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Preface

It has been eight years since the first monograph on N-heterocyclic carbenes
(NHC) appeared [1]. In this rather short timespan the uses of NHCs in their
many incarnations have contributed to advances in numerous areas of synthetic
chemistry. These initial curiosities [2] have become workhorses in synthesis and
homogeneous catalysis [3]. Catalytic studies nowadays almost always include the
testing of a NHC or NHC precursor as part of a ligand/catalyst screening.
The thinking involving NHC in catalysis has also evolved considerably since

the original in situ catalyst generation protocols and tertiary phosphine mimic
analogies. The stabilizing effects of NHCs on organometallic complexes have
permitted lower catalyst loading operations and unique mechanistic insights.
The area has evolved in a very “green” direction and this trend I hope will con-
tinue as well-defined systems have been identified that belong within or sit off-
cycle as catalyst reservoirs in important catalytic reactions. The use of these now
almost ubiquitous ligands has helped the field better understand fundamental
transformations, such as C-H activation and more interestingly C-H bond
functionalization [4].
The present monograph presents important developments in metal-mediated

transformations. I hope established and younger researchers alike will find here
inspiration to take the past discoveries as a foundation to design novel scaffolds
with original properties and deploy these in known and undiscovered catalysis
and synthetic uses.
I will not use this preface to perform an exercise in crystal-ball-gazing and

pontificate on what should or should not be explored as performing research in
this area has made me a more humble and regularly amazed researcher. As many
have, I came to this field by accident. Serendipity does and continues to play an
important role in a number of developments in this now very fruitful (some may
call it mature) area of research. I truly believe many more surprises are in store
for us facing the pleasures and frustrations of exploring this fascinating area of
Science.
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1
N-Heterocyclic Carbenes
David J. Nelson and Steven P. Nolan

1.1
Introduction

Over the past few decades, stable carbenes have received a great deal of attention
from a number of researchers [1]. In the singlet carbene compounds, a carbon
center bears a lone pair of electrons in an sp2 hybridized orbital while a p orbital
remains vacant (Figure 1.1a). Triplet carbenes are also known, where each of the
two electrons occupy a degenerate p orbital (Figure 1.1b).
N-Heterocyclic carbenes (NHCs) are a specific form of this class of com-

pound, where the carbene is located on an N-heterocyclic scaffold. While
these species were initially not widely applied in chemistry, they have now
been employed in a broad range of fields, including organocatalysis [2] and
organometallic chemistry [3]. Hundreds of different NHCs are known in the
literature, and much has been learned about their properties and reactivity.
Various experimental and theoretical techniques have been applied toward
this aim, including density functional theory (DFT) studies, which have
allowed an insight into the bonding and orbital arrangements in NHCs. This
chapter details the discovery and isolation of stable NHCs, the characteriza-
tion of the electronic nature of this species, the factors that render them sta-
ble, and the nature of their bonding to metal centers. In addition, some of the
ways in which the electronic and steric properties of these species can be
explored and quantified will be discussed.

1.2
Structure and Properties of NHCs

Prior to the isolation of stable NHCs, some information was known about the
properties of these species. As early as the 1960s, researchers such as Wanzlick
were active in probing the reactivity of NHCs generated in situ from, for exam-
ple, the thermolysis of the corresponding dimers [4]. In this way, the nucleo-
philic reactivity of these species with a number of reagents was characterized
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(Scheme 1.1). In addition, reaction with HCl yielded the corresponding imidazo-
lium chloride salts. Metal–carbene complexes were also prepared by Wanzlick
and Schönherr, without isolation of the free carbene itself (Scheme 1.2) [5].

The isolation of stable NHCs was a key event in the chemistry of this valuable
class of compound, as this allowed the preparation of material for detailed char-
acterization. In addition, many modern syntheses of NHC–metal complexes rely
on the use of isolated NHCs. In 1991, when Arduengo et al. exposed imidazo-
lium chloride 1 to NaH and catalytic DMSO in THF, stable carbene 2 was iso-
lated (Scheme 1.3) [6]. This species, also known as IAd, could be characterized
by various methods, including X-ray crystallography and NMR spectroscopy.
Initially, it was unclear whether steric or electronic effects were the source of

the stability of 2. A subsequent publication from Arduengo et al. reported a fur-
ther four stable carbenes 3–6 (3 is typically referred to as ITME, and 4 as IMes)
with various N-substituents, which were prepared in the same manner as 2
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Scheme 1.1 Early studies of the reactivity of N-heterocyclic carbenes. [4].
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(Figure 1.2) [7]. Notably, these were far less sterically hindered, suggesting that
the origin of their stability was electronic, rather than steric, or was a combina-
tion of these factors.
The aromatic nature of the imidazolium ring was thought to be critical to the

stability of NHCs. However, in 1995, NHC 7 (SIMes) bearing a saturated back-
bone and bulky mesityl N-substituents was obtained by deprotonation of the
corresponding imidazolium chloride 8, and was characterized by Arduengo
et al. (Scheme 1.4) [8].

With a robust route to synthesize and isolate free carbenes in hand, several
researchers applied a number of tools to investigate their properties and
reactivity. A thorough understanding of these properties is essential to under-
stand how these species can be applied in chemistry, and to inform the rational
design of new NHCs. X-ray photoelectron spectroscopy (XPS) and DFT studies
of a model carbene 9 (ItBu) confirmed the presence of a lone pair of electrons in
the plane of the imidazolylidene ring, and an empty p orbital on the same carbon
center [9]. However, there was initially some debate as to whether the carbene
was best considered as a carbene or as an ylide (Figure 1.3); that is, whether a
resonance contribution from the lone pair centered on nitrogen was a part of
the bonding arrangement in NHCs. Understanding this aspect of the structure
of NHCs was important in order to understand both how the structure of the
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Figure 1.2 Stable NHCs isolated by Arduengo et al. [7].
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NHC might affect reactivity, as well as allowing for the tuning of reactivity via
structural modifications.
Initial studies by Dixon and Arduengo suggested that the ylidic form was not a

major contributor to the structure of imidazolium-based NHCs [10]. Subsequent
electron distribution mapping of a model carbene, 3-d12 (ITME-d12) using X-ray
and neutron radiation also suggested very little contribution from the ylidic
form; these methods relied on mapping the electron distribution 0.7Å above the
plane of the NHC, which the authors proposed should indicate whether pπ–pπ
delocalization occurred. The lengthened C-N bonds in imidazolylidenes com-
pared to the corresponding imidazolium salts were proposed to be further evi-
dence of negligible interaction of the nitrogen lone pairs with the empty
p orbital at the carbene. Visualization of the electron density using this method
showed π electron density between C4 and C5 corresponding to the double
bond, and the p electrons of the nitrogen; no evidence for an ylidic form was
found. In addition, the 13C shielding tensor σ11 was revealed to be negative, sug-
gesting that the carbenic resonance form was dominant [11]. However, later
work by Boehme and Frenking suggested that the method of electron density
mapping that was employed was not appropriate, as it suggested negligible
π-delocalization in pyridine and pyrrole, which are known to be aromatic [12].
In silico calculations by these authors, particularly those involving natural bond
order (NBO) calculations, strongly suggested that pπ–pπ delocalization was sig-
nificant in both imidazol-2-ylidenes and imidazolidin-2-ylidenes, but more pro-
nounced in the former.
A detailed study, published at the same time by Heinemann et al., explored

this pπ–pπ delocalization in NHCs, and aimed to understand whether imidazol-
2-ylidenes were aromatic species [13]. Three key characteristics of NHCs were
explored: thermodynamic stability, geometric structure, and the charge distribu-
tion. Isodesmic calculations on acyclic carbenes and aminocarbenes showed that
even when conjugation was not possible, the carbene was stabilized by adjacent
amino groups due to their σ electron-withdrawing properties. Conjugation fur-
ther increased stabilization; imidazolidin-2-ylidenes were more stable again,
while imidazol-2-ylidenes were most stable (Figure 1.4). Similarly, structural
data were consistent with π-delocalization. Calculated magnetic susceptibility
anisotropies (Δχ) were suggestive of cyclic π-delocalization, but to a lesser extent
than in benzene. All of these results strongly suggest the involvement of pπ–pπ
delocalization from the nitrogen lone pair into the empty orbital at the carbene,
and that imidazol-2-ylidenes show some aromatic character. In a later study by
Bielawski and coworkers, it was shown that the electronic properties of acyclic

N N tBu N N tBu

YlideCarbene

tBu tBu

Figure 1.3 Carbenic and ylidic resonance forms of N-heterocyclic carbenes (9 (ItBu) is
pictured).
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diaminocarbenes (as probed using the infrared spectra of [IrCl(CO)2(L)] com-
plexes 10 and 11, shown later) were dependent on the ligand conformation, due
to differing degrees of pπ–pπ delocalization (Figure 1.5) [14].
Clearly, this delocalization is a key component of the bonding in NHCs, and

for this reason NHCs are typically drawn with the inclusion of a curve between
the nitrogen atoms in order to emphasize this aspect of their electronic
structure.

1.3
Abnormal Carbenes

While the majority of reports of imidazolylidenes bound to metal centers involve
coordination via the C2 position (i.e., imidazol-2-ylidenes), there has been recent
and growing interest in so-called abnormal carbenes, often referred to as
aNHCs, where binding occurs via the C4 or C5 position (Figure 1.6) [15]. Often
the substitution pattern is chosen to block the C2 position. The resulting imida-
zolylidenes are stabilized by only one nitrogen moiety, as the π-donating and
σ-accepting properties of the second nitrogen atom are greatly reduced. Such
species provide great scope for achieving different properties from so-called nor-
mal carbenes.
These species tend to show quite different electronic properties to their nor-

mally bound congeners. They are considerably more electron-donating due to
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Figure 1.4 Stability of some carbenes, as determined by isodesmic calculations for the
reaction of each carbene with methane to generate NHC�H2 and dihydrocarbene [13].
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Figure 1.5 [IrCl(CO)2(L)] complexes in which the differing degrees of pπ–pπ conjugation affects
the electronic properties of the metal center [14].
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the reduced σ-withdrawal from the carbene center, as evidenced by calculated
Tolman electronic parameter (TEP) [16] values (shown later) for a range of these
species [17]. In addition, they have been shown to be more π-accepting (due to
reduced pπ–pπ delocalization), as determined by analysis of the 31P chemical
shifts of the corresponding phosphinidene adducts [18]. The different properties
of these ligands will naturally confer different properties and reactivity to the
metal centers to which they are coordinated.
Other species with reduced heteroatom stabilization are also known; these

include isomers of imidazolylidenes (e.g., 1,2-imidazol-3-ylidenes, 1,2-imidazol-
4-ylidenes), 1,2,3-triazoly-4-lidenes, and pyrimidazolylidenes (Figure 1.7) [15].

1.4
Why Are NHCs Stable?

Prior to the isolation of NHCs, various studies were carried out on species
generated in situ [4]. However, once Arduengo succeeded in isolating a series of
stable species, attention naturally turned to identifying why some species were
stable and isolable, while others were not.
Heinemann and Thiel [19] and Carter and Goddard [20] both applied theoret-

ical methods to investigate the singlet–triplet gap in prototypical carbene com-
pounds, showing that this factor was key in the stability of NHCs. Triplet
carbenes are known to be much less stable than singlet species [21]. Some of the
factors affecting the singlet–triplet gap have been established for some time,
such as the influence of the geometry of the carbene and the presence of
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Figure 1.6 Normally versus abnormally bound imidazolylidenes.
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Figure 1.7 NHC species with reduced heteroatom stabilization [15].
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