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CHAPTER1
ROTATING MACHINE
INSULATION SYSTEMS

Since electrical motors and generators were invented, a vast range of electrical

machine types have been created. In many cases, different companies called the same

type of machine or the same component by completely different names. Therefore,

to avoid confusion, before a detailed description of motor and generator insulation

systems can be given, it is prudent to identify and describe the types of electrical

machines that are discussed in this book. The main components in a machine, as

well as the winding subcomponents, are identified and their purposes described.

Although this book concentrates on machines rated at 1 kW or more, much

of the information on insulation system design, failure, and testing can be applied

to smaller machines, linear motors, servomotors, etc. However, these latter machine

types will not be discussed explicitly.

1.1 TYPES OF ROTATING MACHINES

Electrical machines rated at about 1 HP or 1 kW and above are classified into two

broad categories: (i) motors, which convert electrical energy into mechanical energy

(usually rotating torque) and (ii) generators (also called alternators), which convert

mechanical energy into electrical energy. In addition, there is another machine called

a synchronous condenser that is a specialized generator/motor generating reactive

power. Consult any general book on electrical machines for a more extensive descrip-

tion of machines and how they work [1,2]. An excellent book that focuses on all

aspects of turbogenerators has been written by Klempner and Kerszenbaum [3].

Motors or generators can be either AC or DC, that is, they can use/produce

alternating current or direct current. In a motor, the DC machine has the advantage

that its output rotational speed can be easily changed.Thus,DCmotors and generators

were widely used in industry in the past. However, with variable-speed motors now

easily made by combining an AC motor with an electronic “inverter-fed drive” (IFD),

DC motors in the hundreds of kilowatt range and above are becoming less common.

Machines are also classified according to the type of cooling used. They can be

directly or indirectly cooled, using air, hydrogen, and/or water as a cooling medium.

Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair,
Second Edition. Greg C. Stone, Ian Culbert, Edward A. Boulter, and Hussein Dhirani.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 CHAPTER 1 ROTATING MACHINE INSULATION SYSTEMS

This book concentrates on AC induction and synchronous motors, as well as

synchronous and induction generators. Other types of machines exist; however, these

motors and generators constitute the vast majority of electrical machines rated more

than 1 kW presently used around the world.

1.1.1 AC Motors

Nearly all AC motors have a single-phase (for motors less than about 1 kW) or

three-phase stator winding through which the input current flows. For AC motors,

the stator is also called the armature. AC motors are usually classified according

to the type of rotor winding. The rotor winding is also known as a field winding in

synchronous machines. A discussion of each type of AC motor follows.

Squirrel Cage Induction (SCI) Motor The SCI motor (Figure 1.1) is by far the

most common type of motor made, with millions manufactured each year. The rotor

produces amagnetic field by transformer-like AC induction from the stator (armature)

winding. The squirrel cage induction motor (Figure 1.1) can range in size from a frac-

tion of a horsepower (<1 kW) to many tens of thousands of horsepower (>60 MW).

The predominance of the SCI motor is attributed to the simplicity and ruggedness of

the rotor. SCI rotors normally do not use any electrical insulation. In an SCI motor,

the speed of the rotor is usually 1% or so slower than the “synchronous” speed of the

rotating magnetic field in the air gap created by the stator winding. Thus, the rotor

speed “slips” behind the speed of the air gap magnetic flux [1,2]. The SCI motor is

used for almost every conceivable application, including fluid pumping, fans, con-

veyor systems, grinding, mixing, gas compression, and power tool operation.

Wound Rotor Induction Motor The rotor is wound with insulated wire and

the leads are brought off the rotor via slip rings. In operation, a current is induced

into the rotor from the stator, just as for an SCI motor. However, in the wound

rotor machine, it is possible to limit the current in the rotor winding by means of

an external resistance or slip-energy recovery system. This permits some control

of the rotor speed. Wound rotor induction motors are relatively rare because of the

extra maintenance required for the slip rings. IFDs with SCI motors now tend to be

preferred for variable-speed applications as they are often a more reliable, cheaper

alternative.

Synchronous Motor This motor has a direct current flowing through the rotor

(field) winding. The current creates a DC magnetic field, which interacts with the

rotating magnetic field from the stator, causing the rotor to spin. The speed of the

rotor is exactly related to the frequency of the AC current supplied to the stator wind-

ing (50 or 60 Hz). There is no “slip.” The speed of the rotor depends on the number of

rotor pole pairs (a pole pair contains one north pole and one south pole) times the AC

frequency. There are two main ways of obtaining a DC current in the rotor. The oldest

method, is to feed current onto the rotor by means of two slip rings (one positive, one

negative). Alternatively, the “brushless exciter” method, by most manufacturers, uses

a DC winding mounted on the stator to induce a current in an auxiliary three-phase
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Figure 1.1 Photograph of an SCI rotor being lowered into the squirrel cage induction motor

stator.

windingmounted on the rotor to generate AC current,which is rectified (by “rotating”

diodes) to DC. Synchronous motors require a small “pony” motor to run the rotor up

to near synchronous speed. Alternatively, an SCI type of winding on the rotor can

be used to drive the motor up to speed, before DC current is permitted to flow in the

main rotor winding. This winding is referred to as an amortisseur or damper wind-
ing. Because of the more complicated rotor and additional components, synchronous

motors tend to be restricted to very large motors today (>10 MW) or very slow speed

motors. The advantage of a synchronous motor is that it usually requires less “inrush”

current on startup in comparison to an SCI motor, and the speed is more constant. In

addition, the operating energy costs are lower as, by adjusting the rotor DC current,

one can improve the power factor of the motor, reducing the need for reactive power

and the associated AC supply current. Refer to Section 1.1.2 for further subdivision

of the types of synchronous motor rotors. Two-pole synchronous motors use round

rotors, as described in Section 1.1.2.
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1.1.2 Synchronous Generators

Although induction generators do exist (Section 1.1.3), particularly in wind turbine

generators, they are relatively rare compared to synchronous generators. Virtually all

generators used by electrical utilities are of the synchronous type. In synchronous

generators, DC current flows through the rotor (field) winding, which creates a mag-

netic field from the rotor. At the same time, the rotor is spun by a steam turbine

(using fossil or nuclear fuel), gas turbine, diesel engine, or hydroelectric turbine. The

spinning DC field from the rotor induces current to flow in the stator (armature) wind-

ing. As for motors, the following types of synchronous generators are determined

by the design of the rotor, which is primarily a function of the speed of the driving

turbine.

RoundRotorGenerators Also known as cylindrical rotormachines, round rotors

(Figure 1.2) are most common in high speed machines, that is, machines in which

the rotor revolves at about 1000 rpm or more. Where the electrical system operates at

60 Hz, the rotor speed is usually either 1800 or 3600 rpm. The relatively smooth sur-

face of the rotor reduces “windage” losses, that is, the energy lost tomoving the air (or

other gas) around in the air gap between the rotor and the stator—the fan effect. This

loss can be substantial at high speeds in the presence of protuberances from the rotor

surface, but these losses can be substantially reduced in large generators with pres-

surized hydrogen cooling. The smooth cylindrical shape also lends itself to a more

robust structure under the high centrifugal forces that occur in high speed machines.

Round rotor generators, sometimes called “turbogenerators,” are usually driven by

steam turbines or gas turbines ( jet engines). Turbogenerators using round rotors have

been made up to 2000 MVA (1000 MW is a typical load for a city of 500,000 people

in an industrialized country). Such a machine may be 10m in length and about 5m

in diameter, with a rotor on the order of 1.5m in diameter. Such large turbogenera-

tors almost always have a horizontally mounted rotor and are hydrogen-cooled (see

Section 1.1.5).

Salient Pole Generators Salient pole generator rotors (Figure 1.3) usually have

individual magnetic field pole windings that are mounted on solid or laminated mag-

netic steel poles that either are an integral part of or are mounted on the rotor shaft.

Figure 1.2 Photograph of a round rotor. The retaining rings are at each end of the rotor body.
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Figure 1.3 Photograph of a

salient pole rotor for a large, low

speed motor (Source: Photo

courtesy Teco-Westinghouse).

In slower speed generators, the pole/winding assemblies are mounted on a rim that

is fastened to the rotor shaft by a “spider”—a set of spokes. As the magnetic field

poles protrude from the rim with spaces between the poles, the salient pole rotor

creates considerable air turbulence in the air gap between the rotor and the stator as

the rotor rotates, resulting in a relatively high windage loss. However, as this type

of rotor is much less expensive to manufacture than a round rotor type, ratings can

reach 50 MVA with rotational speeds up to 1800 rpm. Salient pole machines typically

are used with hydraulic (hydro) turbines, which have a relatively low rpm (the higher

is the penstock, i.e., the larger is the fall of the water, the faster will be the speed)

and with steam or gas turbines where a speed reducing gearbox is used to match the

turbine and generator speeds. To generate 50- or 60-Hz current in the stator, a large

number of field poles are needed (recall that the generated AC frequency is the num-

ber of pole pairs times the rotor speed in revolutions per second). Fifty pole pairs are

not uncommon on a hydrogenerator, compared to one or two pole pairs on a turbo-

generator. Such a large number of pole pairs require a large rotor diameter in order to

mount all the poles. Hydrogenerators are now being made up to about 1000 MVA in

China. The rotor in a large hydrogenerator is almost always vertically mounted, and

may be more than 15m in diameter, but there are some horizontal applications for

use with bulb hydraulic turbines for low head high flow application with ratings up

to about 10 MVA.

Pump/StorageMotorGenerator This is a special type of salient polemachine. It

is used to pump water into an upper reservoir during times of low electricity demand.

Then, at times of high demand for electricity, the water is allowed to flow from the

upper reservoir to the lower reservoir, where the machine operates in reverse as a

generator. The reversal of the machine from the pump to generate mode is commonly

accomplished by changing the connections on themachine’s stator winding to reverse

rotor direction. In a few cases, the pitch of the hydraulic turbine blades is changed.

In the pump motor mode, the rotor can come up to speed using an SCI-type winding

on the rotor (referred to as an amortisseur or damper winding), resulting in a large

inrush current, or using a “pony” motor. If the former is used, the machine is often
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energized by an IFD that gradually increases the rotor speed by slowly increasing the

AC frequency to the stator. As the speed is typically less than a few hundred rpm, the

rotor is usually of the salient pole type. However, high speed pump storage generators

may have a round rotor construction [4]. Pump storage units have been made up to

500 MVA.

1.1.3 Induction Generators

The induction generator differs from the synchronous generator in that the excitation

is derived from the magnetizing current in the stator winding. Therefore, this type of

generator must be connected to an existing power source to determine its operating

voltage and frequency and to provide it with magnetizing volt-amperes. As this is

an induction machine, it has to be driven at a super-synchronous speed to achieve a

generating mode. This type of generator comes in two forms that can have the same

type of stator winding, but which differ in rotor winding construction. One of these

has a squirrel-cage rotor and the other has a three-phase wound rotor connected to

slip rings for control of rotor currents and therefore performance. The squirrel cage

type is used in some small hydrogenerator and wind turbine generator applications

with ratings up to a few MVA. The wound rotor type has, until recently, been used

extensively in wind turbine generator applications. When used with wind turbines,

the wound rotor induction generator is configured with rectifier/inverters both in the

rotor circuit and at the stator winding terminals as indicated in Figure 1.4. In this

configuration, commonly known as the doubly fed rotor concept (for use in doubly

fed induction generators or DFIGs), the output converter rectifies the generator out-

put power and inverts it to match the connected power system voltage and frequency.

The converter in the rotor circuit recovers the slip energy from the rotor to feed it

back into the power supply and controls the rotor current. This slip recovery signif-

icantly improves the efficiency of the generator. Such generators are connected to

the low speed wind turbine via a speed-increasing gearbox and have ratings up to

around 3 MVA. The DFIG has also been used in large variable-speed pump storage

generators.

Gear box

Pitch regulated turbine rotor

ASG

Asynchronous generator
with wound rotor

Rotor connected
frequency converter

Transformer

Grid

Figure 1.4 Wound rotor induction generator doubly fed configuration [5].
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1.1.4 Permanent Magnet (PM) Synchronous Motors
and Generators

There has been significant recent development on permanent magnet (PM) machines

[6]. The major efforts in this regard were to employ PM materials such as neodymium

iron boron (NdFeB) for the rotor field poles that produce much higher flux densities

than conventional permanentmagnet rotors. Standard inductionmotors are not partic-

ularly well suited for low speed operation, as their efficiency drops with the reduction

in speed. They also may be unable to deliver sufficient smooth torque at low speeds.

The use of a gearbox is the traditional mechanical solution for this challenge. How-

ever, the gearbox is a complicated piece of machinery that takes up space, reduces

efficiency, and needs both maintenance and significant quantities of oil. Elimination

of the gearbox via the use of these new PM motor/drive configurations saves space

and installation costs, energy, and maintenance, and provides more flexibility in pro-

duction line and facility design. The PM AC motor also delivers high torque at low

speed—a benefit traditionally associated with DC motors—and, in doing so, also

eliminates the necessity of a DC motor and the associated brush replacement and

maintenance. There are many applications for this type of motor in conjunction with

inverters, which include electric car, steel rolling mill, and paper machine drives.

In addition, larger versions are used in other industrial and marine applications that

require precise speed and torque control.

The PM synchronous generator has basically the same advantages and con-

struction as the motor. It is now being widely used in wind turbine generator appli-

cations because its construction is much simpler and efficiency much better than a

wound rotor induction motor.

1.1.5 Classification by Cooling

Another important means of classifying machines is by the type of cooling medium

they use: water, air, and/or hydrogen gas. One of the main heat sources in electri-

cal machines is the DC or AC current flowing through the stator and rotor windings.

These are usually called I2R losses, as the heat generated is proportional to the cur-

rent squared times the resistance of the conductors (almost always copper in stator

windings, but sometimes aluminum in SCI rotors). There are other sources of heat:

magnetic core losses, windage losses, and eddy current losses. All these losses cause

the temperature of the windings to rise. Unless this heat is removed, the winding insu-

lation deteriorates because of the high temperature and the machine fails because of a

short circuit. References 7 and 8 are general rotating machine standards that discuss

the types of cooling in use.

Indirect Air Cooling Motors and modern generators rated less than about

100 MVA are almost always cooled by air flowing over the rotor and stator. This is

called indirect cooling as the winding conductors are not directly in contact with the

cooling air because of the presence of electrical insulation on the windings. The air

itself may be continuously drawn in from the environment, that is, not recirculated.

Such machines are termed open-ventilated machines, although there may be some
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effort to prevent particulates (sand, coal dust, pollution, etc.) and/or moisture from

entering the machine using filtering and indirect paths for drawing in the air. These

open-ventilated machines are referred to as weather-protected (WP) machines.

A secondmeans of obtaining cool air is to totally enclose themachine and recir-

culate air via a heat exchanger. This is often needed for motors and generators that are

exposed to the elements. The recirculated air is most often cooled by an air-to-water

heat exchanger in large machines, or cooled by the outside air via radiating metal fins

in small motors or a tube-type cooler in large ones. Either a separate blower motor or

a fan mounted on the motor shaft circulates the air.

Although old, small generators may be open-ventilated, the vast majority of

hydrogenerators have recirculated air flowing through the machine with the air often

cooled by air-to-water heat exchangers. For turbogenerators rated up to a few hundred

megawatts, recirculated air is now the most common form of cooling [9,10].

Indirect Hydrogen Cooling Almost all large turbogenerators use recirculated

hydrogen as the cooling gas. This is because the smaller and lighter hydrogen

molecule results in a lower windage loss, and hydrogen has better heat transfer than

air. It is then cost effective to use hydrogen in spite of the extra expense involved,

because of the small percentage gain in efficiency. The dividing line for when

to use hydrogen cooling is constantly changing. There is now a definite trend to

reserve hydrogen cooling for machines rated more than 300 MVA, whereas in the

past, hydrogen cooling was sometimes used on steam and gas turbine generators as

small as 50 MVA [9,10].

Directly Cooled Windings Generators are referred to as being indirectly or con-

ventionally cooled if the windings are cooled by flowing air or hydrogen over the

surface of the windings and through the core, where the heat created within the con-

ductors must first pass through the insulation. Large generator stator and rotor wind-

ings are frequently “directly” cooled. In directly cooled windings, water or hydrogen

is passed internally through the conductors or through the ducts immediately adjacent

to the conductors. Direct water-cooled stator windings pass very pure water through

hollow copper conductor strands, or through stainless steel tubes immediately adja-

cent to the copper conductors. As the cooling medium is directly in contact with the

conductors, this very efficiently removes the heat developed by I2R losses. With indi-

rectly cooled machines, the heat from the I2R losses must first be transmitted through

the electrical insulation covering the conductors, which forms a significant thermal

barrier. Although not quite as effective in removing heat, in direct hydrogen-cooled

windings, the hydrogen is allowed to flow within hollow copper tubes or stainless

steel tubes, just as in the water-cooled design. In both cases, special provisions must

be taken to ensure that the direct water or hydrogen cooling does not introduce elec-

trical insulation problems (see Sections 1.4.3 and 8.16). Recently, some Chinese

manufacturers have been experimenting with direct cooling of hydrogenerator sta-

tors using a Freon type of liquid [11]. The advantage of using this type of coolant

instead of water is that if leaks develop, the resulting gas is an excellent insulator,

unlike water. Water leaks are an important failure mechanism in direct water-cooled

windings (see Section 8.16).


