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In recent decades, the world has faced serious crises mainly caused by the continuously expanding 
human population, the resulting environmental pollution, and the shortage of food and natural 
resources. Undoubtedly, these conditions can be worse under the scenario of climate change 
globally, such as a rising temperature that can lead to shortages of water resources and, consequently, 
increase the risk of agricultural and ecological droughts. To ensure sufficient agricultural nutrition 
and food production, scientists are expected to solve the problems by developing new crop breeding 
methods, particularly focusing on identifying the stress-tolerant traits and uncovering underlying 
in-depth machinery. Importantly, these approaches can advance agricultural biotechnology and 
crop breeding focusing on acquiring future crops with climate-resilient capacities, which might 
greatly ensure nutrition and food security under the challenge of upcoming global climate change. 
Therefore, nowadays, the demand to organize crop breeding programs for developing climate-
resilient crops is inevitably increasing.

To support such demand, modern plant molecular biotechnology has been upgraded fast to 
achieve high-throughput, high-resolution, smart, and precision manners such as multiple omics-
based functional genomics, CRISPR/Cas9-mediated genome editing, RNA technology, and so on. 
In the post-genomics era, the approaches of multiple omics continue to mine huge amounts of 
genetic resources and accumulate interesting key genes, and definitely need efficient ways of 
genetic engineering to benefit crop breeding and agricultural production. In the past decade, an 
emerging genetic engineering technology, that is, genome editing technology, has the power to 
release the potential of plant genomes through the precise delivery of tolerant genes for crop 
improvement. The system of genome editing has upgraded fast, and now, CRISPR/Cas9  has 
become the dominant technology. Thus, the integration and coordination of multiple omics and 
CRISPR/Cas9 for organizing omics-CRISPR breeding strategies inevitably become the next wave 
of important tasks in plant science. In addition, in recent years, RNA technology/epigenetic 
regulation has been introduced into diverse fields of plant science and has been proven to its great 
potential in mitigating plant stress responses as well as being a fine-tuning regulator in some ways 
to advance crop improvement and breeding. The role of noncoding RNAs (ncRNAs) in the 
management of CRISPR-edited crop production has become an important topic. In the future, 
achieving climate-resilient agriculture needs the coordination of some crucial technologies 
involving multiple omics, CRISPR/Cas9, and functional RNA technology/epigenetics.

In this book, the ways for vertical integration and horizontal coordination of the crucial 
technologies were comprehensively discussed to advance crop breeding programs toward stress-
resilient agriculture.

Preface
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This book presents the coordinated CRISPR-noncoding RNAs (ncRNAs) strategies for combating 
diverse stressors and complicated or multiple stress conditions. It covers both abiotic and biotic 
stress, including stressors of salinity, temperature, drought, heavy metals, pests, pathogens, and so 
on, and proposes strategies to develop stress-tolerant crops with high-yield and high-quality traits 
through the integration or coordination of the mainstream technologies, that is, multiple omics, 
CRISPR/Cas, and ncRNA-based epigenetics.

This book is an ideal reference to integrate the emerging field of multiple omics, CRISPR/Cas, 
and ncRNA-based epigenetics by sharing crucial aspects of methods, applications, and future 
directions. It opens doors for students and researchers to efficiently overview these critical 
subtopics of plant science and technology and thus realize the concept and, hopefully, inspire the 
ideas of future experiments and the exploration of the knowledge and, eventually, lead to better 
development of future crops by scientists, plant biologists, and crop breeders.

The book editor, Dr. Jen-Tsung Chen, appreciates all contributors for their valuable chapters and 
the staff of Wiley for their instruction and assistance.
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1.1  Introduction

Heat stress, a significant constraint in crop production, is becoming increasingly threatening with 
the onset of climate change and the increased frequency of extreme heat waves. Plants are highly 
vulnerable to temperature fluctuations beyond their optimum range for growth, development, and 
reproduction (Govindaraj et al., 2018). Previously, elevated temperatures, especially heat waves, 
have already substantially reduced the regional yields of rice, wheat, and corn in Asia, North 
America, India, and Europe (Hassan et  al.,  2021). The Intergovernmental Panel on Climate 
Change’s Sixth Assessment Report (IPCC’s AR6) indicated that the global surface temperature rose 
by 1.09 °C from 1850–1900 to 2011–2020, with an anticipated rise of at least 0.2 °C per decade with-
out substantial mitigation (IPCC, 2021). This could potentially compromise our capacity to attain 
food security in the future; the current predictive models suggest that yield losses among staple 
crops could be as high as 8% per 1 °C increase in global temperature (Zhao et  al.,  2017; 
Lee et al., 2024). While adaptive agricultural practices such as altering planting dates, improving 
irrigation availability and efficiency, utilizing shade structures, growing in controlled environ-
ments, and applying osmoprotectants could alleviate the effects of heat stress on crop yield, these 
approaches are not always cheap and flexible, especially at higher production levels. The deploy-
ment of thermotolerant cultivars that can withstand elevated temperatures without yield or 
agronomic penalties is still seen as the most sustainable solution to feeding the ever-growing 
human population amidst rising global temperatures.

Breeding for thermotolerance is associated with complexities originating from this trait’s 
polygenic nature and the complex genetic regulatory network that controls its manifestation 
(Yeh et al., 2012). Currently, we are progressing in explaining the mechanisms and regulatory con-
trol of thermotolerance in model species such as Arabidopsis (Arabidopsis thaliana), but given the 
diversity of thermotolerance phenotypes among different plant species, this may not be sufficient 
(Yeh et al., 2012). Elucidating species-specific thermotolerant mechanisms will greatly benefit the 
development of thermotolerant cultivars.

Gene-editing platforms, particularly clustered regularly interspaced palindromic repeats 
(CRISPRs)/CRISPR-associated protein 9 (Cas9) and their derivatives, have been beneficial in gen-
erating novel thermotolerant phenotypes and functional elucidation. In plant breeding, the most 
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mainstream gene-editing approach is to mutate the coding region of a candidate protein-coding 
gene in a targeted manner to generate phenotypic variability to select upon. To a lesser extent, the 
mutation usually results in abolished gene function (knockout), gain-of-function, or neofunction-
alization. Unfortunately, negative pleiotropic effects may also result when targeting genes involved 
in complex gene networks.

An emerging approach in genome editing for crop improvement is targeting noncoding DNA, 
particularly cis-regulatory elements (CREs). These noncoding DNA segments regulate gene expres-
sion when interacted with trans-regulatory elements. Contrary to the mainstream approach of 
modifying gene products, this approach aims to quantitatively modify the levels and/or the 
temporal–spatial gene expression to achieve phenotypic diversity while at the same time minimiz-
ing or avoiding pleiotropic effects (Swinnen et al., 2016). The transcriptional rewiring associated 
with the selection of CRE variants during the domestication of our staple crop species (Swinnen 
et al., 2016) and the diverse phenotypic changes induced when editing CREs (reviewed in Saeed 
et al. (2022)) greatly emphasize the phenotypic contributions of CREs in particular and noncoding 
DNA in general, making a strong case for the utility of this approach in accelerating crop 
improvement.

This chapter will review approaches for improving thermotolerance by modifying CREs and 
other functional, noncoding DNA elements using genome-editing tools, particularly those derived 
from CRISPR/Cas9. Since thermotolerance is a quantitative polygenic trait tightly regulated by a 
complex regulatory network, we believe this approach could greatly benefit its development.

1.2  Impact of Climate Change and Heat Stress on Crop Productivity

1.2.1  A Physiological Impact of Heat Stress on Plant Growth and Development

Heat stress is a significant environmental factor affecting crop yield and quality. The definition of 
heat stress depends on the natural habitat and is species-specific (Yeh et al., 2012). Mild tempera-
ture increase generally induces plant development and early flowering and alters immunity 
(Hua, 2013; Verhage et al., 2014; Capovilla et al., 2015; Gangappa et al., 2017). Plants can adapt to 
suboptimal temperatures through thermomorphogenesis – a range of morphological adaptations, 
including hypocotyl elongation, upward leaf movement (thermonasty), petiole elongation, reduced 
stomatal density, and formation of smaller and thinner leaves (Quint et  al.,  2016; Casal & 
Balasubramanian, 2019). Eventually, plants can cool themselves through open rosette structures 
and transpiration (Crawford et al., 2012; Park et al., 2019).

Extreme temperatures can cause irreversible plant damage, significantly affecting crop develop-
ment and profitability and seriously threatening national and global food security (Lesk et al., 2022). 
Temperature stress disrupts photosynthesis, water metabolism, nutrient cycling, protein synthesis, 
reproduction, and the functionality of various enzymes, phytohormones, pollen development, and 
signaling molecules, resulting in sizeable reductions in yields (Crafts-Brandner & Salvucci, 2002; 
Zinn et al., 2010; Mishra et al., 2023). Molecular mechanisms of thermosensing and signaling have 
been primarily explored in Arabidopsis with the basic Helix-Loop-Helix (bHLH) transcription factor 
(TF) PHYTOCHROME INTERACTING FACTOR 4 (PIF4) considered as the core of temperature 
signaling pathways (Gangappa et al., 2017; Casal & Balasubramanian, 2019). One of the key down-
stream targets of the PIF4 pathway involved in promoting growth is YUCCA8 (YUC8), which 
encodes a rate-limiting enzyme in auxin biosynthesis and is critical for thermomorphogenesis 
(Franklin et al., 2011; Lee et al., 2014).
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At the same time, the PIF4-independent signaling pathways (PIF4 and PIF7 alike) were 
discovered to directly stimulate auxin biosynthesis and trigger thermomorphogenesis in a 
brassinosteroid-dependent manner (Chung et al., 2020; Fiorucci et al., 2020; Vu et al., 2021). The 
active form of the photoreceptor phytochrome B (phyB) senses elevated temperature and is con-
verted from the active Pfr form to the inactive Pr form. The nuclear export of the phyB-Pr upon 
warmth releases PIF4  inhibition, initiating thermomorphogenesis (Legris et  al.,  2016; Qiu 
et al., 2019). Additionally, other mechanisms of temperature sensing were reported in Arabidopsis. 
The translation of PIF7 mRNA is enhanced by elevated temperature through the relaxation of the 
PIF7 mRNA hairpin structure, leading to the accumulation of PIF7 protein (Chung et al., 2020). 
Also, the transcriptional repressor EARLY FLOWERING 3 (ELF3) aggregates into inactive 
condensates during warming, contributing to sensing elevated temperatures (Jung et al., 2020).

Heat can damage photosynthetic machinery by inhibiting enzymes like RUBISCO and denatur-
ing chloroplastic proteins. This leads to stomatal closure, limiting CO2 uptake and resulting in the 
buildup of reactive oxygen species (ROS), which cause cellular damage, affecting lipids, proteins, 
and nucleic acids (Allakhverdiev et al., 2008; Wang et al., 2018). Heat stress significantly impacts 
nutrient cycling and plant nutrition. High temperatures can impair root function, reducing the 
plant’s ability to uptake essential nutrients like nitrogen, phosphorus, and potassium. For instance, 
in tomato plants, heat stress has been found to decrease levels of nutrient-uptake and -assimilation 
proteins in roots, leading to reduced nutrient absorption (Giri et al., 2017). Additionally, soil warm-
ing can accelerate nutrient cycling, resulting in nutrient losses due to faster decomposition rates and 
reducing nutrient availability in the long term. High temperatures also interfere with plant nutrient 
translocation, further complicating metabolic processes essential for growth and productivity 
(Mishra et al., 2023). At the cellular level, heat stress can cause protein denaturation, membrane 
destabilization, and oxidative stress. Persistent heat stress may result in cell death and tissue necro-
sis, compromising the overall health and productivity of the plant (Haider et  al.,  2021). These 
changes lead to the accumulation of ROS, which can damage cellular components like lipids, pro-
teins, and nucleic acids. Enzymes lose efficiency as temperatures exceed their optimal range; con-
tinued stress triggers phytohormonal imbalances, such as altered abscisic acid levels, which affect 
plant responses. These imbalances activate complex signaling cascades involving calcium, ROS, and 
other molecules, further challenging the plant’s ability to cope with stress (Potters et al., 2007; Saidi 
et al., 2009; Devireddy et al., 2021).

1.2.2  Heat Shock Proteins (HSPs) and Their Roles

HSPs are a crucial component of a plant’s response to heat stress, playing key roles in maintaining 
protein integrity and enabling cellular homeostasis under stressful conditions. These molecular 
chaperones assist in the folding, refolding, transport, and degradation of proteins, preventing their 
denaturation and aggregation caused by heat stress (Feder & Hofmann, 1999). They are often regu-
lated by heat shock factors (HSFs), which are activated during extreme temperatures. In wheat, 
HSFs such as HSFA2 and HSFA6 are activated during heat stress, modulating downstream 
responses to improve heat tolerance (Xue et al., 2014). Once induced, HSPs bind to misfolded pro-
teins, aid in refolding, and prevent the formation of toxic aggregates, playing a significant role in 
cellular survival under heat stress (Wu, 1995). Throughout the day, varying temperatures trigger 
the production and accumulation of different HSPs in plants. In the mid-morning, HSP20s are 
synthesized to prevent proteins from misfolding and aggregating before the temperature peaks by 
noon. Later in the day, as temperatures rise further, the production shifts to HSP60s, HSP70s, 
HSP90s, and HSP100s, which help resolubilize and reactivate proteins that may have become 
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inactive or misfolded due to heat stress, ensuring their proper functioning (Finka et al., 2016). For 
instance, overexpressing certain HSPs in some crops like rice (HSP18), barley (HSP70, HSP90, and 
HSP100), Arabidopsis (HSP101), and cotton (HSP70-26) improved resilience, making them valua-
ble targets in breeding programs for heat tolerance (Queitsch et  al.,  2000; Kuang et  al.,  2017; 
Chaudhary et al., 2019; Zhiyong et al., 2021). Modifying the expression of HSFs and other directly 
related noncoding DNA regions that regulate HSPs could be a strategic approach to enhance the 
overexpression of key HSPs, ultimately developing heat-resilient plants.

1.2.3  Epigenetic Regulation of Stress Response Pathways (Histone 
Posttranslational Modifications, DNA Methylation, and ncRNA Expression)

Recent evidence suggests that epigenetic mechanisms of gene expression and regulation are 
actively involved in thermosensing and heat stress tolerance in plants. Epigenetics, in a broader 
sense, refers to “chromatin modifications” through chemical modifications of histone proteins or 
DNA wrapped around them that do not change the base sequence (Deichmann, 2016). The regula-
tion of gene expression occurs through different pathways, including DNA methylation, small 
RNAs, ATP-dependent chromatin remodeling, histone variants, histone modifications, histone 
chaperones, and long noncoding RNAs (lncRNAs). Some of these pathways regulate the expres-
sion of high-temperature-responsive genes to prevent heat-related damage and promote subse-
quent adaptation (reviewed in Perrella et  al. (2022)). For example, the expression of many 
thermoresponsive genes is regulated by the repressive histone variant H2A.Z deposited in nucle-
osomes of temperature-regulated loci primarily at the +1 site (Kumar & Wigge, 2010). The deposi-
tion and eviction of repressive H2A.Z in exchange for permissive H2A variant are performed by the 
Snf2 ATPase remodeling complexes, SWR1-C and INO80-EIN6 ENHANCER (EEN), respectively 
(Xue et al., 2021). A component of SWR1-C, ACTIN-RELATED PROTEIN 6 (ARP6), is a mediator 
of temperature responses in Arabidopsis, and arp6 mutants demonstrate elongated hypocotyls 
already at low temperatures, indicative of a constitutive warm temperature phenotype (Kumar & 
Wigge, 2010). INO80 and EEN are directly associated with PIF4 in activating the transcription of 
auxin-related genes under elevated temperatures through the H2A.Z eviction. The contribution of 
H2A.Z to stress-induced gene activation was further supported by the fact that its eviction was 
compromised in both pif4 and ino80 mutants. Overall, the H2A.Z-containing nucleosomes are not 
temperature sensors per se, but rather their presence depends on transcriptional regulators allow-
ing for environment-dependent chromatin reorganization and release of stress-responsive gene 
expression (Cortijo et al., 2017).

In addition to chromatin remodeling, histone methylation and histone acetylation marks have 
been implemented to regulate the gene expression of growth-promoting genes in response to heat 
stress. For example, histone H3K4me2 (an activating mark) is demethylated in response to the 
binding of FLOWERING CONTROL LOCUS A (FCA) to PIF4-activated growth-promoting genes, 
like YUC8, therefore eventually suppressing high-temperature-induced hypocotyl elongation (Lee 
et al., 2014). Therefore, fca mutants with a continuous expression of the YUC8 gene display hyper-
elongated hypocotyls when exposed to 28 °C. At the same time, the H3K4me3 (considered an acti-
vating mark) demethylation of double mutant Jumonji C (JmjC) JMJ14 with its cofactor-producing 
enzyme cytosolic isocitrate dehydrogenases (cICDHs) showed suppression of several auxin-related 
genes, including YUC8, and resulted in reduced thermomorphogenesis capacity (Cui et al., 2021). 
These results suggest that distinctive histone demethylases can have either negative (FCA) or posi-
tive (JMJ14, JMJ15, and JMJ18) effects on the genes involved in thermomorphogenesis. Histone 
methylation can also affect alternative splicing (AS), and H3K36me3 enrichment was associated 


