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Preface

Engineers who are designing engineering systems using

materials, often need a mathematical model that describes

a material response, when a material is subjected to

mechanical, thermal, electrical or other fields. Continuum

mechanics attempts to provide the necessary mathematical

framework that is useful in predicting the material response.

Continuum mechanics is a classical as well as an emerging

field that is exceedingly relevant to many researchers and

practicing engineers in the fields of mechanical engineering,

civil engineering, applied mechanics, chemical engineering

and aerospace engineering among others.

Constitutive modeling is a topic that is part of continuum

mechanics and is broadly understood by engineers as a

phrase that deals with the equations that describe the

response of a material sample, when it is subjected to

external loads. In recent times, the term constitutive model

is used to describe any equation that attempts to describe a

material response, either during deformation or failure,

independent of its origin or mathematical structure.

In the research community, constitutive modeling and

continuum mechanics, involve investigations of physical

mechanisms in materials and mathematical frameworks to

describe them. Eventual goal of these researches is to

describe macroscopic response of materials. Simulators and

designers, on the other hand, are interested in using

constitutive models in their simulations. These

investigations are more focused on obtaining quantitative

estimates of material behaviour. Reasonableness of physical

mechanisms, correctness of mathematical framework,

simplicity of mathematical models, ease of numerical

simulations and reliability of estimates are all important



aspects of modelling of engineering materials. In view of

these issues involved in modeling of materials, the authors

felt that a compilation and presentation of a broad review is

necessary for the use of students, researchers and

practicing engineers. This is attempted in the current book.

The book has the following special features:

It introduces the basic principles of continuum

mechanics, so that the user is familiar with the

mathematical tools that are necessary to analyze finite

deformations in materials. Special care is taken to

ensure that there is an engineering flavour to the topics

dealt with in continuum mechanics and only the

mathematical details that are necessary to appreciate

the physics and engineering of a given problem, are

highlighted.

A brief review of popular linear material models, which

are used in engineering, and which are derived based on

infinitesimal deformation of materials, is presented in

the book.

Popular material models that are used to characterize

the finite deformation of solids and fluids are described.

Some examples of continuum characterization of failure

in solids, such as modeling using plasticity theory,

degradation parameter etc. are presented in this book.

Principles behind the constitutive modeling of few

modern special materials such as shape memory

materials and ferroelectric materials are presented using

the basic principles of continuum mechanics.

Detailed case studies are presented which include a

complete description of the material, its observed

mechanical behaviour, predictions from some popular

models along with a detailed discussion on a particular

model.

A brief overview of the tools that are available to solve

the boundary value problems, is also given in this book.



Detailed exercise problems, which will help students to

appreciate the applications of the principles discussed

are provided at the end of chapters.

The book is an outcome of the teaching of a course called

Constitutive Modelling in Continuum Mechanics, by the

authors at IIT Madras. The graduate students taking this

course consist of new material modelers as well as material

behaviour analysts and simulators. Majority of them,

however, are involved in selection and use of material

models in analysis and simulation. Therefore, main goal of

the course has been to expose students with various

backgrounds to basic concepts as well as tools to

understand constitutive models. While teaching this course,

the authors experienced the need for a book where

principles of continuum mechanics are presented in a

simple manner and are linked to the popular constitutive

models that are used for materials. Hence, lecture notes

were written to meet the course objective and these lecture

notes are now compiled in the form a book.

The authors were inspired by a continuous exposure to the

latest issues in the field of continuum mechanics, which was

made possible through efforts by a leading expert in the

field of continuum mechanics; Prof. K. R. Rajagopal,

Professor of Mechanical Engineering, Texas A&M University.

Prof. Rajagopal, kept the flame of interest in continuum

mechanics alive at IIT Madras, through his regular

involvement in workshops, seminars and discussions. The

authors deeply acknowledge the inspiration provided by him

to the authors, as well as to many other students and

faculty at IIT Madras.

The authors place on record the contributions made by

many of their faculty colleagues in the shaping of this book.

Prof. Srinivasn M. Sivakumar, Department of Applied

Mechanics at IIT Madras, provided us with the notes on

plasticity, which formed the basis for the discussions on



plasticity that is presented in Chapter 6. The authors thank

him for his valuable help. Prof. Raju Sethuraman,

Department of Mechanical Engineering at IIT Madras,

provided the basic ideas for the review of numerical

procedures, and was a constant source of inspiration for the

authors in completing this book. We deeply acknowledge his

encouragement and support. We acknowledge the help of

Profs. Sivakumar and Sethuraman, along with Dr. Mehrdad

Massoudi, U.S. Department of Energy, in formulating the

contents of this book.

This book would not have been made possible but for the

willing contributions of a number of M. S., Ph.D. and M.Tech

students, who were working with us during their stay in IIT

Madras. We also acknowledge all the students of the course

over years, because class discussions and class projects

were helpful towards formulating contents as well

presentation of the book.

The illustrations were drawn with great enthusiasm by Mr.

Jineesh George and Mr. Santhosh Kumar. The work of Dr.

Rohit Vijay during dual degree project, formed the basis of

the case study on asphalt that is presented in Chapter 5.

Ms. K. V. Sridhanya’s MS thesis formed the basis for the case

study on soils that is presented in Chapter 6. Dr. S.

Sathianarayanan, who worked on piezo-polymers for his

Ph.D. thesis, has helped us to put together the discussion on

piezoelectricity in Chapter 7. Efforts of Mr. N. Ashok Kumar,

Mr. D. Pandit and Mr. M. Kishore Kumar, who worked on

shape memory matrials for their theses, have helped us in

compiling the material in Chapter 7. Rajesh Nair has taken

the pains of going through parts of manuscript and pointing

out some errors. Mr. V. Srinivasan helped us in the cover

design of the book. Mr. Jose Vinoo Ananth, Mr. Mohammed

Ghouse, Mr. G.G. Uday Kumar, Mr. Suresh Kumar have also

contributed in various capacities in bringing out the final

form of the book.



One of the authors (CLR) has utilized his sabbatical leave

that is granted by IIT Madras, towards writing the first draft

of the book. We greatly acknowledge the support offered by

IIT Madras for the encouraging atmosphere that it offers to

pursue scholastic ambitions like writing a book.

Our publishers Ane Books Inc., were patient enough to

wait from the submission of our original proposal to publish

this book. We greatly appreciate their encouragement and

patience in finally bringing out the final form of this book.

Last but not the least, the authors acknowledge the time

spared by their family members and other friends, directly

or indirectly, for encouraging the authors to pursue this

project.

C. Lakshmana Rao

Abhijit P. Deshpande



Notations

Symbols style

Regular, italicized scalar variables, components and invariants of tensors,

material constants

Boldface, small vectors

Boldface, capital and

Greek

tensors

Boldface, italics vector or tensor material constants

≡ definition

^ function

* measurements made with reference to a moving frame of

reference

Tensor operations

. dot product involving vectors and tensors

× cross product involving vectors and tensors

ab, vT dyadic product of vectors a & b, and vector v & tensor T

A:B scalar product of tensors A and B (double dot product)

A
T

transpose of A

|a| magnitude of vector a

det A determinant of A

tr(A) trace of A

A
–1

inverse of A

Derivative operations

total (material or substantial) derivative with respect to

time

partial derivative with respect to time

rotational derivative of T

Jaumann derivative of T

lower convected or covariant derivative of T

upper convected or contravariant derivative of T

grad, div, curl operators with respect to current configuration

Grad, Div, Curl operators with respect to reference configuration

∇ gradient operator



g p

∇2
Laplace operator

List of symbols: Roman

Ax, AX areas in current and reference configuration, respectively

a acceleration

B
r

reference configuration

b body force

b
em

electromechanical body force

B V
2
, left Cauchy Green tensor or Finger tensor

Bt Vt
2

Cij material parameter associated with strain energy density function

C U
2
, right Cauchy Green tensor, matrix of elastic constants

C stiffness coefficient

C
0

stiffness coefficient for biased piezoelectricity

Ct Ut
2

D
v

region (volume) in reference configuration

C
E

electric current

D
r

Region (volume) in reference configruation

Dt region (volume) in current configuration

D stretching tensor (rate of strain tensor, symmetric part of the velocity

gradient tensor)

D
E

electric displacement

e strain

e
e
, e

p
elastic and plastic strain

ep accumulated plastic strain, locked-in strain

ė strain rate at small deformations

E enthalpy, Young’s modulus

Er relaxation modulus

E
*
, E' ,

E"

complex, storage and loss modulus

E1, E2 Burger’s model parameters

e infinitesimal strain tensor

e
0

biased infinitesimal strain tensor

ei set of orthogonal unit base vectors,

ė strain rate tensor at small deformations

E Green strain, Electric field

relative Green strain



Et

E
E

electric field

E
E0

biased electric field

f yield function

fi set of orthogonal base vectors in a rotating frame

ft force acting on region Dt

F deformation gradient

F
e
, F

p
elastic and plastic deformation gradient

Ft relative deformation gradient

G shear modulus, Doi model parameter

g, g acceleration due to gravity

gij, g
ij metric coefficients

gi, g
i

set of generalized base vectors

h. surface source of heat

t rate of heating

H displacement gradient

HL linear momentum

HA angular momentum

i, j, k dummy indices

IA, IIA,

IIIA

first, second and third invariants of tensor A, respectively

I unit tensor

J Jacobian associated with F

Jc creep compliance

K power law model parameter

L velocity gradient

M degradation parameter

m D
t

mass of the body in the sub-region Dt

m unit tangential vector

m
em

electromechanical body moment

M total mass enclosed in a control volume Dt

Mt total moment

n unit normal vector

n power law model parameter

N number of cycles in cyclic plastic models

N
1
, N

2
first and second normal stress difference



p pressure, material particle

p
’

effective mean stress

P material polarization

q effective deviatoric stress

qi, qi set of generalised coordinates

Q electric charge, state variable in plasticity

q heat flux vector

Q orthogonal tensor, state variables in plasticity

r volumetric source of heat

R radius of the yield surface in the octahedral plane

R rotation tensor

Rt relative rotation tensor

s distance, length

sv kinetic variable

S
r

area in reference configuration

S
t

area in current configuration

s 1st Piola Kirchhoff traction

S 1st Piola Kirchhoff stress

S1 2nd Piola Kirchhoff stress

t current time

t
r

time at which material body takes B
r

t′ observation of time from a moving reference frame

t traction

u pore pressure in soil mechanics

u displacement vector

U right stretch tensor

Ut relative right stretch tensor

Vx, VX volumes in current and reference configurations, respectively

v volumetric strain

v velocity vector

vp velocity of an object (projectile, particle etc.)

V left stretch tensor

Vt relative left stretch tensor

W strain energy density

w
p

plastic work

rate of work

em

electromechanical rate of work



W spin tensor (vorticity tensor, skew-symmetric part of the velocity gradient)

x current configuration of a material point, representation of amaterial

particle in real space

x′ observation of the vector X from the moving reference frame

xt configuration of a material point at time t

X reference configuration of a material point

yi set of orthogonal coordinates

List of symbols: Greek

α scalar quantity

αn Ogden’s material parameter

δij Kronecker delta

εijk alernator, alternating tensor

ε internal energy

ε piezo electric coeficient matrix

ε
0

piezo constant

∈0 vacuum permittivity

ø electric potential

γ strain, shear strain

strain rate

η entropy, stress ratio in soil mechanics

η1.

η2

Burger’s model parameters

κ bulk modulus, mapping function between abstract and real configurations

κv kinematic variable

κ conductivity, dielectric constant

κ
0

dielectric constant

λ stretch or extension ratio, Lame’s parameter, bulk or dilatational viscosity,

plastic multiplier, structural parameter

λi eigenvalues

μ viscosity, Lame’s parameter, Doi model parameter

μs coefficient of static friction

μ
*
, μ´, μ

´´

complex viscosity, real and imaginary parts of viscosity

μn Ogden’s material parameter

ν Poisson’s ratio

θ temperature

θg glass transition temperature

θl, θh, low, high and very high temperatures to describe shape memory



θvh effect

ρ density

σy yield stress

σ Cauchy stress tensor

σ′ effective stress in soil mechanics

τ relaxation time, time, Doi model parameter

τ 
ret

retardation time

τ deviatoric stress tensor

ω angular frequency

ω infinitesimal rotation tensor

Ω body spin tensor

ξ internal variable

ψ Helmholtz free energy

ζ Gibbs free energy

List of symbols: Script

body in abstract space

Euclidean space

material particle in abstract space

real space



Knowledge gives humility, humility begets maturity. Maturity

begets wealth. Wealth (earned in this way) establishes order

and yields happiness.



Chapter 1

Introduction

This existed as self-alone in the beginning. Nothing

else winked.

1.1 INTRODUCTION TO

MATERIAL MODELLING
All engineering materials are expected to meet certain

performance requirements during their usage in engineering

applications. These materials are often subjected to

complex loadings, which could be in the form of a

mechanical loading, a thermal loading, an electrical loading

etc. or a combination of them. The response of the material

to these loadings will determine the integrity of the material

or the system in which the material is being used. A

quantitative assessment of the material response when it is

subjected to loads is very important in engineering design.

This is possible if we have a mathematical description of the

material response and its integrity, which can be called as a

material model. The mathematical description of the system

response, in the form of governing equations and boundary

conditions, can be called as a systems model.

A model attempts to capture the underlying principles and

mechanisms that govern a system behaviour through



mathematical equations and is normally based on certain

simplifying assumptions of the component behaviour. A

model can typically be used to simulate the material as well

as the system under different conditions, so as to predict

their behaviour in situations where experimental

observations are difficult. It is worth noting that in practice,

we may have models that have a mathematical form

without an understanding of physics, or models that

describe the physics of the system, but may not be

expressed in a specific mathematical form.

In what follows, we will outline the complexity of material

and its response in engineering. Several modelling

approaches, which attempt to understand and predict the

material response, are also discussed briefly. In this

overview, we will recollect many popular terms that are

used in material modelling. These terms are italicized,

without a definition at this stage. However, they will be

defined more precisely in later chapters, along with

concepts related to them.

1.2 COMPLEXITY OF

MATERIAL RESPONSE IN

ENGINEERING
Materials that are currently being used in engineering, are

fairly complex in their composition as well as in their

response. Following are few examples of such materials.

Many engineering materials are heterogeneous in their

composition, since they consist of different components or

phases. For example, any concrete is truly a heterogeneous

material with aggregates and a matrix material like a

cement paste or asphalt. Materials exhibit different

response when they are loaded and tested in different



directions and hence are classified as anisotropic. Material

composition can change through transformation processes

such as chemical reaction and phase change. For example,

a heterogeneous material may become homogeneous due

to loading.

We will now outline few specific materials and their

responses. Polymeric membranes, fiber reinforced

composites are known to be anisotropic in their mechanical

response. Many materials like polymers are ‘viscoelastic’ in

nature and exhibit a definite time dependent mechanical

response. The same polymers show a time independent,

large deformational response when they are deformed at

temperatures above their ‘glass transition temperature’. We

also know of the existence of special metals such as ‘shape

memory alloys’, which show drastic changes in their

mechanical response when they are heated by about 50°C,

causing a phase transition within the material. There are

‘piezoelectric materials’ which are able to convert electrical

energy to mechanical energy and vice-versa. Further, their

electromechanical response is a function of the state of

stress and the frequency of loading. Many engineering fluids

show a ‘linear stress-strain rate’ response, which is

characterized by a parameter called as ‘viscosity’. However,

there are other materials such as grease and paint, whose

viscosity is dependent upon the state of stress at which the

flow occurs. Blood clotting is a phenomenon where the

material changes from a fluid to a solid. Mechanical

response of blood during clotting can be understood only if

biochemical reactions are also included in the model. The

reasons for such complex material behaviour is also

emphasized by analyzing multiple time scales of response

and multiple length scales of response. The complexity of

loadings, material make-up and its response is captured

schematically in Fig. 1.1.

Fig. 1.1 Complexity of material response



It is always desirable to capture all the features that are

observations of material response through a mathematical

model. Clearly, a mathematical model for any material that

can accurately capture the response observed in

experiments for any of the materials listed above, is quite

complex. The mathematical model that we operate with,

should reflect our own understanding of the material

response. For example, we know from history of strength of

materials that earlier attempts were made to correlate the

load applied on any solid to the elongation experienced by

it. It took about hundred years of evolution to prove that this

attempt is faulty and correlations should really be found

between a concept called stress which is defined as load per

unit area and a concept called strain, which is the

deformation per unit length. A further evolution led to the

visualization of stresses and strains as second order tensors.

An assumption that these two tensors are linearly related,

led to a formulation that is popularly known as linear

elasticity. Experimental observations on materials like

rubber, proved that load measures like stress and the

deformation measures like strain will not always be related



to each other linearly. The mechanical response of materials

like rubber emphasized the need to introduce a

configurational (deformation) dependence of stresses and

the need for alternate deformational measures like

deformation gradients. A redefinition of the kinetic (load

related) measures and kinematic (deformation dependent)

measures and their relationships are the main

considerations in continuum mechanics. This framework is

common to materials all classes of materials such as

solidlike, fluidlike or gases.

It is worth noting that materials like metals and ceramics

are clearly known to be solids and materials like water and

oil are known to be fluids. Popularly, the response of solids

has been considered through material model of linear

elasticity. Similarly, the response of fluids has been

considered through models of Newtonian or inviscid fluid.

This in highlighted in Fig. 1.2. in the form of most widely

used material models. On the other hand, polymers and

granular materials are known to exhibit features of both

solids and fluids. Hence, the use of terms such as solidlike

and fluidlike is necessary to describe the response of

materials.

Fig. 1.2 Most widely used material models that are studied

as part of solid mechanics and fluid mechanics

Mathematical framework for the description of the state of

a material is formulated based on abstract notions and

quantities. Abstract quantities such as force, velocity, stress



and strain are used to define the state of a material. These

quantities are visualized to be either scalars, vectors or

tensors, having multiple components at any given point.

However, experimental observations that can characterize

the material, to the same detail as the mathematical

framework, are generally not possible. For example, the only

mechanical quantities that are measured for any material

point are displacements and the time of observation. All

other abstract quantities such as strains, velocities,

accelerations, forces etc. are inferred from these basic

observations. Consider, for example, experimental

characterization of a piezo-electric material such as poly

vinylidene flouride (PVDF). This material is primarily

available and used in the form of thin sheets (25 – 100 mm).

Testing of PVDF films in all the prescribed directions is not

easy. Hence, often experimentalists perform some

controlled experiments such as a uniaxial tension tests

which provide data of load vs. longitudinal / transverse

displacement. The constants that are demanded by a

mathematical framework are often interpreted from the

basic data collected from these simple tests. The

interpretation of constants does lead a certain degree of

uncertainty, since the interpretation of the same constant,

for the same material, from two different tests may not

always match with each other.

The mathematical models for any material can be

assessed through comparisons with experimental

observations. As mentioned above, these experimental

observations are limited in nature. Hence, it is possible that

there may be different mathematical models that are

‘equally’ successful in capturing the experimental

observations. While it is necessary for a mathematical

model to capture an experimentally observed phenomenon,

this ability alone is not sufficient for the general applicability

of the model in diverse situations. It is useful to classify



different modelling approaches that are used in engineering

practice. These are outlined in the next section.

1.3 CLASSIFICATION OF

MODELLING OF MATERIAL

RESPONSE
Before discussing different modelling approaches, let us first

look at a specific material response and multiple ways of

analyzing it. It is known that if a plastic (polymer) sample is

deformed and kept at constant extension, the force required

to maintain the extension decreases with time. Therefore, it

is said that the stress is relaxing and the experiment is

termed as a stress relaxation experiment. Now, one could

look at the load vs time data taken from different materials

and observe that decreasing load can be described by

functional forms such as exponential or parabolic. In this

case, no hypothesis is made about the material behaviour

and no detailed justification is given about why a particular

functional form is chosen. The constants used in the

functions will be different for different materials and can

therefore be used to distinguish material behaviour. We will

call such approaches to modelling of materials as empirical

modelling.

Let us continue with our example and compare the

response of the polymer in stress relaxation with other well

known materials, such as steel or water. An observation can

be made that the polymer response is in some way a

combination of the responses of these two types of

responses, namely elastic and viscous. Therefore, one can

make hypothesis about material being viscoelastic and

construct mathematical model, which in certain limits

reduces to elastic or viscous behaviour. Such models will be



called phenomenological models, because the overall

material response serves as a guide in building of the

models. An example of such model is Maxwell model, which

predicts that stress will decrease exponentially in a stress

relaxation experiment. The constants used in the

exponential form can be called material constants of

Maxwell model, as they will be different for different

materials.

With increasing theoretical development at the

microscopic scale and computational resources, we can talk

of another set of models, i.e., micromechanical models.

Such a model draws recourse to the make-up of material in

its more elementary forms such as atoms, molecules,

agglomerates, networks, phases etc. In our example of

stress relaxation in a plastic, polymer would be considered

as a collection of molecular segments. A hypothesis can be

made about the mechanical response of a segment. The

response of bulk polymer can be obtained if we are able to

develop a mathematical model for a collection of polymer

segments. Of course, such a model will also lead to

decreasing stress at the bulk scale and material constants

at the bulk scale.

More often than not, it is a combination of these

approaches, empirical, phenomenological and microscopic,

that is used by engineers to understand and predict

material behaviour. Each of them is useful in a specific

context. In the following discussion, we outline their

strengths and limitations.

1.3.1 Empirical Models

In engineering, many of the procedures and practices are

also dictated by documents called design codes and

standards. These documents are normally a compendium of

human experience, documented for use by a practitioner

with the least difficulty. In development of such documents,



all uncertainties and ambiguities in human experience, are

also accounted for, so as to help to develop a safe design.

Since the design codes are meant to be used by a common

practitioner, they must necessarily use concepts that are

more easily grasped by a common practitioner. The use of

multiple components of stress tensor in all practical

situations is difficult for a practitioner and hence, the three

dimensional nature of stress is often captured in a

convenient scalar stress measure such as an equivalent

stress. Similarly, equivalent uniaxial strain measures are

defined and sometimes a relation is sought between these

defined equivalent measures. Even though these

relationships may not have strict mathematical validity,

they are useful in characterizing a material, especially when

we want to characterize the material response due to

complex time dependent loading conditions. We could call

these equations as empirical models. The empirical models,

by and large are curve fits of available experimental data.

They will be very useful in design and are applicable within

the range of data from which they have been derived.

However, they have no basis in either the physics of

deformation of the material, or in the mathematical rigor or

accuracy of the variables that they are attempting to

correlate. Such approaches are also adopted by researchers

when they are handling new materials, whose response is

not yet fully understood, and to obtain quick approximate

description of material behaviour.

In recent times, an approach based on Artificial Neural

Network (ANN) is being used to describe the material

behaviour. A class of artificial neural networks, known as

MLFFNN (Multilayer Feed Forward Neural Network) is being

used to correlate the microstructural parameters with

macroscopic mechanical behaviour. This ability of MLFFNNs

is attributed to the presence of non-linear response units

and the ability of the network to generalise from given


