

Edited by Steven P. Nolan

N-Heterocyclic Carbenes

Effective Tools for Organometallic Synthesis

Edited by
Steven P. Nolan

N-Heterocyclic Carbenes

Related Titles

<p>Grubbs, R.H., Wenzel, A.G., O'Leary, D.J., Khosravi, E. (eds.)</p> <p>Handbook of Metathesis</p> <p>Three Volumes</p> <p>2 Edition</p> <p>2015</p> <p>Print ISBN: 978-3-527-33424-7, also available in digital formats</p>	<p>Eicher, T., Hauptmann, S., Speicher, A.</p> <p>The Chemistry of Heterocycles</p> <p>Structure, Reactions, Synthesis, and Applications</p> <p>3 Edition</p> <p>2012</p> <p>Print ISBN: 978-3-527-32868-0</p>
<p>de Meijere, A., Bräse, S., Oestreich, M. (eds.)</p> <p>Metal-Catalyzed Cross-Coupling Reactions and More</p> <p>2014</p> <p>Print ISBN: 978-3-527-33154-3, also available in digital formats</p>	<p>Steinborn, D.</p> <p>Fundamentals of Organometallic Catalysis</p> <p>2012</p> <p>Print ISBN: 978-3-527-32716-4</p>
<p>Dalko, P. I. (ed.)</p> <p>Comprehensive Enantioselective Organocatalysis Catalysts, Reactions, and Applications</p> <p>2013</p> <p>Print ISBN: 978-3-527-33236-6, also available in digital formats</p>	<p>Kuhl, O.</p> <p>Functionalised N-Heterocyclic Carbene Complexes</p> <p>2010</p> <p>Print ISBN: 978-0-470-71215-3, also available in digital formats</p>
<p>Molnár, Á. (ed.)</p> <p>Palladium-Catalyzed Coupling Reactions</p> <p>Practical Aspects and Future Developments</p> <p>2013</p> <p>Print ISBN: 978-3-527-33254-0, also available in digital formats</p>	

Edited by Steven P. Nolan

N-Heterocyclic Carbenes

Effective Tools for Organometallic Synthesis

WILEY-VCH
Verlag GmbH & Co. KGaA

Editor**Prof. Steven P. Nolan**

EaStCHEM School of Chemistry
University of St Andrews
St Andrews
KY16 9ST
United Kingdom

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for**British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library.

**Bibliographic information published by the
Deutsche Nationalbibliothek**

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33490-2

ePDF ISBN: 978-3-527-67125-0

ePub ISBN: 978-3-527-67124-3

Mobi ISBN: 978-3-527-67123-6

oBook ISBN: 978-3-527-67122-9

Cover Design Bluesea Design, McLeese Lake, Canada

Typesetting Thomson Digital, Noida, India

Printing and Binding Markono Print Media Pte Ltd.,
Singapore

Printed on acid-free paper

Dedication:

*“To Carl: friend, mentor and not so old afterall...
And to Catherine, Maëlys and Kaelia, for always being there.”*

Contents

List of Contributors XVII

Preface XXI

1	<i>N</i>-Heterocyclic Carbenes	1
	<i>David J. Nelson and Steven P. Nolan</i>	
1.1	Introduction	1
1.2	Structure and Properties of NHCs	1
1.3	Abnormal Carbenes	5
1.4	Why Are NHCs Stable?	6
1.5	Bonding of NHCs to Metal Centers	8
1.6	Quantifying the Properties of NHCs	13
1.6.1	Steric Impact	13
1.6.2	Electronic Properties	14
1.7	<i>N</i> -Heterocyclic Carbenes in the Context of Other Stable Carbenes	16
1.8	Synthesis of NHCs	19
1.9	Salts and Adducts of NHCs	20
1.10	Summary	22
	References	22
2	Tuning and Quantifying Steric and Electronic Effects of	
	<i>N</i>-Heterocyclic Carbenes	25
	<i>Laura Falivene, Albert Poater, and Luigi Cavallo</i>	
2.1	Introduction	25
2.2	Steric Effects in NHC ligands	26
2.3	Electronic Effects in NHC Ligands	31
2.4	Conclusions	35
	References	35
3	Chiral Monodentate <i>N</i>-Heterocyclic Carbene Ligands in Asymmetric	
	Catalysis	39
	<i>Linglin Wu, Alvaro Salvador, and Reto Dorta</i>	
3.1	Introduction	39

3.2	NHC–Ru	40
3.2.1	Asymmetric Metathesis	40
3.2.2	Asymmetric Hydrogenation	44
3.2.3	Asymmetric Hydrosilylation	47
3.3	NHC–Rh	48
3.3.1	Asymmetric Catalysis Using Boronic Acids as Nucleophiles	48
3.3.2	Asymmetric Hydrosilylation	50
3.3.3	Asymmetric Hydroformylation	53
3.4	NHC–Ir	53
3.5	NHC–Ni	55
3.6	NHC–Pd	56
3.6.1	Asymmetric Intramolecular α -Arylation of Amides	56
3.6.2	Asymmetric Diamination	62
3.6.3	Other Asymmetric Catalysis Using NHC–Pd	63
3.7	NHC–Cu	65
3.7.1	Asymmetric Conjugate Addition	65
3.7.2	Asymmetric Allylic Substitution	67
3.7.3	Silyl Conjugate Addition	69
3.7.4	Enantioselective β -Boration	70
3.7.5	Asymmetric Hydrosilylation	72
3.7.6	Asymmetric Addition to Imines	73
3.8	NHC–Ag	75
3.9	NHC–Au	75
3.9.1	Enantioselective Cycloisomerizations	76
3.9.2	Enantioselective Hydrogenation	78
3.9.3	Enantioselective Cycloaddition	79
3.10	Conclusion	79
	References	80

4 (N-Heterocyclic Carbene)–Palladium Complexes in Catalysis 85

Mario Hoyos, Daniel Guest, and Oscar Navarro

4.1	Introduction	85
4.2	Cross-Coupling Reactions	85
4.2.1	Suzuki–Miyaura Coupling	85
4.2.2	Buchwald–Hartwig Aminations	88
4.2.3	Negishi Reactions	89
4.2.4	Hiyama Coupling	89
4.2.5	Kumada Coupling	90
4.2.6	Sonogashira Coupling	90
4.2.7	Heck Reaction	92
4.3	Chelates and Pincer Ligands	93
4.4	Asymmetric Catalysis	97

4.5	Oxidation Reactions	100
4.6	Telomerization, Oligomerization and Polymerization	102
4.7	Anticancer NHC–Pd Complexes	107
	References	107
5	NHC Platinum(0) Complexes: Unique Catalysts for the Hydrosilylation of Alkenes and Alkynes	<i>111</i>
	<i>Steve Dierick and István E. Markó</i>	
5.1	Introduction	111
5.2	Hydrosilylation of Alkenes: The Beginning	112
5.3	Initial Results with Phosphine Ligands	114
5.4	NHC Platinum(0) Complexes: The Breakthrough	115
5.4.1	Synthesis of NHC Platinum(0) Complexes and Kinetic Assays	115
5.4.2	Functional Group Tolerance and Substrate Scope	120
5.4.3	Mechanistic Studies	122
5.4.3.1	Activation Period	123
5.4.3.2	Catalyst Deactivation Pathways	125
5.4.3.3	Semiquantitative Kinetic Studies	127
5.4.3.4	Quantitative Kinetic Modeling	129
5.4.3.5	Conclusions	133
5.5	Hydrosilylation of Alkynes	133
5.5.1	Catalyst Screening and the Impact of NHCs on Regioselectivity	134
5.5.2	Influence of Silane on Regioselectivity	137
5.5.3	Second-Generation Catalyst for the Hydrosilylation of Alkynes	138
5.5.4	Functional Group Tolerance and Substrate Scope	139
5.5.5	Mechanistic Studies	142
5.5.5.1	Qualitative Kinetic Studies	142
5.5.5.2	Catalyst Activation and Deactivation Pathways	143
5.5.5.3	Proposed Mechanism	145
5.6	Conclusions	146
	References	146
6	Synthesis and Medicinal Properties of Silver–NHC Complexes and Imidazolium Salts	<i>151</i>
	<i>Patrick O. Wagers, Kerri L. Shelton, Matthew J. Panzner, Claire A. Tessier, and Wiley J. Youngs</i>	
6.1	Introduction	151
6.2	Silver–NHC Complexes as Antimicrobial Agents	152
6.3	Silver–NHC Complexes as Anticancer Agents	163
6.4	Conclusions	170
	References	171
7	Medical Applications of NHC–Gold and –Copper Complexes	<i>173</i>
	<i>Faïma Lazreg and Catherine S. J. Cazin</i>	
7.1	Introduction	173
7.2	Gold Antimicrobial Agents	173

7.3	Metals as Antitumor Reagents	178
7.4	Copper Complexes as Antitumoral Reagents	195
7.5	Conclusion	196
	References	197
8	NHC–Copper Complexes and their Applications	199
	<i>Faïma Lazreg and Catherine S. J. Cazin</i>	
8.1	Introduction	199
8.2	History of NHC–Copper Systems	199
8.3	Hydrosilylation	200
8.4	Allene Formation	202
8.5	1,4-Reduction	205
8.6	Conjugate Addition	206
8.6.1	Zinc Reagents	206
8.6.2	Grignard Reagents	207
8.6.3	Aluminum Reagents	209
8.6.4	Boron Reagents	209
8.7	Hydrothiolation, Hydroalkoxylation, Hydroamination	210
8.8	Carboxylation and Carbonylation (via Boronic Acids, CH Activation): CO ₂ Insertion	213
8.9	[3 + 2] Cycloaddition Reaction: Formation of Triazole	215
8.10	Allylic Substitution	217
8.10.1	Zinc Reagents	217
8.10.2	Grignard Reagents	217
8.10.3	Aluminum Reagents	219
8.10.4	Boron Reagents	220
8.11	Carbene and Nitrene Transfer	221
8.12	Boration Reaction	222
8.12.1	Boration of Ketone and Aldehyde	222
8.12.2	Boration of Alkene	223
8.12.3	Boration of Alkyne	224
8.12.4	Carbaboration	226
8.13	Olefination of Carbonyl Derivatives	226
8.14	Copper-Mediated Cross-Coupling Reaction	228
8.15	Fluoride Chemistry	230
8.16	Other Reactions	231
8.16.1	A ³ Coupling	231
8.16.2	Semihydrogenation of Alkyne	232
8.16.3	Borocarboxylation of Alkyne	233
8.16.4	Hydrocarboxylation of Alkyne	234
8.17	Transmetalation	235
8.18	Conclusion	237
	References	237

9	NHC–Au(I) Complexes: Synthesis, Activation, and Application	243
	<i>Thomas Wurm, Abdullah Mohamed Asiri, and A. Stephen K. Hashmi</i>	
9.1	Introduction	243
9.2	Synthesis of NHC–Gold(I) Chlorides	244
9.3	Activation of NHC–Au(I) Chlorides	248
9.4	Applications of NHC–Au(I) Catalysts	253
9.4.1	Improvement of Catalyst Stability During Gold-Catalyzed Reactions Due to the Use of NHC Ligands	253
9.4.2	Improvement of Gold Catalysis Due to Tuning the Steric Properties of the NHC Ligands Used	256
9.4.3	Improvement of Gold Catalysis by Tuning the Electronic Properties of the NHC Ligands Used	257
9.4.4	Alteration of the Reactivity of Gold Catalysis by Switching from Phosphine to NHC Ligands	258
9.4.5	Enantioselective Gold Catalyzed Transformations Based on Chiral, Enantiopure NHC-Based Catalysts	264
9.5	Conclusion	266
	References	267
10	Recent Developments in the Synthesis and Applications of Rhodium and Iridium Complexes Bearing <i>N</i>-Heterocyclic Carbene Ligands	271
	<i>Macarena Poyatos, Gregorio Guisado-Barrios, and Eduardo Peris</i>	
10.1	Introduction	271
10.2	Rh– and Ir–NHC-Based Complexes: Structural and Electronic Features	271
10.2.1	Mono-NHCs	271
10.2.2	Chelating NHCs	273
10.2.2.1	Bidentate Chelating bis-NHC Complexes	273
10.2.2.2	Chelating Chiral bis-NHC Complexes	279
10.2.2.3	Donor-Functionalized Chelating NHC Complexes	280
10.2.3	Bridging NHCs	282
10.2.3.1	Complexes with NHC Ligands with Facially Opposed Coordination Abilities	285
10.3	Catalytic Applications of Rhodium and Iridium NHC-Based Complexes	288
10.3.1	Reductions	288
10.3.1.1	Transfer Hydrogenation	288
10.3.1.2	Reductions with H ₂	290
10.3.1.3	Borrowing-Hydrogen Processes	292
10.3.1.4	Hydrosilylation	292
10.3.2	Arylation and Borylation Reactions with Organoboron Reagents	293
10.3.3	Oxidations	295
10.3.3.1	Dehydrogenation of Alcohols	295
10.3.3.2	Dehydrogenation of Alkanes	295

10.3.3.3	Water Oxidation	296
10.3.4	Other Important Catalytic Processes	296
10.3.4.1	H/D Exchange Reactions	296
10.3.4.2	Dehydrogenation of Saturated CC and BN Bonds	296
10.3.4.3	Hydrothiolation of Alkynes	297
10.3.4.4	Cis-Selected Cyclopropanation Reactions	298
10.3.4.5	Hydroamination of Alkynes	298
10.3.4.6	Magnetization Transfer from Para-Hydrogen	298
10.4	Abbreviations	298
	References	299
11	<i>N</i>-Heterocyclic Carbene–Ruthenium Complexes: A Prominent Breakthrough in Metathesis Reactions	307
	<i>Sudheendran Mavila and N. Gabriel Lemcoff</i>	
11.1	Introduction	307
11.2	Variations of NHC in Ruthenium Complexes	313
11.3	Modifications in Imidazol- and Imidazolin-2-ylidene Ligands	313
11.4	Influence of Symmetrically 1,3-Substituted <i>N</i> -Heterocyclic Carbene in Metathesis	313
11.4.1	<i>N, N'</i> -Dialkyl Substituted <i>N</i> -Heterocyclic Carbene Complexes	313
11.4.2	<i>N, N'</i> -Diaryl Substituted <i>N</i> -Heterocyclic Carbene Complexes	314
11.5	Unsymmetrically <i>N,N'</i> -Substituted <i>N</i> -Heterocyclic Carbenes	319
11.5.1	<i>N</i> -Alkyl- <i>N'</i> -Aryl Substituted <i>N</i> -Heterocyclic Carbene Complexes	319
11.5.2	<i>N, N'</i> -Diaryl-Substituted <i>N</i> -Heterocyclic Carbene Complexes	323
11.5.3	Influence of 4,5-Substituted <i>N</i> -Heterocyclic Carbenes in Metathesis	325
11.5.4	Four-, Six-, and Seven-Membered <i>N</i> -Heterocyclic Carbenes	327
11.5.5	Heteroatom Containing <i>N</i> -Heterocyclic Carbenes	328
11.5.6	<i>N</i> -Heterocyclic Carbene Bearing Chiral Ru Complexes	330
11.5.7	Chiral Monodentate <i>N</i> -Heterocyclic Carbenes	330
11.5.8	Chiral Bidentate <i>N</i> -Heterocyclic Carbenes	334
11.5.9	NHCs for Metathesis in Water and Protic Solvents	335
	References	337
12	<i>Ruthenium N</i>-Heterocyclic Carbene Complexes for the Catalysis of Nonmetathesis Organic Transformations	341
	<i>Leonid Schwartsburg and Michael K. Whittlesey</i>	
12.1	Introduction	341
12.2	Transfer Hydrogenation	341
12.3	Direct Hydrogenation (and Hydrosilylation)	346
12.4	Borrowing Hydrogen	351
12.5	Alcohol Racemization	356
12.6	Arylation	357

12.7	Reactions of Alkynes	359
12.8	Isomerization of C=C Bonds	360
12.9	Allylic Substitution Reactions	361
12.10	Miscellaneous Reactions	363
12.11	Conclusions	365
	References	365
13	Nickel Complexes of <i>N</i>-Heterocyclic Carbenes	371
	<i>M. Taylor Haynes II, Evan P. Jackson, and John Montgomery</i>	
13.1	Introduction	371
13.2	Nickel–NHC Catalysts	372
13.2.1	<i>In Situ</i> Methods to Generate Ni–NHC Complexes	372
13.2.2	Discrete Ni(0)–NHC Catalysts	373
13.2.2.1	Catalysts Derived from Nickel(0) and Nickel(II) Sources	373
13.2.2.2	Nickel(0)–NHC Complexes Stabilized by π Systems	373
13.2.3	Discrete Ni(I)–NHC Catalysts	374
13.2.4	Discrete Ni(II)–NHC Catalysts	374
13.3	Cross-Coupling Reactions	376
13.3.1	Carbon–Carbon Bond Forming Reactions	376
13.3.1.1	Kumada–Corriu Coupling Reaction	376
13.3.1.2	Suzuki–Miyaura Coupling Reaction	378
13.3.1.3	Negishi Coupling Reaction	381
13.3.1.4	Heck Reaction	381
13.3.2	Carbon–Heteroatom Bond-Forming Reactions	382
13.3.2.1	Carbon–Nitrogen Bond-Forming Reactions	382
13.3.2.2	Carbon–Sulfur Bond-Forming Reactions	382
13.4	Oxidation/Reduction Reactions	383
13.4.1	Dehalogenation	383
13.4.2	Imine Reduction	383
13.4.3	Alcohol Oxidation	384
13.4.4	Aryl Ether Reduction	384
13.5	Hydrosilylation	385
13.5.1	Hydrosilylation of Alkynes	385
13.5.2	Hydrosilylation of Carbonyls	385
13.6	Cycloadditions	386
13.6.1	[2+2+2] Cycloaddition	386
13.6.1.1	Diynes and Carbon Dioxide	386
13.6.1.2	Diynes and Aldehydes	387
13.6.1.3	Enynes and Aldehydes/Ketones	387
13.6.1.4	Heterocycles From [2+2+2] Cycloadditions	387
13.6.1.5	Carbocycles from Aryne Intermediates	388
13.6.2	[3+2] Cycloaddition	388
13.6.3	[4+2+2] Cycloaddition	389
13.7	Isomerization	390

13.8	Reductive Coupling 390
13.8.1	Aldehydes and Dienes 390
13.8.2	Aldehydes and Alkynes 391
13.8.3	Aldehydes and Allenes 392
13.8.4	Aldehydes and Norbornene 393
13.9	Conclusions and Outlook 393
	References 394
14	Coordination Chemistry, Reactivity, and Applications of Early Transition Metal Complexes Bearing <i>N</i>-Heterocyclic Carbene Ligands 397
	<i>Stéphane Bellemín-Lapönnaz and Samuel Dagorne</i>
14.1	Introduction 397
14.2	Group 3 Metal Complexes 398
14.3	Group 4 Metal Complexes 402
14.4	Group 5 Metal Complexes 411
14.5	Group 6 Metal Complexes 413
14.6	Group 7 Metal Complexes 418
14.7	Conclusion 421
	References 422
15	NHC Complexes of Main Group Elements: Novel Structures, Reactivity, and Catalytic Behavior 427
	<i>Luke J. Murphy, Katherine N. Robertson, Jason D. Masuda, and Jason A. C. Clyburne</i>
15.1	Introduction 427
15.2	Structures of Common NHCs for Main Group Chemistry 428
15.3	NHC Complexes of Group 1 Elements 429
15.3.1	Lithium 429
15.3.2	Sodium 432
15.3.3	Potassium 433
15.4	NHC Complexes of Group 2 Elements 434
15.4.1	Beryllium 434
15.4.2	Magnesium 436
15.4.3	Calcium, Strontium, and Barium 437
15.5	NHC Complexes of Group 13 Elements 438
15.5.1	Boron 438
15.5.1.1	Chemistry of NHCs with Boranes 439
15.5.1.2	NHC–Boranes as Hydrogen Sources 441
15.5.1.3	Frustrated Lewis Pairs 444
15.5.1.4	Chemistry of NHCs and Charged Boron Compounds 446
15.5.1.5	NHC Chemistry of Other Boron Compounds 448
15.5.2	Aluminum 452
15.5.3	Gallium 454
15.5.4	Indium and Thallium 456

15.6	NHC Complexes of Group 14 Elements	456
15.6.1	Carbon	456
15.6.2	Silicon	459
15.6.3	Germanium	464
15.6.4	Tin and Lead	466
15.7	NHC Complexes of Group 15 Elements	467
15.7.1	Nitrogen	467
15.7.2	Phosphorus	468
15.7.2.1	Phosphorus(0)	468
15.7.2.2	Phosphorus(I)	469
15.7.2.3	Phosphorus(III)	471
15.7.2.4	Phosphorus(V)	472
15.7.3	Arsenic and Antimony	473
15.8	NHC Complexes of Group 16 Elements	474
15.8.1	Oxygen and Sulfur	474
15.8.2	Selenium	474
15.8.3	Tellurium	475
15.9	NHC Complexes of Group 17 Elements	476
15.10	NHC Reactivity with Protic Reagents	477
15.11	Cyclic Alkyl Amino Carbenes: Closely Related Cyclic Cousins to NHCs with Similar and Differing Reactivities	478
15.11.1	Boron	479
15.11.2	Carbon	481
15.11.3	Silicon	482
15.11.4	Nitrogen	483
15.11.5	Phosphorus	483
15.12	Summary and Outlook	487
	References	488
16	Catalysis with Acyclic Aminocarbene Ligands: Alternatives to NHCs with Distinct Steric and Electronic Properties	499
	<i>LeGrande M. Slaughter</i>	
16.1	Introduction	499
16.2	Metalation Routes of Acyclic Carbene Ligands	500
16.3	Ligand Properties of Acyclic Carbenes	502
16.3.1	Donor Ability	502
16.3.2	Structural Properties	503
16.3.3	Decomposition Routes	504
16.4	Catalytic Applications	505
16.4.1	Coupling Reactions	505
16.4.1.1	Suzuki–Miyaura Coupling	505
16.4.1.2	Sonogashira Coupling	508
16.4.1.3	Heck Coupling	508
16.4.1.4	Buchwald–Hartwig Amination	509
16.4.2	Allylic Alkylations	509

16.4.3	Olefin Metathesis	510
16.4.4	Gold Catalysis	510
16.4.4.1	Enyne Cyclizations	511
16.4.4.2	Allene and Alkene Hydrofunctionalizations	512
16.4.4.3	Alkyne Functionalizations	512
16.4.5	Enantioselective Catalysis with Chiral Acyclic Carbenes	513
16.4.5.1	Catalysis with Chiral ADC Ligands Derived from Isocyanides	514
16.4.5.2	Catalysis with Chiral ADC Ligands Derived from Amidinium Precursors	516
16.5	Frontiers in Acyclic Carbene Chemistry	516
16.6	Conclusion	521
	References	521
	Index	525

List of Contributors

Abdullah Mohamed Asiri

King Abdulaziz University
Center of Excellence for Advanced
Materials Research (CEAMR)
Jeddah 21589
P.O. Box 80203
Saudi Arabia

Stéphane Bellemín-Laponnaz

Université de Strasbourg-CNRS
Institut de Physique et Chimie des
Materiaux de Strasbourg
23 rue du Loess
67034 Strasbourg Cedex 2
France

and

Université de Strasbourg-CNRS
Institut de Chimie de Strasbourg
1 rue Blaise Pascal
67000 Strasbourg
France

Luigi Cavallo

King Abdullah University of Science
and Technology (KAUST)
Chemical and Life Sciences and
Engineering
Kaust Catalysis Center
Thuwal 23955-6900
Saudi Arabia

Catherine S.J. Cazin

University of St Andrews
EaStCHEM School of Chemistry
Purdie Building, North Haugh
St Andrews, Fife KY16 9ST
UK

Jason A.C. Clyburne

Saint Mary's University
Department of Chemistry
The Atlantic Centre for Green
Chemistry
Halifax
Nova Scotia B3H 3C3
Canada

Samuel Dagorne

Université de Strasbourg-CNRS
Institut de Physique et Chimie des
Materiaux de Strasbourg
23 rue du Loess
67034 Strasbourg Cedex 2
France

and

Université de Strasbourg-CNRS
Institut de Chimie de Strasbourg
1 rue Blaise Pascal
67000 Strasbourg
France

Steve Dierick

Université Catholique de Louvain
Laboratoire de Chimie Organique et
Médicinale
Place Louis Pasteur, 1, bte L4.01.02
B-1348 Louvain-la-Neuve
Belgium

Reto Dorta

University of Western Australia
School of Chemistry and
Biochemistry
35 Stirling Highway
6009 Crawley, WA
Australia

Laura Falivene

Università di Salerno
Dipartimento di Chimica e Biologia
Via Ponte don Melillo
84084 Fisciano
Italy

Daniel Guest

University of Sussex
Department of Chemistry
Brighton
BN1 9QJ
UK

Gregorio Guisado-Barrios

Universitat Jaume I
Departamento de Química
Inorgánica y Orgánica
Avda. Vicente Sos Baynat s/n
Castellón, E-12071
Spain

A. Stephen K. Hashmi

Ruprecht Karls University
Heidelberg
Institute of Organic Chemistry
Im Neuenheimer Feld 270
69120 Heidelberg
Germany

M. Taylor Haynes II

University of Michigan
Department of Chemistry
930 N. University
Ann Arbor, MI 48109-1055
USA

Mario Hoyos

CSIC
Instituto de Ciencia y Tecnología de
Polímeros
Juan de la Cierva, 3
28006 Madrid
Spain

Evan P. Jackson

University of Michigan
Department of Chemistry
930 N. University
Ann Arbor, MI 48109-1055
USA

Faima Lazreg

University of St Andrews
EaStCHEM School of Chemistry
Purdie Building, North Haugh
St Andrews, Fife KY16 9ST
UK

N. Gabriel Lemcoff

Ben-Gurion University
Department of Chemistry
P.O. Box 653
Beer-Sheva 84105
Israel

István E. Markó

Université Catholique de Louvain
Laboratoire de Chimie Organique et
Médicinale
Place Louis Pasteur, 1, bte L4.01.02
B-1348 Louvain-la-Neuve
Belgium

Jason D. Masuda

Saint Mary's University
 Department of Chemistry
 The Atlantic Centre for Green
 Chemistry
 Halifax
 Nova Scotia B3H 3C3
 Canada

Sudheendran Mavila

Ben-Gurion University
 Department of Chemistry
 P.O. Box 653
 Beer-Sheva 84105
 Israel

John Montgomery

University of Michigan
 Department of Chemistry
 930 N. University
 Ann Arbor, MI 48109-1055
 USA

Luke J. Murphy

Saint Mary's University
 Department of Chemistry
 The Atlantic Centre for Green
 Chemistry
 Halifax
 Nova Scotia B3H 3C3
 Canada

Oscar Navarro

University of Sussex
 Department of Chemistry
 Brighton
 BN1 9QJ
 UK

David J. Nelson

University of St Andrews
 EaStCHEM School of Chemistry
 North Haugh, St Andrews
 Fife KY16 9ST
 UK

Steven P. Nolan

University of St Andrews
 EaStCHEM School of Chemistry
 St Andrews
 KY16 9ST
 United Kingdom

Matthew J. Panzner

The University of Akron
 Department of Chemistry
 190 E Buchtel Commons
 Akron, OH 44325-3601
 USA

Eduardo Peris

Universitat Jaume I
 Departamento de Química
 Inorgánica y Orgánica
 Avda. Vicente Sos Baynat s/n
 Castellón, E-12071
 Spain

Albert Poater

Universitat de Girona
 Institut de Química Computacional
 i Catàlisi
 Departament de Química
 Campus de Montilivi
 E-17071 Girona
 Spain

Macarena Poyatos

Universitat Jaume I
 Departamento de Química
 Inorgánica y Orgánica
 Avda. Vicente Sos Baynat s/n
 Castellón, E-12071
 Spain

Katherine N. Robertson

Saint Mary's University
Department of Chemistry
The Atlantic Centre for Green
Chemistry
Halifax
Nova Scotia B3H 3C3
Canada

Alvaro Salvador

University of Western Australia
School of Chemistry and
Biochemistry
35 Stirling Highway
6009 Crawley, WA
Australia

Leonid Schwartsburg

University of Bath
Department of Chemistry
Claverton Down
Bath BA2 7AY
UK

Kerri L. Shelton

The University of Akron
Department of Chemistry
190 E Buchtel Commons
Akron, OH 44325-3601
USA

LeGrande M. Slaughter

University of North Texas
Department of Chemistry
1155 Union Circle # 305070
Denton, TX 76203-5070
USA

Claire A. Tessier

The University of Akron
Department of Chemistry
190 E Buchtel Commons
Akron, OH 44325-3601
USA

Patrick O. Wagers

The University of Akron
Department of Chemistry
190 E Buchtel Commons
Akron, OH 44325-3601
USA

Michael K. Whittlesey

University of Bath
Department of Chemistry
Claverton Down
Bath BA2 7AY
UK

Linglin Wu

University of Western Australia
School of Chemistry and
Biochemistry
35 Stirling Highway
6009 Crawley, WA
Australia

Thomas Wurm

Ruprecht Karls University
Heidelberg
Institute of Organic Chemistry
Im Neuenheimer Feld 270
69120 Heidelberg
Germany

Wiley J. Youngs

The University of Akron
Department of Chemistry
190 E Buchtel Commons
Akron, OH 44325-3601
USA

Preface

It has been eight years since the first monograph on *N*-heterocyclic carbenes (NHC) appeared [1]. In this rather short timespan the uses of NHCs in their many incarnations have contributed to advances in numerous areas of synthetic chemistry. These initial *curiosities* [2] have become workhorses in synthesis and homogeneous catalysis [3]. Catalytic studies nowadays almost always include the testing of a NHC or NHC precursor as part of a ligand/catalyst screening.

The thinking involving NHC in catalysis has also evolved considerably since the original *in situ* catalyst generation protocols and tertiary phosphine *mimic* analogies. The stabilizing effects of NHCs on organometallic complexes have permitted lower catalyst loading operations and unique mechanistic insights. The area has evolved in a very “green” direction and this trend I hope will continue as well-defined systems have been identified that belong within or sit off-cycle as catalyst reservoirs in important catalytic reactions. The use of these now almost ubiquitous ligands has helped the field better understand fundamental transformations, such as C–H activation and more interestingly C–H bond functionalization [4].

The present monograph presents important developments in metal-mediated transformations. I hope established and younger researchers alike will find here inspiration to take the past discoveries as a foundation to design novel scaffolds with original properties and deploy these in known and undiscovered catalysis and synthetic uses.

I will not use this preface to perform an exercise in *crystal-ball-gazing* and pontificate on what should or should not be explored as performing research in this area has made me a more humble and regularly amazed researcher. As many have, I came to this field by accident. Serendipity does and continues to play an important role in a number of developments in this now very fruitful (some may call it mature) area of research. I truly believe many more surprises are in store for us facing the pleasures and frustrations of exploring this fascinating area of Science.

I would like to thank Mrs. Carolyn Busby and Dr. David Nelson for their editorial assistance and I am grateful to the contributing authors who are true authorities in this still very rapidly evolving field.

St Andrews

Steven P. Nolan

February 2014

References

- 1 Nolan, S.P. (ed.) (2006) *N-Heterocyclic Carbenes in Synthesis*, John Wiley & Sons, New York.
- 2 For the first NHC, see: Arduengo, A.J., III, Harlow, R.L., and Kline, M. (1991) *J. Am. Chem. Soc.*, **113**, 361 and for an earlier example of carbene; Igau, A., Grutzmacher, H., Baceiredo, A., and Bertrand, G. (1988) *J. Am. Chem. Soc.*, **110**, 6463.
- 3 Díez-González, S., Marion, N., and Nolan, S.P. (2009) *Chem. Rev.*, **109**, 3612.
- 4 (a) For two examples of TM-NHC-catalyzed C–H bond carboxylation, see: Boogaerts, I.I.F. and Nolan, S.P. (2010) *J. Am. Chem. Soc.*, **132**, 8858; (b) Boogaerts, I.F.F., Fortman, G.C., Furst, M.R.L., Cazin, C.S.J., and Nolan, S.P. (2010) *Angew. Chem., Int. Ed.*, **44**, 8674.

1

***N*-Heterocyclic Carbenes**

David J. Nelson and Steven P. Nolan

1.1

Introduction

Over the past few decades, stable carbenes have received a great deal of attention from a number of researchers [1]. In the singlet carbene compounds, a carbon center bears a lone pair of electrons in an sp^2 hybridized orbital while a p orbital remains vacant (Figure 1.1a). Triplet carbenes are also known, where each of the two electrons occupy a degenerate p orbital (Figure 1.1b).

N-Heterocyclic carbenes (NHCs) are a specific form of this class of compound, where the carbene is located on an *N*-heterocyclic scaffold. While these species were initially not widely applied in chemistry, they have now been employed in a broad range of fields, including organocatalysis [2] and organometallic chemistry [3]. Hundreds of different NHCs are known in the literature, and much has been learned about their properties and reactivity. Various experimental and theoretical techniques have been applied toward this aim, including density functional theory (DFT) studies, which have allowed an insight into the bonding and orbital arrangements in NHCs. This chapter details the discovery and isolation of stable NHCs, the characterization of the electronic nature of this species, the factors that render them stable, and the nature of their bonding to metal centers. In addition, some of the ways in which the electronic and steric properties of these species can be explored and quantified will be discussed.

1.2

Structure and Properties of NHCs

Prior to the isolation of stable NHCs, some information was known about the properties of these species. As early as the 1960s, researchers such as Wanzlick were active in probing the reactivity of NHCs generated *in situ* from, for example, the thermolysis of the corresponding dimers [4]. In this way, the nucleophilic reactivity of these species with a number of reagents was characterized

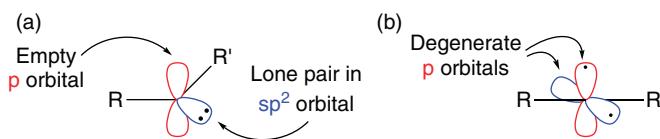
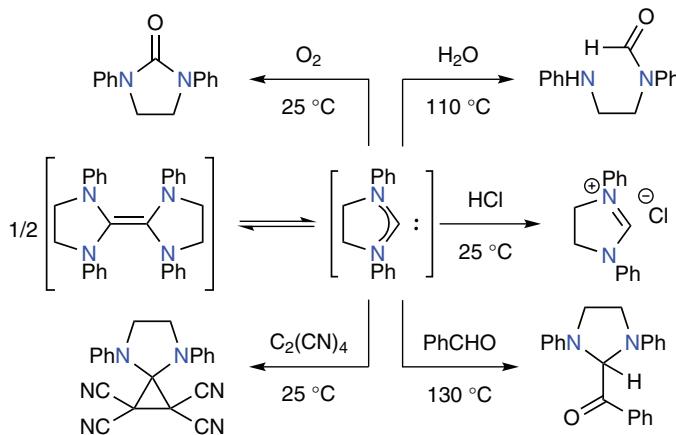
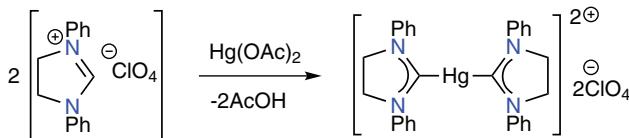
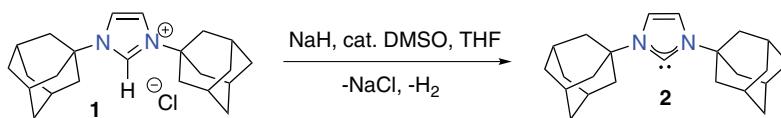




Figure 1.1 (a) Singlet carbenes; (b) triplet carbenes.

(Scheme 1.1). In addition, reaction with HCl yielded the corresponding imidazolium chloride salts. Metal–carbene complexes were also prepared by Wanzlick and Schönherr, without isolation of the free carbene itself (Scheme 1.2) [5].


Scheme 1.1 Early studies of the reactivity of N-heterocyclic carbenes. [4].

Scheme 1.2 Synthesis of an NHC–mercury complex [5].

The isolation of stable NHCs was a key event in the chemistry of this valuable class of compound, as this allowed the preparation of material for detailed characterization. In addition, many modern syntheses of NHC–metal complexes rely on the use of isolated NHCs. In 1991, when Arduengo *et al.* exposed imidazolium chloride **1** to NaH and catalytic DMSO in THF, stable carbene **2** was isolated (Scheme 1.3) [6]. This species, also known as IAd, could be characterized by various methods, including X-ray crystallography and NMR spectroscopy.

Initially, it was unclear whether steric or electronic effects were the source of the stability of **2**. A subsequent publication from Arduengo *et al.* reported a further four stable carbenes **3–6** (**3** is typically referred to as ITME, and **4** as IMes) with various *N*-substituents, which were prepared in the same manner as **2**.

Scheme 1.3 Synthesis of IAd [6].

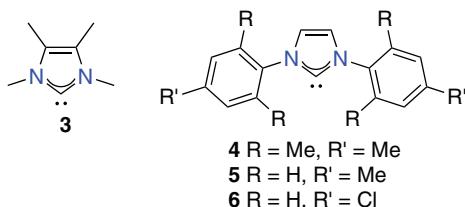
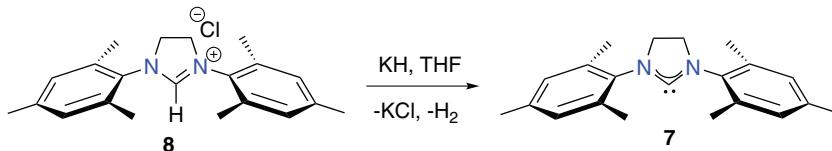
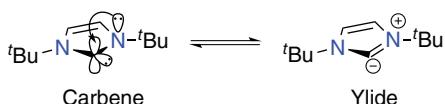



Figure 1.2 Stable NHCs isolated by Arduengo *et al.* [7].


(Figure 1.2) [7]. Notably, these were far less sterically hindered, suggesting that the origin of their stability was electronic, rather than steric, or was a combination of these factors.

The aromatic nature of the imidazolium ring was thought to be critical to the stability of NHCs. However, in 1995, NHC 7 (SIMes) bearing a saturated backbone and bulky mesityl *N*-substituents was obtained by deprotonation of the corresponding imidazolium chloride 8, and was characterized by Arduengo *et al.* (Scheme 1.4) [8].

Scheme 1.4 Synthesis of SIMes [8].

With a robust route to synthesize and isolate free carbenes in hand, several researchers applied a number of tools to investigate their properties and reactivity. A thorough understanding of these properties is essential to understand how these species can be applied in chemistry, and to inform the rational design of new NHCs. X-ray photoelectron spectroscopy (XPS) and DFT studies of a model carbene 9 ($\text{I}^{\text{t}}\text{Bu}$) confirmed the presence of a lone pair of electrons in the plane of the imidazolylidene ring, and an empty *p* orbital on the same carbon center [9]. However, there was initially some debate as to whether the carbene was best considered as a carbene or as an ylide (Figure 1.3); that is, whether a resonance contribution from the lone pair centered on nitrogen was a part of the bonding arrangement in NHCs. Understanding this aspect of the structure of NHCs was important in order to understand both how the structure of the

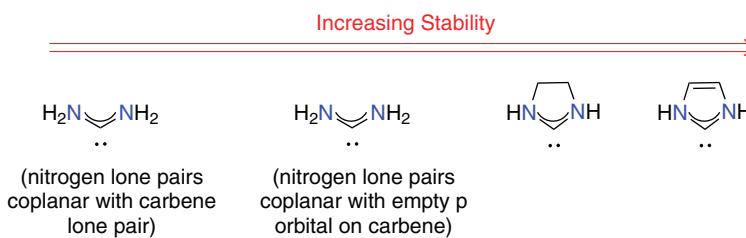
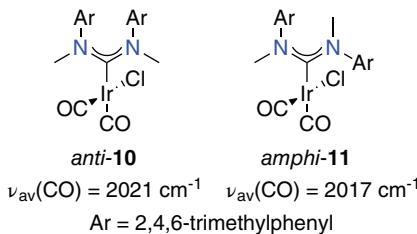


Figure 1.3 Carbenic and ylidic resonance forms of *N*-heterocyclic carbenes (**9** (*t*^tBu)) is pictured).


NHC might affect reactivity, as well as allowing for the tuning of reactivity *via* structural modifications.

Initial studies by Dixon and Arduengo suggested that the ylidic form was not a major contributor to the structure of imidazolium-based NHCs [10]. Subsequent electron distribution mapping of a model carbene, **3**-*d*₁₂ (ITME-*d*₁₂) using X-ray and neutron radiation also suggested very little contribution from the ylidic form; these methods relied on mapping the electron distribution 0.7 Å above the plane of the NHC, which the authors proposed should indicate whether *p*_π-*p*_π delocalization occurred. The lengthened C–N bonds in imidazolylidenes compared to the corresponding imidazolium salts were proposed to be further evidence of negligible interaction of the nitrogen lone pairs with the empty *p* orbital at the carbene. Visualization of the electron density using this method showed *π* electron density between C4 and C5 corresponding to the double bond, and the *p* electrons of the nitrogen; no evidence for an ylidic form was found. In addition, the ¹³C shielding tensor σ_{11} was revealed to be negative, suggesting that the carbenic resonance form was dominant [11]. However, later work by Boehme and Frenking suggested that the method of electron density mapping that was employed was not appropriate, as it suggested negligible *π*-delocalization in pyridine and pyrrole, which are known to be aromatic [12]. *In silico* calculations by these authors, particularly those involving natural bond order (NBO) calculations, strongly suggested that *p*_π-*p*_π delocalization was significant in both imidazol-2-ylidenes and imidazolidin-2-ylidenes, but more pronounced in the former.

A detailed study, published at the same time by Heinemann *et al.*, explored this *p*_π-*p*_π delocalization in NHCs, and aimed to understand whether imidazol-2-ylidenes were aromatic species [13]. Three key characteristics of NHCs were explored: thermodynamic stability, geometric structure, and the charge distribution. Isodesmic calculations on acyclic carbenes and aminocarbenes showed that even when conjugation was not possible, the carbene was stabilized by adjacent amino groups due to their *σ* electron-withdrawing properties. Conjugation further increased stabilization; imidazolidin-2-ylidenes were more stable again, while imidazol-2-ylidenes were most stable (Figure 1.4). Similarly, structural data were consistent with *π*-delocalization. Calculated magnetic susceptibility anisotropies ($\Delta\chi$) were suggestive of cyclic *π*-delocalization, but to a lesser extent than in benzene. All of these results strongly suggest the involvement of *p*_π-*p*_π delocalization from the nitrogen lone pair into the empty orbital at the carbene, and that imidazol-2-ylidenes show some aromatic character. In a later study by Bielawski and coworkers, it was shown that the electronic properties of acyclic

Figure 1.4 Stability of some carbenes, as determined by isodesmic calculations for the reaction of each carbene with methane to generate NHC-H₂ and dihydrocarbene [13].

Figure 1.5 $[\text{IrCl}(\text{CO})_2(\text{L})]$ complexes in which the differing degrees of $p_{\pi}-p_{\pi}$ conjugation affects the electronic properties of the metal center [14].

diaminocarbenes (as probed using the infrared spectra of $[\text{IrCl}(\text{CO})_2(\text{L})]$ complexes **10** and **11**, shown later) were dependent on the ligand conformation, due to differing degrees of $p_{\pi}-p_{\pi}$ delocalization (Figure 1.5) [14].

Clearly, this delocalization is a key component of the bonding in NHCs, and for this reason NHCs are typically drawn with the inclusion of a curve between the nitrogen atoms in order to emphasize this aspect of their electronic structure.

1.3

Abnormal Carbenes

While the majority of reports of imidazolylidenes bound to metal centers involve coordination *via* the C2 position (i.e., imidazol-2-ylidenes), there has been recent and growing interest in so-called abnormal carbenes, often referred to as aNHCs, where binding occurs *via* the C4 or C5 position (Figure 1.6) [15]. Often the substitution pattern is chosen to block the C2 position. The resulting imidazolylidenes are stabilized by only one nitrogen moiety, as the π -donating and σ -accepting properties of the second nitrogen atom are greatly reduced. Such species provide great scope for achieving different properties from so-called normal carbenes.

These species tend to show quite different electronic properties to their normally bound congeners. They are considerably more electron-donating due to

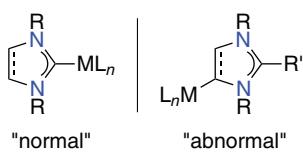


Figure 1.6 Normally versus abnormally bound imidazolylidenes.

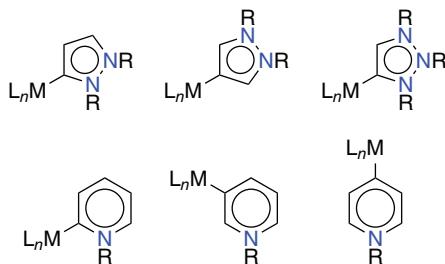


Figure 1.7 NHC species with reduced heteroatom stabilization [15].

the reduced σ -withdrawal from the carbene center, as evidenced by calculated Tolman electronic parameter (TEP) [16] values (shown later) for a range of these species [17]. In addition, they have been shown to be more π -accepting (due to reduced $p_{\pi}-p_{\pi}$ delocalization), as determined by analysis of the ^{31}P chemical shifts of the corresponding phosphinidene adducts [18]. The different properties of these ligands will naturally confer different properties and reactivity to the metal centers to which they are coordinated.

Other species with reduced heteroatom stabilization are also known; these include isomers of imidazolylidenes (e.g., 1,2-imidazol-3-ylidenes, 1,2-imidazol-4-ylidenes), 1,2,3-triazol-4-ylidenes, and pyrimidazolylidenes (Figure 1.7) [15].

1.4

Why Are NHCs Stable?

Prior to the isolation of NHCs, various studies were carried out on species generated *in situ* [4]. However, once Arduengo succeeded in isolating a series of stable species, attention naturally turned to identifying *why* some species were stable and isolable, while others were not.

Heinemann and Thiel [19] and Carter and Goddard [20] both applied theoretical methods to investigate the singlet–triplet gap in prototypical carbene compounds, showing that this factor was key in the stability of NHCs. Triplet carbenes are known to be much less stable than singlet species [21]. Some of the factors affecting the singlet–triplet gap have been established for some time, such as the influence of the geometry of the carbene and the presence of