the procedure, the bulk size of the equipment, sample destruction, 
and low spatial resolution problems prompt us to look for an effective tech-
nique, and biosensors pave its importance in this scenario [7]. Continuous, 
real-time glucose concentration monitoring in liquid samples ranging in 

Signal processor
Analyte Biological

sensing
element

Transducer
(Electrode)

Signal

e¯ i

Figure 1.2  Scheme of a biosensor with an electrochemical transducer [14].
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nanoliters is achieved through modern glucose biosensors which have 
miniaturized micro/nanoscale range sensors. These sensors achieve the 
measurement in single cells or isolated organelles because of their high 
spatial resolution [9].

Working Principle of Glucose Biosensor
The biosensor consists of a biological component that on specific binding 
produces a response which is transmuted into a quantifiable signal with 
the help of a transducer [2]. The basic classification of biosensors is given 
in the Figure 1.4. Most prevailing glucose biosensors have better sensitiv-
ity, reproducibility, and easy maintenance, are economical in nature, and 
are electrochemical in type. Generally, glucose measurements are based on 
either of the enzyme interactions viz hexokinase, glucose oxidase (GOx), 
or glucose-1-dehydrogenase, of which GOx is considered superior due to 
its immense selective nature. Moreover, it is easily available and can with-
stand extreme temperatures, pH conditions, and ionic strength compared 
to other enzymes. Figure 1.3 represents the catalysis process by immobi-
lized glucose oxidase. In the process, flavin adenine dinucleotide (FAD) 
acts as a redox cofactor for the oxidation of β-D-glucose employing molec-
ular oxygen, thus converting it into gluconic acid and peroxide (Figure 
1.3). The mechanism of the process is shown in Scheme 1.1.

The FAD on reduction converts to FADH2. Upon oxidation, H2O2 is 
formed which is oxidized at platinum electrode. It detects the electron 
transfer number thus detecting the concentration of glucose in the sample. 

Glucose + O2 gluconic acid + H2O2 2H+ + O2 + 2e¯
GOX

Figure 1.3  Schematic representation of glucose biosensing [10].

2H+ + O2 +2e

Glucose + GOX – FAD+  Glucolactone + GOx – FADH2

GOx - FADH2 + O2  GOx – FAD + H2O2

H2O2

Scheme 1.1  Mechanism of the glucose detection.
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When glutamate dehydrogenase (GDH) with nicotinamide-adenine dinu-
cleotide (NAD) is the cofactor, NADH is produced in the place of H2O2 
[14].

Evolution in Biosensor Technology 
A wide variety of biosensor availability is seen today as the principle of 
working of biosensors is getting changed over the years.

1) First Generation Glucose Biosensors
The first proposed biosensor includes an oxygen electrode, GOx thin layer, 
semipermeable oxygen inner membrane, and an outer dialysis membrane. 
Natural oxygen substrate-based biosensors come under the first genera-
tion for the detection of the hydrogen peroxide produced as the process 
is simple but requires higher operation potential for high selectivity. The 
variation of the O2 tension due to less solubility O2 in biofluids is another 
drawback of these biosensors [1].

1.1) Electroactive Interferences
The hydrogen peroxide amperometric measurement at common working 
electrodes requires a relatively high potential. The co-existing [9] reducing 
species [11] like ascorbic acids, uric acids or acetaminophen may interfere 

Biosensors

Bioreceptor based Transducer based

Nucleic acid based Thermoelectric Piezorelectric FET basedAptamer basedImmunosensor

Cell based Biomolecule based Optical Electrochemical

Optical f iber based

Optical waveguide based

Impedimetric

Potentiometric

Amperometric

Biomimetic

Surface plasmon resonance

Photonic crystal based Optical resonance based

Figure 1.4  Different types of biosensors.
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and affect the selectivity and sensitivity of the process. Moreover, other 
components existing in the sample which can undergo oxidation will also 
affect the accuracy.

To avoid this, attempts towards reduction of access to the surface of 
electrodes were made by using selective coating with multi and mixed 
polymer layers [9]. Their transport properties based on charge, size, or 
polarity can block the electroactive compounds and surface-active macro-
molecules. The surface is thus protected which results in higher stability. 
High selectivity is shown by electro-polymerized films, polyphenol, and 
over-oxidized polypyrrole by confining GOx onto the surface [11]. Multi-
(overlaid) layers that have combining properties of different films can be 
used for additional advantages, i.e., the intervention of neutral acetamin-
ophen and negatively charged ascorbic and uric acid were eliminated by 
simultaneous alternate deposition of cellulose acetate and Nafion [9]. The 
use of metalized carbon transducers (Rh-C or Ru-C) also offers high selec-
tivity through determining H2O2 at an optimal potential range of 0.0 V. 
The surface metal oxide film is converted to free metal using H2O2. An 
anodic current signal is produced when it is reoxidized electrochemically. 
By including a discriminative layer with metal to a Nafion film, additional 
improvements can be made. Horseradish peroxidase (HRP) is an enzyme 
that catalyzes peroxide oxidation thus offering a low potential selection 
detection of the GOx-generated H2O2. The carbon nanotube (CNT)-
modified electrodes offer high selectivity towards glucose detection. On 
coupling CNT with platinum nanoparticles shows high efficiency as it has 
enhanced sensitivity and speed [11].

1.2) Oxygen Dependence
The errors due to the oxygen deficit prevailed in devices based on oxidase 
as they use oxygen as physiological acceptor of electrons. These errors 
result in the reduced upper limit of linearity. When normal O2 concen-
tration is lower, around 1 order of magnitude than the physiological level 
of glucose points out oxygen deficit. This constraint can be overcome by 
applying mass transport limiting films. Their usage will enhance the flux of 
the O2 and glucose permeability ratio [11].

2) Second Generation Glucose Biosensors
2.1) Electron Transfer between GOx and Electrode Surfaces
The second-generation glucose sensors, redox mediators, replace oxygen. 
The transfer of electrons from enzymes to the surface of the working elec-
trode will lead to further improvements [1].
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2.2) Use of Non-Physiological Electron Acceptors
The synthetic mediators transport the electrons from the FAD center to the 
electrode surface, as shown in Scheme 1.2.

A current signal is produced when the reduced form is reoxidized at 
the electrode, regenerating the mediator’s oxidized form. This is shown in 
Figure 1.5 [11].

Ferrocene, ferricyanide, quinines, tetrathiafulvalene (TTF), tetracyano-
quinodimethane (TCNQ), thionine, methylene blue, and methyl viologen 
are some of the electron mediators which can improve the sensor perfor-
mance. The advantages of ferrocenes include ferrocenes inertness towards 
oxygen, stability in both oxidized and reduced states, resilience across a 
wide range of pH levels, reacting rapidly with enzymes, and showing elec-
tron transfer kinetics [1], which enables them to perform effectively. The 
oxidation of endogenous species cannot be completely removed but min-
imized by low potential of most mediators. Further, additional errors will 
be led by consumption of mediators. For an extended continuous opera-
tion, mediated systems display low stability [11].

2.3) Wired Enzyme Electrodes
A redox polymer, coupled with enzyme wiring, enhances electrical con-
ductivity between the redox center of GOx and electrode surfaces. 
Establishing a communication link between GOx and electrodes is the 
base of a non-diffusional route of biosensing. This connection is achieved 

Glucose + GOx(ox)

GOx(red) + 2M(ox)

2M(ox) + 2el

GOx(ox) + 2M(red) + 2H+

2M(red)

Gluconic acid + GOx(red)

Scheme 1.2  Mechanism of synthetic mediators electron transfer process, where M(ox) and 
M(red) are the oxidized and reduced forms, respectively. 

GO3(Red)

Gluconic acid Mediator (OX)

Glucose

Electrode

Mediator (Red)

GO3(OX)

Figure 1.5  Event sequence in ‘second generation’ of mediator-based glucose biosensors 
[11].
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by tethering the enzyme to the surface using a long, flexible, hydrophilic 
polymer backbone.

To accomplish this, a dense array of covalently bonded osmium-complex 
electron relays, such as poly(vinylpyridine) or poly(vinyl imidazole)] are 
used. This arrangement forms a three-dimensional network that attaches 
to the surface, minimizing the distance between redox centers and FAD 
center of the enzyme. Electrons from the redox site of GOx are transported 
through the gel polymer network to the electrode, providing high current 
outputs, rapid response times, and stabilizing the mediator to the surface. 
Ultra small enzyme electrodes can be used with the aid of huge current 
densities. Wired enzyme electrons are thus particularly attractive for  
in vivo applications [11].

Main advantages are high current outputs, fast response, and stabil-
ity. Ultra-small enzyme electrodes can be used with the aid of huge cur-
rent densities. Wired enzyme electrons are thus particularly attractive for  
in vivo applications [11].

2.4) Modification of GOx with Electron Relays
Another approach to facilitate electron transfer between the GOx and the 
electrode surface involves chemically altering GOx with electron-relay 
species. The flavin center of GOx undergoes oxidation due to the covalent 
attachment of the ferrocene group and results in electron tunneling in a 
number of consecutive steps. Enzyme reconstitution process improves the 
efficiency of electrical communication with electrodes in the glucose bio-
sensors. The fitment of electron-transfer relays at the boundary of enzymes 
is also considered in the case of short electron-transfer distances [11].

2.5) Nanomaterial Electrical Connectors
The application of nanomaterials in bioanalytical chemistry is a vast field. 
Nanomaterials offer an effective means for wiring redox enzymes, such as 
GOx, to electrodes. Gold nanoparticles and CNTs serve as efficient electri-
cal connectors between the electrode and the redox center of Gox (Figure 
1.6) [13]. Utilizing a dithiol linker, gold nanoparticles are immobilized 
onto the gold electrode, acting as nano plugs for electrical wiring to the 
redox-active center of GOx. This will result in a high electron-transfer 
turnover (around 5000/s). Moreover, additional nanomaterials can be teth-
ered to enzymes via CNTs, facilitating favorable surface orientation and 
serving as electrical connectors between their redox center and the elec-
trode surface. The activation of GOx by these requires over potential and 
this can be reduced, enhancing the contact between nanomaterials and the 
electrode [11].
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3) Third Generation Glucose Biosensors
They operate without reagents or mediators, utilizing a low potential simi-
lar to that of the enzyme’s redox potential [11]. It is based on the enzyme’s 
active site enabling direct transfer of an electron from glucose to the elec-
trode [11]. Highly toxic mediators are avoided [1] due to very low oper-
ating potential and high selectivity is ensured [11]. Only few enzymes 
peroxidases [1] have been reported that can enable an effective electron 
transfer at conventional electrodes. Studies were done for new electrode 
materials as attempts for direct electron transfer of GOx to conventional 
electrons were futile.

The newly customized optimally designed electrode ensures minimal 
electron-transfer distance between the immobilized protein and the sur-
face. One approach is by creating third-generation amperometric glu-
cose biosensors utilizing conducting salt electrodes with charge-transfer 
complexes like TTF-TCNQ [11]. These complexes can facilitate the elec-
trochemistry of pyrrole-quinoline quinone enzymes (GDH-PQQ) and 
flavoproteins (GOx) [1].

Classification of Glucose Biosensors and Their Properties 
1) Based on Transducing Element
1.1) Electrochemical Glucose Biosensors
Detection of the electrochemical signal during a bio-interaction process is 
the basic working principle of electrochemical biosensors. Detectors can 
be classified into potentiometric, amperometric, or conductometric types 
based on their mechanism. The potentiometric sensor measures change 
in the charge density at the surface of the electrode and amperometric 
biosensor measures current liberated as a result of transfer of electrons 
between a biological system and electrode. The change in ionic conduction 

ELECTRODE ELECTRODE ELECTRODE

P P
PS

SS

O2 H2O2 Medox Medred

(a) (b) (c)

Figure 1.6  (a) Redox mediators, (b) Direct electron transfer, and (c) [11] Amperometric 
enzyme electrodes [10].
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between metal electrodes is measured by the conductometric sensors. 
Miniaturization and simplification of the system are achieved by integrat-
ing an immobilized enzyme complex with an electrochemical sensor, thus 
enabling reagent-less glucose analysis. Modification of the working elec-
trode with various nanomaterials is one of the current developments in 
glucose biosensors and is depicted in Figure 1.7. Nanomaterials possess 
unique characteristics, including a large surface area for enhanced reaction 
activity, excellent catalytic efficiency, and strong adsorption capabilities. 
This enables them to work as a matrix to modify the electrode surface. This 
also provides enzyme immobilization biocompatible areas.

The attachment of other biological agents are achieved by modify-
ing the glassy carbon electrode (GCE) with the cinnamic acid group. 
Miniaturization is accomplished by attaching the enzyme to the self-
assembled oligophenylethynylenethiol monolayer, serving as a crosslinker 
for immobilizing glucose oxidase to the gold electrode [7]. Out of the three 
most commonly used enzymes for glucose detection, i.e., hexokinase, glu-
cose oxidase (GO), and glucose-1-dehydrogenase, glucose oxidase (GOx) 
is widely regarded as a standard enzyme for biosensors because of its 
high selectivity, affordability, and capacity to endure elevated pH levels, 
temperatures, and ionic strengths. When glucose dehydrogenase is used 
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Figure 1.7  Schematic of nanomaterial-modified electrode for glucose biosensor 
cinnamic acid diazonium salt, which, in electrochemically reduced form, is used as the 
immobilization matrix for the glucose biosensor [15]. 
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instead of GO, amperometric biosensing of glucose can also be carried out. 
Mediators, which are carriers that can be biologically active or synthetic, 
are used to enhance the connection between the redox enzymes and elec-
trodes [7].

1.2) Optical Biosensors
Another way for glucose sensing includes the utilization of optical prop-
erties of compounds with intrinsic fluorescence and their coenzymes. 

1D nanostructure biosensor patterns
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This type of biosensor undergoes changes in its spectral properties when 
the binding of enzyme takes place. After the binding of the enzyme with 
the glucose, the fluorescence intensity change is seen for the protein part 
of the enzyme but no associated change is seen in the absorption spec-
tra of the same. Co-enzymes can contribute to absorption and lumines-
cence changes due to its interaction with glucose. The utilization of oxygen 
upon the interaction of the enzyme is measured to determine the glucose 
concentration using probes [7]. Nano/microscale device plays remarkable 
impacts in developing sensitive visualization assays, low-cost analyses, and 
home tests of diabetics (Figure 1.8).

Fluorescent-based glucose sensing is an exceptionally sensitive tech-
nique for detecting glucose at the molecular level. The sensing schemes 
include enzymes which include plant lectin, bacteria, or intrinsic cellular 
fluorescence. The smaller size of probes such as dyes and quantum dots 
enables biofunctionalization through diffusion rather than endocytosis.

Fluorescent probes are remotely interrogated using an external UV exci-
tation source, and are capable of penetrating tissues to a depth of centi-
meters. This results in specific and configurable photoluminescence in 
quantum dots and dyes. Förster resonance energy transfer (FRET) is the key 
process behind the photoluminescence behavior. Notably, observations are 
made without interference from light scattering in tissues, and corrections 
are applied for errors due to photobleaching or fluorophore degradation.

Furthermore, FRET-based biosensors offer spatial resolution of target 
analytes, as the decay time of acceptor/donor fluorophores depends on the 
distance as 1/R6. When fluorophore-to-fluorophore distances reach above 
10 nm, FRET signals attenuate rapidly. For non-invasive, in vivo sensing, 
and continuous monitoring, fluorescent-based glucose sensors are highly 
advantageous. Additionally, optical glucose sensors can accurately mea-
sure fluctuations in glucose level and associated biochemical pathways, 
including feedback cascade involving glucose catabolism, adenosine tri-
phosphate (ATP) production and other biological processes [9].

A novel optical Prussian blue (PB)-based biosensor is developed which 
can detect H2O2. It evaluates the pH and acts as an optical transducer in 
pH-based biosensors. The redox species are detected based on the color 
change on its reduction. The used film is then renewed on introducing 
it to a flow injection system. The film system serves as the transducer 
for optical biosensors. The modified reduced film, combined with glu-
cose oxidase, forms the basis of an optical biosensor. This type is mainly 
used for the glucose determination in urine samples. This sensor used for 
the determination of glucose in soft drinks is an optical fiber biosensor. 
Electroluminescence is the basic working principle of such sensors where 


