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Preface

Engineers who are designing engineering systems using materials, often need
a mathematical model that describes a material response, when a material is
subjected to mechanical, thermal, electrical or other fields. Continuum
mechanics attempts to provide the necessary mathematical framework that is
useful in predicting the material response.  Continuum mechanics is a classical
as well as an emerging field that is exceedingly relevant to many researchers
and practicing engineers in the fields of mechanical engineering, civil
engineering, applied mechanics, chemical engineering and aerospace
engineering among others.

Constitutive modeling is a topic that is part of continuum mechanics and is
broadly understood by engineers as a phrase that deals with the equations that
describe the response of a material sample, when it is subjected to external
loads.  In recent times, the term constitutive model is used to describe any
equation that attempts to describe a material response, either during deformation
or failure, independent of its origin or mathematical structure.

In the research community, constitutive modeling and continuum mechanics,
involve investigations of physical mechanisms in materials and mathematical
frameworks to describe them. Eventual goal of these researches is to describe
macroscopic response of materials. Simulators and designers, on the other
hand, are interested in using constitutive models in their simulations. These
investigations are more focused on obtaining quantitative estimates of material
behaviour. Reasonableness of physical mechanisms, correctness of
mathematical framework, simplicity of mathematical models, ease of numerical
simulations and reliability of estimates are all important aspects of modelling
of engineering materials. In view of these issues involved in modeling of
materials, the authors felt that a compilation and presentation of a broad review
is necessary for the use of students, researchers and practicing engineers.
This is attempted in the current book. The book has the following special
features:
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• It introduces the basic principles of continuum mechanics, so that the
user is familiar with the mathematical tools that are necessary to analyze
finite deformations in materials. Special care is taken to ensure that
there is an engineering flavour to the topics dealt with in continuum
mechanics and only the mathematical details that are necessary to
appreciate the physics and engineering of a given problem, are
highlighted.

• A brief review of popular linear material models, which are used in
engineering, and which are derived based on infinitesimal deformation
of materials, is presented in the book.

• Popular material models that are used to characterize the finite
deformation of solids and fluids are described.

• Some examples of continuum characterization of failure in solids, such
as modeling using plasticity theory, degradation parameter etc. are
presented in this book.

• Principles behind the constitutive modeling of few modern special
materials such as shape memory materials and ferroelectric materials
are presented using the basic principles of continuum mechanics.

• Detailed case studies are presented which include a complete description
of the material, its observed mechanical behaviour, predictions from
some popular models along with a detailed discussion on a particular
model.

• A brief overview of the tools that are available to solve the boundary
value problems, is also given in this book.

• Detailed exercise problems, which will help students to appreciate the
applications of the principles discussed are provided at the end of
chapters.

The book is an outcome of the teaching of a course called Constitutive
Modelling in Continuum Mechanics, by the authors at IIT Madras.  The
graduate students taking this course consist of new material modelers as well
as material behaviour analysts and simulators.  Majority of them, however, are
involved in selection and use of material models in analysis and simulation.
Therefore, main goal of the course has been to expose students with various
backgrounds to basic concepts as well as tools to understand constitutive
models. While teaching this course, the authors experienced the need for a
book where principles of continuum mechanics are presented in a simple
manner and are linked to the popular constitutive models that are used for
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materials.  Hence, lecture notes were written to meet the course objective and
these lecture notes are now compiled in the form a book.

The authors were inspired by a continuous exposure to the latest issues in the
field of continuum mechanics, which was made possible through efforts by a
leading expert in the field of continuum mechanics; Prof. K. R. Rajagopal,
Professor of Mechanical Engineering, Texas A&M University.  Prof. Rajagopal,
kept the flame of interest in continuum mechanics alive at IIT Madras, through
his regular involvement in workshops, seminars and discussions.  The authors
deeply acknowledge the inspiration provided by him to the authors, as well as
to many other students and faculty at IIT Madras.

The authors place on record the contributions made by many of their faculty
colleagues in the shaping of this book. Prof. Srinivasn M. Sivakumar, Department
of Applied Mechanics at IIT Madras, provided us with the notes on plasticity,
which formed the basis for the discussions on plasticity that is presented in
Chapter 6. The authors thank him for his valuable help.  Prof. Raju Sethuraman,
Department of Mechanical Engineering at IIT Madras, provided the basic
ideas for the review of numerical procedures, and was a constant source of
inspiration for the authors in completing this book.  We deeply acknowledge
his encouragement and support.  We acknowledge the help of Profs. Sivakumar
and Sethuraman, along with Dr. Mehrdad Massoudi, U.S. Department of Energy,
in formulating the contents of this book.

This book would not have been made possible but for the willing contributions
of a number of M. S., Ph.D. and M.Tech students, who were working with
us during their stay in IIT Madras. We also acknowledge all the students of
the course over years, because class discussions and class projects were
helpful towards formulating contents as well presentation of the book.

The illustrations were drawn with great enthusiasm by Mr. Jineesh George
and Mr. Santhosh Kumar. The work of Dr. Rohit Vijay during dual degree
project, formed the basis of the case study on asphalt that is presented in
Chapter 5. Ms. K. V. Sridhanya’s MS thesis formed the basis for the case
study on soils that is presented in Chapter 6. Dr. S. Sathianarayanan, who
worked on piezo-polymers for his Ph.D. thesis, has helped us to put together
the discussion on piezoelectricity in Chapter 7. Efforts of Mr. N. Ashok Kumar,
Mr. D. Pandit and Mr. M. Kishore Kumar, who worked on shape memory
matrials for their theses, have helped us in compiling the material in
Chapter 7.  Rajesh Nair has taken the pains of going through parts of  manuscript
and pointing out some errors.  Mr. V. Srinivasan helped us in the cover design
of the book.  Mr. Jose Vinoo Ananth, Mr. Mohammed Ghouse, Mr. G.G. Uday
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Kumar, Mr. Suresh Kumar have also contributed in various capacities in bringing
out the final form of the book.

One of the authors (CLR) has utilized his sabbatical leave that is granted by
IIT Madras, towards writing the first draft of the book.  We greatly acknowledge
the support offered by IIT Madras for the encouraging atmosphere that it
offers to pursue scholastic ambitions like writing a book.

Our publishers Ane Books Inc., were patient enough to wait from the submission
of our original proposal to publish this book. We greatly appreciate their
encouragement and patience in finally bringing out the final form of this book.

Last but not the least, the authors acknowledge the time spared by their family
members and other friends, directly or indirectly, for encouraging the authors
to pursue this  project.

C. Lakshmana Rao

Abhijit  P. Deshpande



Notations

Symbols style

Regular, italicized scalar variables, components and invariants of
tensors, material constants

Boldface, small vectors

Boldface, capital and Greek tensors

Boldface, italics vector or tensor material constants

≡ definition
^ function

* measurements made with reference to a moving
frame of reference

Tensor operations

. dot product involving vectors and tensors

× cross product involving vectors and tensors

ab, vT dyadic product of vectors a & b, and vector v &
tensor T

A:B scalar product of tensors A and B (double dot
product)

AT transpose of A

|a| magnitude of vector a

det A determinant of A

tr(A) trace of A

A–1 inverse of A

Derivative operations

( , ), ( , ), ( , )s X t v X t T X t�� � total (material or substantial) derivative with
respect to time

( , ) ( , ) ( , )
, ,

s x t v x t T x t

t t t

� � �

� � �
partial derivative with respect to time
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o

T
rotational derivative of T

T
� Jaumann derivative of T

Δ
T

lower convected or covariant derivative of T

∇
T

upper convected or contravariant derivative of
T

grad, div, curl operators with respect to current configuration

Grad, Div, Curl operators with respect to reference
configuration

∇ gradient operator

∇2 Laplace operator

List of symbols: Roman

Ax, AX areas in current and reference configuration,
respectively

a acceleration

Br reference configuration

b body force

bem electromechanical body force

B V2, left Cauchy Green tensor or Finger tensor

Bt Vt
2

Cij material parameter associated with strain energy
density function

C U2, right Cauchy Green tensor, matrix of elastic
constants

C stiffness coefficient

C0 stiffness coefficient for biased piezoelectricity

Ct Ut
2

Dv region (volume) in reference configuration

CE electric current

Dr Region (volume) in reference configruation

Dt region (volume) in current configuration

D stretching tensor (rate of strain tensor, symmetric
part of the velocity gradient tensor)

DE electric displacement

e strain

ee, ep elastic and plastic strain

ep accumulated plastic strain, locked-in strain

e
.

strain rate at small deformations

E enthalpy, Young’s modulus
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Er relaxation modulus

E*, 'E , "E complex, storage and loss modulus

E1,E2 Burger’s model parameters

e infinitesimal strain tensor

e0 biased infinitesimal strain tensor

ei set of orthogonal unit base vectors,

e� strain rate tensor at small deformations

E Green strain, Electric field

Et relative Green strain

EE electric field

EE0 biased electric field

f yield function

fi set of orthogonal base vectors in a rotating frame

ft force acting on region Dt

F deformation gradient

Fe, Fp elastic and plastic deformation gradient

Ft relative deformation gradient

G shear modulus, Doi model parameter

g, g acceleration due to gravity

gij, gij metric coefficients

gi, g
i set of generalized base vectors

h surface source of heat

H
.
t rate of heating

H displacement gradient

HL linear momentum

HA angular momentum

i, j, k dummy indices

IA, IIA, IIIA first, second and third invariants of tensor A,
respectively

I unit tensor

J Jacobian associated with F

Jc creep compliance

K power law model parameter

L velocity gradient

M degradation parameter

tD
m mass of the body in the sub-region Dt

m unit tangential vector

mem electromechanical body moment

Notation
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M total mass enclosed in a control volume Dt

Mt total moment

n unit normal vector

n power law model parameter

N number of cycles in cyclic plastic models

N1, N2 first and second normal stress difference

p pressure, material particle

p’ effective mean stress

P material polarization

q effective deviatoric stress

qi, qi set of generalised coordinates

Q electric charge, state variable in plasticity

q heat flux vector

Q orthogonal tensor, state variables in plasticity

r volumetric source of heat

R radius of the yield surface in the octahedral plane

R rotation tensor

Rt relative rotation tensor

s distance, length

sv kinetic variable

Sr area in reference configuration

St area in current configuration

s 1st Piola Kirchhoff traction

S 1st Piola Kirchhoff stress

S1 2nd Piola Kirchhoff stress

t current time

tr time at which material body takes Br

t′ observation of time  from a moving reference
frame

t traction

u pore pressure in soil mechanics

u displacement vector

U right stretch tensor

Ut relative right stretch tensor

Vx, VX volumes in current and reference configurations,
respectively

v volumetric strain

v velocity vector
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vp velocity of an object (projectile, particle etc.)

V left stretch tensor

Vt relative left stretch tensor

W strain energy density

wp plastic work

W� rate of work

W
.
  em electromechanical rate of work

W spin tensor (vorticity tensor, skew-symmetric
part of the velocity gradient)

x current configuration of a material point,
representation of amaterial particle in real space

x′ observation of the vector X from the moving
reference frame

xt configuration of a material point at time t

X reference configuration of a material point

yi set of orthogonal coordinates

List of symbols: Greek

α scalar quantity

αn Ogden’s material parameter

δij Kronecker delta

εijk alernator, alternating tensor

ε internal energy

εεεεε piezo electric coeficient matrix

εεεεε 0 piezo constant

∈0 vacuum permittivity

φ electric potential

γ strain, shear strain

�� strain rate

η entropy, stress ratio in soil mechanics

η1.η2 Burger’s model parameters

κ bulk modulus, mapping function between
abstract and real configurations

κv kinematic variable

κ conductivity, dielectric constant

κκκκκ0 dielectric constant

λ stretch or extension ratio, Lame’s parameter, bulk
or dilatational viscosity, plastic multiplier,
structural parameter

Notation
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λi eigenvalues

μ viscosity, Lame’s parameter, Doi model parameter

μs coefficient of static friction

�
�, ��, ��� complex viscosity, real and imaginary parts of

viscosity

�n Ogden’s material parameter

ν Poisson’s ratio

θ temperature

θg glass transition temperature

θl, θh, θvh low, high and very high temperatures to
describe shape memory effect

ρ density

σy yield stress

σσσσσ Cauchy stress tensor

σσσσσ′ effective stress in soil mechanics

τ relaxation time, time, Doi model parameter

τret retardation time

τττττ deviatoric stress tensor

ω angular frequency

ωωωωω infinitesimal rotation tensor

ΩΩΩΩΩ body spin tensor

ξ internal variable

ψ Helmholtz free energy

ζ Gibbs free energy

List of symbols: Script

� body in abstract space

� Euclidean space

� material particle in abstract space

� real space
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This existed as self-alone in the beginning. Nothing else winked.

1.1 INTRODUCTION TO MATERIAL MODELLING
All engineering materials are expected to meet certain performance
requirements during their usage in engineering applications. These materials
are often subjected to complex loadings, which could be in the form of a
mechanical loading, a thermal loading, an electrical loading etc. or a
combination of them. The response of the material to these loadings will
determine the integrity of the material or the system in which the material is
being used. A quantitative assessment of the material response when it is
subjected to loads is very important in engineering design. This is possible if
we have a mathematical description of the material response and its integrity,
which can be called as a material model. The mathematical description of the
system response, in the form of governing equations and boundary conditions,
can be called as a systems model.
A model attempts to capture the underlying principles and mechanisms that
govern a system behaviour through mathematical equations and is normally
based on certain simplifying assumptions of the component behaviour.  A model
can typically be used to simulate the material as well as the system under
different conditions, so as to predict their behaviour in situations where
experimental observations are difficult. It is worth noting that in practice, we
may have models that have a mathematical form without an understanding of
physics, or models that describe the physics of the system, but may not be
expressed in a specific mathematical form.

CHAPTER

Introduction
1


