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Preface

This edition was updated by two of us, Greg Stone and Ian

Culbert. Given the developments in rotating machine

insulation in the past decade, readers will see expanded

information on the effect of drives on insulation, the

addition of a number of relatively new failure mechanisms,

and new diagnostic tests. Many more photos of

deteriorated insulation systems have been added in this

edition. Many more references have been added, and

recent changes in IEEE and IEC standards have been

incorporated. We have also added descriptions of the

insulation systems used by Chinese and Indian machine

manufacturers. The information on Chinese systems came

from Mr. Yamin Bai of North China EPRI. Mr. Bai and his

colleagues were also responsible for the Chinese version of

the first edition of this book. New appendices were added,

which give detailed information on the insulation systems

used by many manufacturers, as well as insulation material

properties. These tables first appeared in a US Electric

Power Research Institute (EPRI) document that is long out

of print. However, given the number of machines still using

these systems and materials, we thought it will be useful to

include the information here.

We again would like to thank our spouses, Judy and Anne,

and also our employer, Iris Power L.P. We are also grateful

to Ms. Resi Zarb for help in organizing and editing the

second edition. Finally, we thank the readers of the first

edition who took time to point out errors and omissions in

the first edition.

Greg Stone and Ian Culbert



Chapter 1

Rotating Machine Insulation Systems

Since electrical motors and generators were invented, a

vast range of electrical machine types have been created.

In many cases, different companies called the same type of

machine or the same component by completely different

names. Therefore, to avoid confusion, before a detailed

description of motor and generator insulation systems can

be given, it is prudent to identify and describe the types of

electrical machines that are discussed in this book. The

main components in a machine, as well as the winding

subcomponents, are identified and their purposes

described.

Although this book concentrates on machines rated at 1 kW

or more, much of the information on insulation system

design, failure, and testing can be applied to smaller

machines, linear motors, servomotors, etc. However, these

latter machine types will not be discussed explicitly.

1.1 Types of Rotating Machines

Electrical machines rated at about 1 HP or 1 kW and above

are classified into two broad categories: (i) motors, which

convert electrical energy into mechanical energy (usually

rotating torque) and (ii) generators (also called

alternators), which convert mechanical energy into

electrical energy. In addition, there is another machine

called a synchronous condenser that is a specialized

generator/motor generating reactive power. Consult any

general book on electrical machines for a more extensive

description of machines and how they work [1, 2]. An



excellent book that focuses on all aspects of

turbogenerators has been written by Klempner and

Kerszenbaum [3].

Motors or generators can be either AC or DC, that is, they

can use/produce alternating current or direct current. In a

motor, the DC machine has the advantage that its output

rotational speed can be easily changed. Thus, DC motors

and generators were widely used in industry in the past.

However, with variable-speed motors now easily made by

combining an AC motor with an electronic “inverter-fed

drive” (IFD), DC motors in the hundreds of kilowatt range

and above are becoming less common.

Machines are also classified according to the type of

cooling used. They can be directly or indirectly cooled,

using air, hydrogen, and/or water as a cooling medium.

This book concentrates on AC induction and synchronous

motors, as well as synchronous and induction generators.

Other types of machines exist; however, these motors and

generators constitute the vast majority of electrical

machines rated more than 1 kW presently used around the

world.

1.1.1 AC Motors

Nearly all AC motors have a single-phase (for motors less

than about 1 kW) or three-phase stator winding through

which the input current flows. For AC motors, the stator is

also called the armature. AC motors are usually classified

according to the type of rotor winding. The rotor winding is

also known as a field winding in synchronous machines. A

discussion of each type of AC motor follows.

Squirrel Cage Induction (SCI) Motor

The SCI motor (Figure 1.1) is by far the most common type

of motor made, with millions manufactured each year. The



rotor produces a magnetic field by transformer-like AC

induction from the stator (armature) winding. The squirrel

cage induction motor (Figure 1.1) can range in size from a

fraction of a horsepower (<1 kW) to many tens of

thousands of horsepower (>60 MW). The predominance of

the SCI motor is attributed to the simplicity and

ruggedness of the rotor. SCI rotors normally do not use any

electrical insulation. In an SCI motor, the speed of the rotor

is usually 1% or so slower than the “synchronous” speed of

the rotating magnetic field in the air gap created by the

stator winding. Thus, the rotor speed “slips” behind the

speed of the air gap magnetic flux [1, 2]. The SCI motor is

used for almost every conceivable application, including

fluid pumping, fans, conveyor systems, grinding, mixing,

gas compression, and power tool operation.



Figure 1.1 Photograph of an SCI rotor being lowered into

the squirrel cage induction motor stator.

Wound Rotor Induction Motor



The rotor is wound with insulated wire and the leads are

brought off the rotor via slip rings. In operation, a current

is induced into the rotor from the stator, just as for an SCI

motor. However, in the wound rotor machine, it is possible

to limit the current in the rotor winding by means of an

external resistance or slip-energy recovery system. This

permits some control of the rotor speed. Wound rotor

induction motors are relatively rare because of the extra

maintenance required for the slip rings. IFDs with SCI

motors now tend to be preferred for variable-speed

applications as they are often a more reliable, cheaper

alternative.

Synchronous Motor

This motor has a direct current flowing through the rotor

(field) winding. The current creates a DC magnetic field,

which interacts with the rotating magnetic field from the

stator, causing the rotor to spin. The speed of the rotor is

exactly related to the frequency of the AC current supplied

to the stator winding (50 or 60 Hz). There is no “slip.” The

speed of the rotor depends on the number of rotor pole

pairs (a pole pair contains one north pole and one south

pole) times the AC frequency. There are two main ways of

obtaining a DC current in the rotor. The oldest method, is

to feed current onto the rotor by means of two slip rings

(one positive, one negative). Alternatively, the “brushless

exciter” method, by most manufacturers, uses a DC

winding mounted on the stator to induce a current in an

auxiliary three-phase winding mounted on the rotor to

generate AC current, which is rectified (by “rotating”

diodes) to DC. Synchronous motors require a small “pony”

motor to run the rotor up to near synchronous speed.

Alternatively, an SCI type of winding on the rotor can be

used to drive the motor up to speed, before DC current is

permitted to flow in the main rotor winding. This winding is



referred to as an amortisseur or damper winding. Because

of the more complicated rotor and additional components,

synchronous motors tend to be restricted to very large

motors today (>10 MW) or very slow speed motors. The

advantage of a synchronous motor is that it usually

requires less “inrush” current on startup in comparison to

an SCI motor, and the speed is more constant. In addition,

the operating energy costs are lower as, by adjusting the

rotor DC current, one can improve the power factor of the

motor, reducing the need for reactive power and the

associated AC supply current. Refer to Section 1.1.2 for

further subdivision of the types of synchronous motor

rotors. Two-pole synchronous motors use round rotors, as

described in Section 1.1.2.

1.1.2 Synchronous Generators

Although induction generators do exist (Section 1.1.3),

particularly in wind turbine generators, they are relatively

rare compared to synchronous generators. Virtually all

generators used by electrical utilities are of the

synchronous type. In synchronous generators, DC current

flows through the rotor (field) winding, which creates a

magnetic field from the rotor. At the same time, the rotor is

spun by a steam turbine (using fossil or nuclear fuel), gas

turbine, diesel engine, or hydroelectric turbine. The

spinning DC field from the rotor induces current to flow in

the stator (armature) winding. As for motors, the following

types of synchronous generators are determined by the

design of the rotor, which is primarily a function of the

speed of the driving turbine.

Round Rotor Generators

Also known as cylindrical rotor machines, round rotors

(Figure 1.2) are most common in high speed machines, that

is, machines in which the rotor revolves at about 1000 rpm



or more. Where the electrical system operates at 60 Hz, the

rotor speed is usually either 1800 or 3600 rpm. The

relatively smooth surface of the rotor reduces “windage”

losses, that is, the energy lost to moving the air (or other

gas) around in the air gap between the rotor and the stator

—the fan effect. This loss can be substantial at high speeds

in the presence of protuberances from the rotor surface,

but these losses can be substantially reduced in large

generators with pressurized hydrogen cooling. The smooth

cylindrical shape also lends itself to a more robust

structure under the high centrifugal forces that occur in

high speed machines. Round rotor generators, sometimes

called “turbogenerators,” are usually driven by steam

turbines or gas turbines (jet engines). Turbogenerators

using round rotors have been made up to 2000 MVA (1000

MW is a typical load for a city of 500,000 people in an

industrialized country). Such a machine may be 10 m in

length and about 5 m in diameter, with a rotor on the order

of 1.5 m in diameter. Such large turbogenerators almost

always have a horizontally mounted rotor and are

hydrogen-cooled (see Section 1.1.5).

Figure 1.2 Photograph of a round rotor. The retaining

rings are at each end of the rotor body.

Salient Pole Generators


