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Preface

This book stems from the author’s interest in and experience of using computing 
technology in K-12 mathematics teacher education. In particular, two decades of 
teaching prospective secondary mathematics teachers in technology-rich environ-
ments have led the author to believe that one of the most productive ways to teach 
mathematics in the digital era is through experimentation with mathematical con-
cepts that takes advantage of computers’ capability to plot sophisticated graphs, 
construct dynamic geometric shapes, generate interactive arrays of numbers, and 
perform symbolic computations. Whereas the notion of experiment in mathemat-
ics has several meanings (Baker 2008; Van Bendegem 1998), assigning the adjec-
tive computational to the word experiment implies that the meaning of the latter is 
narrowed down to the use of electronic computers as the means of mathematical 
experimentation.

The book utilizes a number of commonly available computer applications that 
allow for lucid presentation of advanced, though grade-appropriate, mathematical 
ideas. One application is the Graphing Calculator 4.0 produced by Pacific Tech 
(Avitzur 2001) that facilitates experimentation in algebra through the software’s 
capability of constructing graphs from any two-variable equation, inequality, or 
a combination of those. Another application is an electronic spreadsheet used to 
support numerical experimentation, in particular, when carrying out probability 
simulations and modeling elementary number theory concepts. The book also takes 
advantage of Maple (Char et al. 1991) and Wolfram Alpha developed by Wolfram 
Research—software tools that allow for different types of experimentation with 
mathematical concepts, including the construction of graphs of functions and rela-
tions and carrying out complicated symbolic computations. Also, the book uses 
The Geometer’s Sketchpad (GSP) created by Nicholas Jackiw in the late 1980s. 
Yet this dynamic geometry program is used more as a technical tool rather than as 
an experimental device. This lesser focus on experimentation with GSP is due to 
the book’s stronger focus on algebra in comparison to geometry. Nevertheless, the 
idea of geometrization of algebraic concepts is one of the major mathematical ideas 
used in the book.

Throughout the book, a number of the modern day secondary mathematics ed-
ucation documents developed throughout the world are reviewed as appropriate. 
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These include Common Core State Standards (2010) for mathematical practice and 
the Conference Board of the Mathematical Sciences1 (2001, 2012) recommenda-
tions for the preparation of mathematics teachers—the United States (the context 
in which the author prepares teachers); National mathematics curriculum (National 
Curriculum Board 2008)—Australia; Ontario mathematics curriculum (Ontario 
Ministry of Education 2005) and British Columbia mathematics curriculum (West-
ern and Northern Canadian Protocol 2008)—Canada; Programs of mathematics 
study (Department for Education 2013a, b)—England; A secondary school teaching 
guide for the study of mathematics (Takahashi et al. 2006)—Japan; and Secondary 
mathematics syllabi (Ministry of Education, Singapore 2006)—Singapore.

The book consists of eight chapters. The first chapter provides theoretical under-
pinning of computational experiment approach to advanced secondary mathematics 
curriculum. In the focus are mathematics education research publications that started 
appearing in the second half of the twentieth century with the advent of computers 
as tools for the teaching of mathematics. The role of mathematics education reform 
in bringing computers first to the undergraduate level and gradually extending their 
use to include experimentation at the primary level is highlighted. Several theo-
retical frameworks leading to the development of the notion of technology-enabled 
mathematics pedagogy referred to as TEMP throughout the book are discussed. It 
is suggested that TEMP can become a major pillar of modern signature pedagogy 
of mathematics as it can focus on the unity of computational experiment and formal 
mathematical demonstration. The relationship between technology-enabled experi-
ment and solution-enabled experiment is introduced as a structure that makes com-
putational experiment a meaning making process. It is shown how visual imagery 
can support deductive reasoning leading to an error-free computational experiment.

One of the major differences between TEMP and a mathematics pedagogy (MP) 
that does not incorporate technology pertains to the interplay between mathemati-
cal content under study and the scope of student population to which this content 
can be made available. Whereas many problems discussed in the book under the 
umbrella of TEMP are fairly complex, using technology as a support system makes 
it possible to develop mathematical insight, facilitate conjecturing, and illuminate 
plausible problem-solving approaches to those problems. To a certain extent, the 
use of TEMP may be comparable to the use of computers in the modern day inves-
tigation of dynamical systems allowing one to carry out numeric/symbolic com-
putations and graphical constructions not possible otherwise, yet being critical for 
understanding the behavior of those systems. In comparison with MP which, in 
particular, lacks empirical support for conjectures, using TEMP has great potential 
to engage a much broader student population in significant mathematical explora-
tions. TEMP provides teachers with tools and ideas conducive to engaging students 
in the project-based, exploratory learning of mathematics by dividing a project in 
several stages—empirical, speculative, formal, and reflective. Even if TEMP helps 

1  The Conference Board of the Mathematical Sciences is an umbrella organization 
consisting of 16 professional societies in the United States.
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a student to reach the level of conjecturing without being able to proceed to the next 
level, its use appears to be justified.

The second chapter is devoted to the use of computational experiment as sup-
port system for solving one-variable equations and inequalities. The importance 
of revealing the meaning of problem-solving techniques frequently considered as 
“tricks” by students and their teachers alike is emphasized. It is demonstrated how 
technology can be used as an agency for mathematical activities associated with for-
mal demonstration of theoretical concepts that underpin commonly used algebraic 
techniques. The idea of parameterization of one-variable equations is explained 
through the lens of problem posing in the digital era, an approach conducive to the 
development of “mathematical reasoning and competence in solving increasingly 
sophisticated problems” (Department for Education 2013b, p. 1). Also, the chapter 
shows how through the integration of technology and historical perspectives the 
secondary mathematics content can be connected to its historical roots.

The third chapter is devoted to the study of quadratic equations and functions 
with parameters. Here, two methods of exploration made possible by computational 
experiment are discussed. One method deals with the possibility of transition from 
the traditional (x, y)-plane typically used to construct the graphs of functions to the 
(variable, parameter)-plane commonly referred to as the phase plane. Using the 
diagrams (loci) constructed in the phase plane, one can discern the most important 
information about a quadratic equation with a parameter, namely, the influence of 
the parameter on the solutions (roots) of the equation. Another method, in the case 
of equations with two parameters, deals with the qualitative study of solutions in 
the plane of parameters. It demonstrates how one can make a transition from rep-
resentations in the plane of variables to representations in the plane of parameters 
when investigating the properties of quadratic functions and associated equations 
depending on parameters. In particular, qualitative methods for deciding the loca-
tion of roots of quadratic equations with parameters about a point as well as about 
an interval are discussed. These methods make it possible to determine the location 
of the roots without finding their exact values. The need for such methods proved 
to be very useful in the context of the “S” and “E” components of STEM (science, 
technology, engineering, mathematics) where qualitative techniques are commonly 
used in exploring the corresponding mathematical models.

The fourth chapter is devoted to the systematic study of algebraic equations with 
parameters (including simultaneous equations) using the computationally support-
ed locus approach when explorations take place in the (variable, parameter)-plane. 
Here, the computational experiment approach is applied to “make use of structure” 
(Common Core State Standards 2010) of a complicated mathematical situation and 
to develop its deep understanding by using locus as a thinking device. In doing so, 
one can come across various extensions of the situation to include new concepts, 
representations, and lines of reasoning that connect different grade appropriate 
mathematical ideas. The notion of collateral learning in the spirit of Dewey (1938) 
is highlighted. In the case of two-variable simultaneous equations with parameters it 
is shown how the parameter can be given a proper geometric interpretation enabling 
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the computational experiment to be carried out in a two-dimensional context, that 
is, in the plane of variables.

Inequalities are the major means of investigation in mathematics, both pure and 
applied. The fifth chapter is devoted to the systematic study of inequalities, includ-
ing systems of inequalities, with parameters. In this context, it is demonstrated how 
computational experiment approach facilitates solving traditionally difficult prob-
lems not typically considered in the secondary school mathematics curriculum. The 
idea of extending an original exploration of an inequality with a parameter to allow 
for a deep inquiry into closely related ideas is discussed. One of the aspects associ-
ated with the dependence of solution to an inequality on a parameter is a possibility 
of using locus of an inequality with a parameter as a tool for posing one-variable 
inequalities with no parameter. In the digital era, such pedagogical perspective 
makes it possible to present problem solving and problem posing as two sides of the 
same coin. Also, the chapter focuses on the so-called technology-enabled/technol-
ogy-immune tasks in the sense that whereas technology may be used in support of 
problem solving, its direct application is not sufficient for achieving the end result. 
It is shown that such tasks can be developed in the context of inequalities with 
parameters. A point is made that the computational experiment approach may be 
inconclusive, thereby requiring an analytic clarification of the experiment to make 
sense of the structure of a situation. A two-dimensional sign-chart method that can 
be used for solving inequalities with parameters is presented. Finally, the applied 
character of problem-solving techniques developed for solving inequalities with 
parameters is illustrated through their application to quadratic equations when the 
location of roots about a given point can be determined without solving an equation.

Trigonometry is known as a subject matter of great importance for the study 
of engineering disciplines. The sixth chapter shows how concepts in trigonometry 
can be approached from a computational perspective. Here, a single trigonometric 
equation with parameters is used as a springboard into several geometric ideas, 
thereby, demonstrating a closed connection of the two contexts. Technology such 
as Wolfram Alpha with its own unique algorithm of solving trigonometric equa-
tions and inequalities is presented as an agent of rather sophisticated mathematical 
activities stemming from the need to justify the equivalence of different forms of 
solution expressed through inverse circular functions. Whereas in the presence of 
technology (including just a calculator) such equivalence can be easily established 
numerically, the appropriate use of technology should motivate learners of mathe-
matics to appreciate rigor and to enable the development of formal reasoning skills. 
Having experience with proving the equivalence of two solutions obtained through 
different methods can be construed as support system for research-like experience 
that prospective secondary mathematics teachers need for the successful teaching of 
the subject matter. This further provides experience with STEM-related techniques, 
something that can contribute to the efforts of introducing secondary mathematics 
teacher candidates and their future students alike to the ideas that develop the foun-
dation of engineering profession.

The seventh chapter deals with geometric probabilities. It shows how the computa-
tional experiment approach can work in calculating probabilities of events associated 
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with the behavior of solutions of algebraic equations with parameters. In particular, 
both theoretical and experimental probabilities are computed in the space of param-
eters and compared within a spreadsheet. Here, most of the explorations extend the 
ideas considered in the previous chapters and developed in the context of making a 
transition from the plane of variables to the plane of parameters. The material of this 
chapter is aimed at providing teacher candidates with experience important for ap-
plying mathematics to science and engineering the models of which typically depend 
on parameters. Whereas the construction of spreadsheet-based computational envi-
ronments for computing geometric probabilities experimentally does not require any 
mathematical or technological sophistication, the skills in using such environments 
are important for understanding how to do explorations of mathematical models in 
engineering and science.

The last chapter illustrates how the computational experiment approach can make 
concepts of number theory more accessible to prospective teachers and their stu-
dents alike. It provides a number of illustrations of using modern technology tools 
in exploring classic topics in elementary theory of numbers through a computational 
experiment. Here, one can learn how technology can be used to develop theoreti-
cal knowledge on the basis of a simple experiment so that, in turn, the knowledge 
so developed can inform and facilitate similar yet more complicated experiments. 
The chapter highlights the duality of computational experiment and formal dem-
onstration in the sense that whereas one needs theory to validate experimental re-
sults, once can benefit from computing when discovering and correcting unexpected 
flaws that theory may sometimes comprise. The chapter demonstrates how TEMP 
that encourages collateral learning can be brought to bear by emphasizing geometri-
zation of algebraic concepts and the appropriate use of digital tools. The deficiency 
of reasoning by induction in the context of basic summation formulas that can result 
in overgeneralization is discussed. The topic of Pythagorean triples is explored in 
depth using jointly a spreadsheet and Wolfram Alpha. Within this topic, it is demon-
strated how computational experiment approach can motivate mathematical insight 
and encourage natural curiosity of the learners of mathematics.
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Chapter 1
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1.1 � Introduction

This chapter provides theoretical underpinning of computational experiment ap-
proach to pre-college mathematics curriculum. It reviews mathematics education re-
search publications and (available in English) educational reform documents from 
Australia, Canada, England, Japan, Singapore and the United States related to the use 
of computers as tools for experimenting with mathematical ideas. The chapter links 
pioneering ideas by Euler about experimentation with mathematical ideas to the use 
of the word experiment in the modern context of pre-college mathematics curricula. 
It emphasizes the role of mathematics education reform in bringing computers first to 
the undergraduate level and gradually extending their use to include experimentation 
at the primary level. Several theoretical frameworks including signature pedagogy, 
Type I/Type II technology applications, parallel structures of teaching and learning, 
agent-consumer-amplifier framework, and collateral learning in the digital era are 
highlighted leading to the development of the notion of technology-enabled math-
ematics pedagogy (TEMP). One of the major characteristics of TEMP is its focus on 
the idea with ancient roots—the unity of computational experiment and formal math-
ematical demonstration. The relationship between technology-enabled experiment 
and solution-enabled experiment is introduced as a structure that makes computation-
al experiment a meaning making process. It will be demonstrated how visual imagery 
can support deductive reasoning leading to an error-free computational experiment.

1.2 � Experiment in Mathematics Education

In this book, the word experiment is connected to the use of electronic computers in 
the context of advanced secondary mathematics curriculum and, in particular, math-
ematics teacher education. These modern tools when used in mathematics instruc-
tion create and enhance conditions for one’s inquiry into mathematical structures, 
which may include interactive graphs, dynamic geometric shapes, and electroni-
cally generated and controlled arrays of numbers. That is, the modern experiment in 
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mathematics can be a computational one. In the context of mathematical education 
in general, a computational experiment approach to mathematics makes use of such 
computer-enabled experiments designed by a teacher and carried out by students, 
or jointly by teacher and students. Hereafter, the words teacher and student are un-
derstood broadly: the former is one who teaches and the latter is one who is taught. 
Because through such interaction, both parties can learn, the word learner will be 
applied to any individual engaged in the learning of mathematics.

Whereas the notion of experiment in the context of education has multiple mean-
ings, learning as the goal of experiment is what all the meanings have in common. In a 
seminal book on experiment in education, McCall (1923) recognized the power of ex-
periment as a milieu where “teachers join their pupils [i.e., students] in becoming ques-
tion askers” (p. 3). Similarly, about a century later, Hiebert et al. (2003) emphasized 
the importance for teachers to treat lessons as experiments towards the end “of mak-
ing some aspects of teachers’ routine, natural activity more systematic and intensive” 
(p. 207). In other words, by treating lessons as experiments, teachers, “by focusing 
attention on, and making more explicit, the process of forming and testing hypotheses” 
(ibid, p. 207), are expected to learn both about and from teaching. Mathematics is espe-
cially conducive to the development of an environment in which reflective inquiry—a 
problem-solving method that blurs the distinction between knowing and doing by in-
tegrating knowledge with experience (Dewey 1933)—is the major learning strategy.

There is an interesting connection between the notions of experiment in mathemat-
ics and experiment in education. This connection can be revealed through the concept 
of Latin square. The latter is a square matrix each row and column of which contains 
any element one and only one time (Fig. 1.1). Latin squares have been commonly 
utilized in the design of educational experiments (Fisher 1935; Campbell and Stanley 
1963) in different disciplines where it is required to construct a matrix under specific 
conditions on the location of its entries. For example, in the study by Gall et al. (1978) 
involving 12 teachers from 12 classrooms (experimental units), three recitation treat-
ments (Probing and Redirection, No Probing and Redirection, Filler Activity) and one 
control treatment (Art Activity) were arranged in three 4 4×  Latin squares (with each 
treatment, randomly assigned to the experimental units, appearing only once in a row 
and once in a column), provided that each teacher taught all four treatments. Another 
major application of Latin squares is in agriculture (Lakić 2001). Here, a field can 
be divided into sections and different seeds sown or treatments applied are recorded 
in the form of a Latin square with the goal to diminish the influence of other factors. 
In sum, Latin squares are great tools within which data can be conveniently stored, 
meaningfully observed, and appropriately analyzed.

Fig. 1.1   One out of 12 Latin 
squares of order 3
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In mathematics Latin squares were used by Euler, the great Swiss mathematician of 
the eighteenth century considered the father of all modern mathematics. In particular, 
Euler’s name is associated with the so-called Officers Problem of placing 36 officers 
of six ranks and six regiments in a Latin square so that no officer of the same rank or of 
the same regiment would be in the same row or in the same column (MacNeish 1922). 
In his insightful approaches to mathematics, especially to number theory, Euler em-
phasized the importance of observations and so-called quasi-experiments or thought 
processes (experiments) that stem from observations: “the properties of the numbers 
known today have been mostly discovered by observation, and discovered long before 
their truth has been confirmed by rigid demonstration” (Pólya 1954, p. 3; according to 
Lakatos (1976), Pólya, who made the translation, “mistakenly attributes the quotation 
to Euler” (p. 9) instead of crediting it to the Editor of Euler’s work). So, quite unex-
pectedly, a mathematical tool used by a pioneer of experimentation with mathematics, 
nowadays is utilized for the rigorous description of educational experiments.

The ideas about making numeric quasi-experiments as part of pre-college 
mathematics curricula with an emphasis on discovery learning, mathematical in-
vestigations, and drawing conclusions informed by inductive reasoning have begun 
gaining popularity around the world in the second part of the twentieth century. 
This is evidenced by a number of publications on and standards for mathemat-
ics teaching and learning (Cambridge Conference on School Mathematics 1963; 
Fletcher 1964; National Council of Teachers of Mathematics 1970, 1989; Peter-
son 1973; Wheeler 1967). According to Mason (2001), in England, this approach 
to mathematics can be traced back to the writings of Wallis1 (1685) who used 
the word investigation to refer to ‘my method of investigation’ which, however, 
when supported by (empirical) induction alone can lead to erroneous conjectures 
(see Chap. 8 for examples). Therefore, it has been cautioned, “we should take great 
care not to accept as true such properties of the numbers which we have discovered 
by observation and… should use such a discovery as an opportunity to investigate 
more exactly the properties discovered and to prove or disprove them; in both cases 
we may learn something useful” (Pólya 1954, p. 3). In that, the importance of theory 
that augments mathematical experimentation by appropriate demonstration and for-
mal justification was equally emphasized. Therefore, as an experiment provides 
basis for insight, one can conclude that observation is at the core of any experiment. 
By the same token, experiment leads to the development of theory, which, in turn, 
can inform experiment as its conditions grow in complexity. All this is true for a 
modern day computational experiment.

1.3 � Computational Experiment and its Validation

In education, any experiment can be associated with two types of validity: inter-
nal and external (Campbell and Stanley 1963). Internal validity of experiment is 
characterized by the basic set of skills and abilities without which any experiment 

1  John Wallis (1616–1703)—an English mathematician whose work, in particular, provided foun-
dation for the development of integral calculus.
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cannot be interpreted in some meaningful way. Meaningful interpretation creates 
conditions for external validity or, to put it differently, generalization of the ex-
periment. In the case of a computational experiment, one has to possess some basic 
(grade appropriate) mathematical knowledge and skills in order to be able to inter-
pret information generated through the experiment and, therefore, develop a more 
general perspective on this interpretation.

As an illustration, consider the case of computing partial sums of consecutive 
odd numbers within a spreadsheet (Fig. 1.2). This computational tool, used in math-
ematics education for more than three decades (Baker and Sugden 2003), was con-
ceptualized by its inventor as “an electronic blackboard and electronic chalk in a 
classroom” (Power 2000). In particular, spreadsheets were recommended to teacher 
candidates for exploring ideas in number theory (Conference Board of the Math-
ematical Sciences 2001). In order to grasp the intended meaning and appreciate the 
mathematical significance (in educational sense) of this computational experiment 
(it will be referred to throughout this chapter as appropriate), one has to be able to 
recognize the nature of numbers appearing in column B of the spreadsheet. Other-
wise, that is, if the partial sums are not recognized as square numbers, one is unable 
to proceed from experiment to theory. This transition is needed to establish the ex-
ternal validity of experiment that deals with the issue of generalizability. In the case 
of the partial sums of odd numbers, the theoretical justification of the experiment 
consists in formal demonstration of the emerging conjecture, namely, that the sum 
of the first n odd numbers is the square of n. This conjecture, in fact, is a proposition 
well known for almost two thousand years due to a Greek mathematician Theon 
(Smith 1958). Therefore, if internal validity of experiment is not established, one 
is not prepared for the discussion of its external validity, or, at the very least, one’s 
efforts in establishing the external validity of experiment may go astray.

A possible incompleteness of the required knowledge and skills on the part of 
the learners of mathematics calls for the introduction of additional techniques that 
enable one’s success at the stage of internal validation of experiment. In the case 
when one has to connect partial sums of odd numbers to squares, a diagrammatic 

Fig. 1.2   Computing partial 
sums of consecutive odd 
numbers
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representation through concrete materials can be brought to bear. It is important 
to keep in mind that, in general, one’s intuitive recognition of geometric figures 
develops at an early age (Freudenthal 1978, p. 100) and that geometric knowledge 
and skills are often superior to their numeric equivalent (Clements 1999). In par-
ticular, young children are capable of noticing, “that only some numbers could be 
formed into squares” (Ball 1993, p. 384). In general, this follows an ancient tradi-
tion originated in Chinese mathematics about tenth century B.C. (Beiler 1964) of 
ascribing geometric characteristics to numbers from where such terms as triangular, 
square, pentagonal, etc. numbers are derived. Such alternative geometric represen-
tation of the spreadsheet-based experiment is shown in Fig. 1.3. It can be facilitated 
through the task of rearranging counters forming a triangle with one counter at the 
vertex and with each row having two more counters than the previous one into a 
square.

Considering “every obstacle an opportunity for the exercise of ingenuity instead 
of an insuperable barrier” (McCall 1923, p. 7), one can precede a somewhat abstract 
computational experiment with a more concrete hands-on activity involving basic 
geometric shapes. This is in agreement with van Bendegen’s (1998) dual categoriza-
tion of an experiment in mathematics that involves computation and physical ma-
nipulation. As noted by Freudenthal (1978), “It is independency of new experiments 
that enhances credibility… [for] repeating does not create new evidence, which in 
fact is successfully aspired to by independent experiments” (pp. 193–194). Having 
different representations of an experimentally developed concept makes it easier to 
establish internal validity of experiment. In particular, it is not the amount of square 
numbers appearing in column B of the spreadsheet (Fig. 1.2) or, in Baker’s (2008) 
terms, the number of calculated instances of the emerging hypothesis about the par-
tial sums of odd numbers that facilitates the interpretation of the experiment. Rather, 
it is just one activity of rearranging counters from a triangle into a square shape 
(or vice versa) that provides experimental evidence to the analytically formulated 
mathematical proposition and is conducive for the development of new insight.

1.4 � Defining Computational Experiment  
in the Pre-College Context

There are several ways the notion of experimental mathematics—the bedrock of 
any computational experiment—is currently defined. For example, Borwein and 
Bayley (2004) define experimental mathematics as the use of advanced computing 

Fig. 1.3   Visual proof of the 
relation 1 3 5 3 3+ + = ×
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technology in mathematics research. However, according to Epstein et al. (1992), 
“many mathematical experiments these days are carried out on computers, but others 
are still the result of paper-and-pencil work” (p. 1). The latter definition includes the 
use of both computational and non-computational tools in a mathematical experiment. 
Comparing the two definitions suggests that any kind of computing technology, if 
used appropriately, can support learners in their experimentation with mathematics. 
Characterizing experimental mathematics from a philosophical perspective, Baker 
(2008) did not emphasize the use of computers as essential tools for experimentation 
with mathematical ideas and, instead, argued that it “involves calculating instances 
of some general hypothesis” (p. 331) thus leaving it open as to how calculations 
are carried out. However, all the definitions draw on mathematical research and do 
not reflect on computational experiments in the context of mathematics education 
whether they are carried out at the tertiary, secondary, or primary level.

Boas (1971) was probably the first to introduce the notion of computational ex-
periment in tertiary mathematical education at the meeting of the American Associa-
tion of the Advancement of Science by arguing “calculus should be presented to the 
student in the same spirit as the experimental sciences” (p. 664). McKenna (1972) 
went even further in his argument in favor of computational experiment extending 
it from calculus to the whole mathematics: “the computer provides mathematicians 
with an unparalleled opportunity to motivate students towards experimentation 
with mathematics” (p. 295). In particular, referring to the use of computer in linear 
algebra, Hethcote and Schaeffer (1972) reported how “one student found experimen-
tally that the limit of the ratio of terms in a Fibonacci sequence is independent of the 
two given initial values” (p. 293). But the same computational experiment can be 
already demonstrated in the secondary mathematics classroom using, for example, 
a spreadsheet (Arganbright 1984). It can be further extended from Fibonacci-like 
sequences such as Lucas numbers, as shown in Posamentier and Lehmann (2007), 
to Fibonacci-like polynomials leading to the discovery of new knowledge about 
the behavior of the so-called generalized golden ratios (Abramovich and Leonov 
2011). Therefore, integrating computational experiment approach in the second-
ary mathematics curriculum has the potential for motivated students to experience 
mathematics in the making.

Understanding the idea of computational experiment in mathematics education as 
a way of learning mathematics with technology brings about the term “experimental 
mathematics” into the modern pre-college classroom (Sutherland 1994). It is interesting 
to note that the notion of mathematical experiment as a teaching method can be found 
in the Common Core, the modern day educational document in the United States: 
“A spreadsheet, or a computer algebra system (CAS) can be used to experiment with 
algebraic expressions, perform complicated algebraic manipulations, and understand 
how algebraic manipulations behave” (Common Core State Standards 2010, p. 62, 
italics added). Likewise, in Japan, the use of computing technology has been recom-
mended to “be taken into account for the instructional content related to numerical 
calculations, as well as in teaching through activities like observation, manipulation 
and experimentation” (Takahashi et al. 2006, p. 257, italics added).

1  Theoretical Foundations of Computational …
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One can see how the advent of computers made it possible to extend the notion 
of experimental mathematics to include the idea of advanced problem solving in 
the context of computationally supported mathematical education environments. 
Through such an extension, both the complexity of mathematics to be involved 
and the sophistication of technology to be used can vary on the spectrum from 
precollege level to that of mathematical research. Although the use of paper and 
pencil allows for some basic computations also, the current emphasis on the use 
of technology in the teaching of mathematics in Australia (National Curriculum 
Board 2008), Canada (Expert Panel of Student Success in Ontario 2004; Ontario 
Ministry of Education 2005), Japan (Takahashi et al. 2006), Singapore (Ministry 
of Education, Singapore 2006), England (Advisory Committee on Mathematics 
Education 2011; Department for Education 2013b), the United States (Conference 
Board of the Mathematical Sciences 2001, 2012; International Society for Technol-
ogy in Education 2007, 2008; National Council of Teachers of Mathematics 2000, 
2011; President’s Council of Advisors on Science and Technology 2010), and other 
countries as a way of making its learning more accessible is the main reason for the 
author to emphasize the use of the tools available in the digital era.

So, in the context of this book, the term computational experiment means an 
approach to mathematics teaching and learning made possible by the use of vari-
ous commonly available and user friendly computational tools. Furthermore, meth-
odology of the experiment remains the same regardless at which grade level it is 
used and what tools it employs. Namely, this methodology draws on the power of 
computers to perform a variety of numeric computations and geometric/graphic 
constructions in the case when ideas and objects under study are too complex to 
be approached by using mathematical machinery and mental computation alone. 
Of course, this complexity is relative to a grade level and learner’s mathematical 
background knowledge.

1.5 � Computational Experiment as a Signature Pedagogy 
of Mathematics

The notion of signature pedagogy was introduced by Shulman (2005a) in the con-
text of professional education towards the goal of developing in students habits 
of mind of professionals working in the field they are preparing to join. Empha-
sizing teaching as a scholarly endeavor, this notion was explored for a variety of 
disciplines, including mathematics, in the book edited by Guring et al. (2009). In 
the specific context of mathematics, Cuoco et  al. (1996) underscored the impor-
tance of drawing on the habits of mind of a mathematician as an organizing prin-
ciple for school mathematics curriculum. Common characteristics for all signature 
pedagogies varying across disciplines comprise three entities called by Shulman 
(2005a) the structures of signature pedagogy, namely, surface structure of teaching, 
deep structure of teaching, and implicit structure of teaching. When one possesses 
only basic subject matter knowledge, his or her pedagogical skills and abilities lie 
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within the surface structure of teaching. In mathematics, teaching at the surface 
structure level fails to appreciate such pillars of knowledge development as prob-
lem solving, reflective inquiry and quest for meanings. Instead, someone holding 
to the surface structure of mathematics teaching emphasizes memorization of rules 
without understanding their meaning and avoids using them as problem-solving 
tools. Computational experiment approach cannot be used in the classroom unless 
a teacher is prepared psychologically and pedagogically to move away from the 
surface structure of teaching.

Pedagogy that characterizes the deep structure of teaching is the result of one’s 
strong possession of content he or she teaches, understanding how different areas 
and concepts of a discipline can be connected, and how students and teachers may 
become ‘partners in advancement’ (Bruner 1985) by exploring jointly generated 
questions. In mathematics, deep structure of teaching implies the need for a teacher 
to understand mathematics, its ideas and concepts in a profound way, to know how 
to demonstrate and interpret connections among the concepts, and have a rich rep-
ertoire of motivational techniques for the introduction of such concepts. In other 
words, a teacher must have a strong command of pedagogical content knowledge 
(Shulman 1986, 1987), something that is currently considered as the basis for stu-
dents’ progress in learning mathematics (Baumert et al. 2010). As was mentioned 
earlier, motivational techniques may include experimentation with mathemat-
ics (McKenna 1972). Therefore, with the advent of technology, deep structure of 
mathematics pedagogy can also be characterized by a computational experiment 
that stems from one’s understanding of how mathematics and technology interact 
and becomes an element of implicit structure of teaching. Indeed, teachers’ beliefs 
about the use of computers in the classroom formed by their experiences with using 
technology in teaching, are the major components of the implicit structure of their 
profession.

1.6 � Nurturing Mathematical Mindset in Students

Shulman (2005b) described signature pedagogy using the following three 
descriptors: uncertainty, engagement, and formation. In general, the current sig-
nature pedagogy of mathematics both at the pre-college (National Council of 
Teachers of Mathematics 2000; Common Core State Standards 2010) and tertia-
ry (Committee on the Undergraduate Program in Mathematics 2004; Conference 
Board of the Mathematical Sciences 2001, 2012) levels provides students with 
the opportunity of “doing mathematics rather that hearing about mathematics” 
(Ernie et al. 2009, p. 265). This focus on doing mathematics through problem solv-
ing is the distinctive signature of a professional mathematician, whether one uses 
technology or does not use it.

The need for nurturing mathematical mindset in students was introduced in 
North American secondary education half a century ago and the following two 
quotes represent the most prominent sources: “To know mathematics means to 
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be able to do mathematics” (Alfors 1962, p. 189), and “For efficient learning, an 
exploratory phase should precede the phase of verbalization and concept formation” 
(Pólya 1963, p. 609). The former source is a memorandum signed by 75 profession-
al mathematicians from the United States and Canada. It was written in response to 
the need to design a new mathematics curriculum of secondary school to improve 
and advance mathematical preparation of students at the pre-college level.

A call for the revision of school mathematics curriculum can also be found in the 
writings of Freudenthal (1973) who ascertained that mathematics pedagogy lacks 
connecting everyday problems to mathematical method available because, in gener-
al, “people never experience mathematics as an activity of solving problems, except 
according to fixed rules” (p. 95). As a remedy to this state of mathematics pedagogy 
and teacher training, Freudenthal (1978) emphasized the need for “a shift of stress 
from pedagogics to subject matter” (p. 68), echoing an earlier remark about “the 
dominance of education by professional educators who may have stressed pedagogy 
at the expense of content” (Ahlfors 1962, p. 189). Teaching prospective teachers to 
solve mathematical problems through a manifold of approaches, including compu-
tational experiment approach, develops their strength in understanding the subject 
matter of mathematics. However, according to Wittmann (2005), despite all correct 
recommendations, Freudenthal’s call for the emphasis on subject matter prepara-
tion, mathematics education research “had lost the connection with mathematics 
[focusing, instead, on] artificial ‘applications’ and… lists of ‘competences’. Step by 
step mathematical substance was pushed into the background and lost” (p. 296). As 
a secondary mathematics teacher candidate expressed (through the student opinion 
of faculty instruction) her belief about the role of a mathematics education course 
for secondary teachers: “The course has to prepare us to teach mathematics with-
out knowing mathematics.” This comment, stemming from the teacher’s implicit 
structure of signature pedagogy, naively, yet mistakenly, defies the role of content 
in teaching mathematics, something that, on the contrary, as Ball et al. (2008) put 
it, “stands on its own as a domain of understanding disposition and skill needed by 
teachers for their work” (p. 398).

Interestingly, teaching students to do mathematics is inherently linked to Shul-
man’s (2005b) descriptors of signature pedagogy—uncertainty, engagement, and 
formation. Indeed, if a teacher promotes reflective inquiry pedagogy, thereby acting 
at the deep structure of teaching, a student, by asking an unexpected question, can, in 
fact, pose a problem. This problem might be too difficult to solve even in an experi-
mental fashion. The realization of this fact points to the uncertainty of mathematics 
pedagogy. Next, doing something presupposes engagement; so the problem-solving 
focus of current mathematics pedagogy does require students’ engagement. Finally, 
regardless of the outcome of this engagement, one develops a kind of professional 
disposition towards the discipline of mathematics and even more so if a problem 
is not solved from the first attempt. In this case, it is very important to provide a 
qualified assistance in order to prevent students’ interest towards mathematics to bi-
furcate into the state of unstable equilibrium. As noted by de Lange (1993), the stu-
dents’ excitement with problem solving and the teacher’s growing confidence with 
mathematical content have great potential to overcome the issue of uncertainty in 
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the classroom. In the digital era, at any grade level, problem solving and mathemati-
cal exploration can be greatly assisted through the use of computers, which bring 
elements of uncertainty, engagement, and formation to the mathematics classroom. 
Therefore, these ever changing teaching tools, in Shulman’s (2005a) words, “create 
an opportunity for reexamining the fundamental signatures we have so long taken 
for granted” (p. 59). Several ideas of revisiting signature pedagogy of mathematics 
in the digital era through the lens of the computational experiment approach will be 
presented below.

1.7 � Type I/Type II Technology Applications

Using computers at the surface structure level is what Maddux (1984) has termed 
Type I application of technology in education, seeing it quite different from Type 
II application. He referred to the latter type as “new and better ways of teaching” 
(p. 38, italics in the original) in the technological paradigm. In the context of math-
ematics teacher preparation it was argued, “technology used in a superficial way, 
without connection to mathematical reasoning, can take up precious course time 
without advancing learning” (Conference Board of the Mathematical Sciences 
2012, p. 57). Thus, one can say that Type I application of technology to mathemat-
ics teaching stands in the way of advancing mathematical learning.

The concept of Type I/Type II application of technology turned out to be a very 
powerful theoretical shield against sometimes rather strong critique and persistent 
skepticism regarding the worth and purpose of using computers in the schools. 
More recently, Maddux and Johnson (2005) argued that “the boring and mundane 
uses to which computers were often being applied [at the infancy of their educa-
tional applications] had set the stage for a major backlash against bringing comput-
ers into schools” (p. 2). At the same time, just as the boring and ineffective uses 
of mathematics can motivate, at least in educational sense, the development of its 
concepts (e.g., repeated addition motivates multiplication which, in turn, motivates 
the use of logarithms), one’s unsatisfactory experience with Type I application of 
technology can set the stage for the development of new ideas of teaching with 
computers, thereby, bringing about Type II technology applications. Among Type 
II applications is the computational experiment approach. However, this approach 
cannot be viewed as an educationally successful tool unless a teacher is capable of 
dealing with uncertainty when supporting students’ engagement in computation-
ally enabled problem solving and possesses skills necessary to foster mathematical 
mindset of the students. One can see how the concepts of Type II technology ap-
plication, signature pedagogy, and computational experiment become connected.

Encouraging reflection and supporting analysis of the action by a student implies 
that one acts at the deep structure level of teaching. This kind of professional behav-
ior requires broad pedagogical knowledge of what a specific computer environment 
affords, intellectual courage to motivate students to reflect on their actions, readi-
ness to answer unexpected questions, and willingness to support students’ natural 
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curiosity by helping them learn in the “zone of proximal development” (Vygotsky 
1987). This zone, described as a dynamic characteristic of cognition, measures the 
distance between two levels of the one’s cognitive development as determined by 
independent and assisted performances in a problem-solving situation. When a stu-
dent’s performance becomes assisted within the zone, the teaching occurs at the 
deep structure level. Teaching at that level also requires knowledge of national stan-
dards of the subject matter taught, understanding connections that exist between 
concepts that belong to different grade levels, and, in the digital era, skills of using 
computers to support concept learning. When a computer is used at the deep struc-
ture level of teaching, Type II application of technology occurs.

1.8 � Parallel Structures of Teaching and Learning

The theoretical construct of signature pedagogy can be augmented to include stu-
dents as the beneficiaries of the pedagogy. This augmentation is consistent with the 
underlying principles of educational scholarship, which sees the concept of signa-
ture pedagogy as an application of the theory of learning to the practice of teaching 
(Shulman 2005a). In particular, in the context of mathematical education this con-
cept serves as a link between teaching and learning (Ernie et al. 2009). However, in 
general, the proposed extension is neither grade nor content specific and it may be 
applied to any discipline.

By extending the notion of signature pedagogy to include students, two separate 
but interdependent universes can be considered: teacher’s universe and student’s 
universe. Each universe comprises three levels echoing Shulman’s classic structures 
of signature pedagogy, which can be then considered as a part of the whole teaching 
and learning process. In this process, teaching affects learning and vice versa; that 
is, the way students learn (or aspire to learn) can affect the way teachers teach. Due 
to such reciprocity of teaching and learning, the same three structures—surface, 
deep, and implicit—can be considered in the student’s universe. As the concept 
map in Fig. 1.4 shows, the teacher’s universe includes surface structure of teaching 
(SST), deep structure of teaching (DST), and implicit structure of teaching (IST). 
Likewise, the student’s universe consists of surface structure of learning (SSL), 
deep structure of learning (DSL), and implicit structure of learning (ISL).

Moreover, the concept map indicates that in the teacher’s universe, IST influ-
ences SST and DST (the same size of arrows does not imply the same level of influ-
ence). At the same time, IST is a dynamic characteristic and its current state depends 
on teacher’s experience with SST and DST. For example, successful experience 
with DST changes an IST state and the latter, in turn, sends a signal directly to SST 
to reduce its weight in the craft of teaching. In the student’s universe, the solid arrow 
from SSL to DSL means the inborn desire of learning. The dashed arrow shows that 
one’s presence in DSL typically depends on support from a ‘more knowledgeable 
other’. And like in the teacher’s universe, the components of student’s ISL depend 
on his/her learning experience and, in addition, affect teacher’s IST.
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The teacher’s and the student’s universes not only comprise matching strands but 
constantly affect each other as both parties make their way through the levels of teach-
ing and learning. In the digital era, one can talk about computer-enhanced didactics 
of mathematics. The SST, perhaps inadvertently, keeps a student at the SSL level 
so that he or she would interact with a computer for the purpose of enjoyment only. 
However, the teacher cannot have full control of the student’s use of technology. For 
example, the student might recognize patterns that the computer generates and then 
ask the teacher various questions about those patterns. In that way, the computer be-
comes a thinking device, thereby, bringing the student to the DSL level. However, the 
student’s immersion into the DSL may be rather unstable and the extent of its instabil-
ity depends on the teacher’s willingness, in turn, to enter the DST; in other words, it 
depends on what style of assistance a teacher is prepared to offer (Fig. 1.5).

Similarly to the two types of technology integration, one can talk about two 
styles of assistance that teachers can offer to their students. Style I assistance is 
typified by the surface structure of teaching and it is limited by one’s teaching phi-
losophy which does not view teaching mainly as assisted performance (Tharp and 
Gallimore 1988). Style II assistance is typified by the deep structure of teaching and 
it is open to promoting reflective inquiry and taking an intellectual risk by going 
into an uncharted territory brought to light through an open-ended classroom dis-
course. Likewise, a cursory knowledge of technology by a teacher offers students 
Style I assistance only. By the same token, Style II assistance in the students’ design 
and/or utilization of a computational learning environment requires a high level of 
technological literacy on the part of a teacher. These two styles of assistance, ob-
served within the general instructional setting, underlie one’s implicit structure of 
signature pedagogy and determine the composition of two other structures.

Fig. 1.4   Parallel structures of teaching and learning: a concept map. (Source: Abramovich et al. 2012)
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131.8 � Parallel Structures of Teaching and Learning

If the student enters the DSL, but does not receive Style II assistance from the 
teacher, it is quite likely that he or she would exit it back to the SSL. Furthermore, 
receiving no support for natural curiosity—defined by James2 (1983) as “the im-
pulse towards better cognition in its full extent” (p. 37, italics in the original)—af-
fects one’s cognitive disposition towards the continuation of having ‘a good time’ at 
the SSL level. This kind of a student’s functioning within his or her universe is con-
sistent with the dynamism of cognition expressed through the theoretical construct 
of the zone of proximal development. The longer both the teacher and the student 
function at the deep structure of their universes, in other words, the longer Style II 
assistance in the context of Type II application of technology is provided, the more 
concept learning can result from the use of technology-enabled mathematics peda-
gogy (hereafter referred to as TEMP).

By examining the computational experiment approach through the combined 
lens of teaching and learning, one can recognize significant merits of TEMP and its 
potential for achieving substantial learning outcomes. A student’s entrance into DSL 
may be motivated by a sudden recognition of a mathematical concept that a com-
puter supports, be it by a teacher’s design (manifesting DST) or not. In the student’s 
universe, the ISL includes previous learning experiences and beliefs about what it 
means to learn and do mathematics (Ernie et al. 2009). Just as in the case of IST, the 
ISL affects both SSL and DSL. An example of this relationship is a student’s belief 
that any mathematical model, be it symbolic or iconic, serves only a single problem 
rather than multiple problems. Even if the same model emerges in different con-
texts, this belief prevents one from recognizing the sameness, affects one’s desire 
to move from SSL to DSL and, thereby, hinders conceptual understanding of math-
ematics. However, if teachers function at the DST level, they can guide students to 
understanding that just as different problem-solving strategies can be applied to a 
single problem, different problems may be resolved through a single approach.

2  William James (1842–1910), a Harvard-based philosopher and psychologist known for being the 
first to offer a psychology course for teachers in the United States.

Fig. 1.5   Unstable ( left) and stable ( right) equilibriums of DSL. (Source: Abramovich et al. 2012)
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1.9 � Collateral Learning in the Technological Paradigm

John Dewey, one of the most influential philosophers behind the reform of American 
educational system in the first part of the twentieth century, argued that a pedagogy 
based on encouraging continuous reflection on the material studied with the as-
sistance of ‘the more knowledgeable other’ creates conditions for what he called 
collateral learning, something that does not result from the immediate objective of 
the curriculum under study but rather stems from its hidden domain. The following 
tenet emphasizes the educational significance of that type of learning: “Perhaps the 
greatest of all pedagogical fallacies is the notion that a person learns only the par-
ticular thing he is studying at the time” (Dewey 1938, p. 49). The appropriate use 
of technology requires that teachers have deep knowledge of mathematics and un-
derstanding of how to integrate mathematics and technology in order to guide stu-
dents in their journey through often hidden opportunities for collateral learning. For 
example, collateral learning may result from what Kantorovitch (1998) referred to 
as “unintentional discovery” (p. 33), an intellectual phenomenon which stems from 
a pedagogy encouraging the freedom of exploration so that one can solve several 
(not necessarily appearing related) problems at a time, and, in addition, continu-
ously utilizes known concepts as the building blocks of concepts to be discovered 
by serendipity. Computational experiment approach is conducive to this kind of dis-
covery, be it a new knowledge for a student, teacher, or professional mathematician. 
For a curious mind, the use of a computer at a tool for experimentation with math-
ematics is conducive to the discovery of facts that were not expected to come about 
at the outset of a computational experiment. That is, mathematical experimentation 
in the technological paradigm is an essential mechanism of collateral learning.

In a more general context, both collateral learning and unintentional discovery 
concepts bring to mind another educational construct known as hidden curricu-
lum—“those nonacademic but educationally significant consequences of schooling 
that occur systematically” (Martin 1983, p. 124). This kind of learning experience is 
taking place within a context that is much broader than a topic of any given lesson 
and, through reflection, enables students to become aware of rules and guidelines 
typically associated with social relations and control of individual actions. The no-
tion of hidden curriculum can be extended to include collateral learning and unin-
tentional discovery that may take place within a pure academic domain when one is 
expected and even encouraged to make connections among seemingly disconnected 
ideas and concepts related to a specific subject matter. Thus, one can talk about 
hidden mathematics curriculum (Abramovich and Brouwer 2006)—a didactic ap-
proach to the teaching of mathematics that motivates learning in a larger context 
that one “is studying at the time.” Computing technology provides a learning envi-
ronment to support this approach through which hidden messages of mathematics 
can be revealed to students by teachers as ‘more knowledgeable others’. By the very 
design of a computational experiment and the nature of the current signature peda-
gogy of mathematics, students are provided with ample opportunities for collateral 
learning and unintentional discovery as they develop mathematical habits of mind 
through continuous reflection on the results of the experiment.
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151.10 � Computational Experiment as a Meaning-Making Process

In a classroom setting supported by TEMP, the computational experiment 
approach requires teachers’ ability to teach at the deep structure level of teaching. 
By the same token, students are expected to learn at the deep structure of learning. 
Here, signature pedagogy based on the notion of computational experiment comes 
into play as the complex nature of extended explorations calls for the develop-
ment of computational environments through which hidden mathematical messages 
can be revealed. In the context of TEMP, the activities of doing mathematics and 
using technology are not in the relation of dichotomy as some learners believe 
(Niess 2005), but rather are framed by their unity.

As will be shown throughout the book, mathematics teachers (or teacher 
candidates for that matter) may consider TEMP both as a teaching and learning tool. 
By turning an inherently open-ended problem into a small technology-supported 
mathematical project for a student, a teacher can learn to appreciate the didactic 
value of dividing the project into four stages—empirical, speculative, formal, and 
reflective—each of which depends on the previous stage(s). Such an appreciation 
develops gradually as students move at their own pace from one stage to another 
in rather challenging contexts. Helping students with this move or mediating their 
struggle with a peculiarity of each stage requires Style II assistance, something 
that belongs to the deep structure of teaching. The self-awareness of even a slight 
teaching success happening at each stage and the emerging recognition of collateral 
learning opportunities that stem from an open-ended context ultimately build into 
background of experience for the teachers in using TEMP.

1.10 � Computational Experiment as a Meaning-Making 
Process

In the context of the theory of semiotic (i.e., sign-based) mediation the word text 
refers to any meaningful verbal and non-verbal semiotic structure (Lotman 1988). 
Thus, mathematical text may be as short as a single character π which describes 
the ratio of the circumference of any circle to its diameter and as complex as a 
proof, due to Lindemann (1882), that π may not be a root of any polynomial with 
rational coefficients, i.e., π is a transcendental number. The most important issue 
associated with text, in general, and mathematical text, in particular, is to what ex-
tent it functions as a generator of new meanings and serves the goal to enhance the 
development of new knowledge. In other words, uncovering hidden messages in a 
text brings about the collateral learning phenomenon.

Whereas the principle assumptions of TEMP dwell on the notions of reflective 
inquiry, dialogic discourse and conceptual development, many uses of technology, 
especially those associated with Type I applications, support authoritative discourse 
the pedagogy of which promotes automatism alone and does not encourage insight, 
reflection and dialogue. As noted by Freudenthal (1983), “sources of insight can be 
clogged by automatisms” (p. 469). In the context of Type I application of technol-
ogy, a possible static meaning structure of computer-generated text is not conducive 
to be taken as a thinking device by a student. In that way, one can observe a didactic 
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contradiction when the use of TEMP is limited to Type I technology application. 
A question to be answered is: How can computational experiment approach bring 
about a non-authoritative text of TEMP? A variety of interpretations of modeling 
data emerging from a computational experiment can help to resolve a seemingly 
contradictory computer-entrusted didactic situation. This section, using the socio-
cultural approach to mediated action (Wertsch 1991), will highlight computational 
experiment through the lens of modern mathematics signature pedagogy with its 
non-authoritative texts.

Proceeding from neo-Vygotskian tradition “to treat human learning and cogni-
tive development as a process which is culturally-based, not just culturally influ-
enced” (Mercer 1994, p. 92), this approach views humans as coming into contact 
with the learning environment through the action in which they engage. In turn, the 
action employs different tools and signs called mediational means. Mediated by 
tools, the action can generate signs which, in turn, can be used to create new tools. 
Sometimes it is useful to distinguish between different types of mediation and to 
single out a semiotic mediation as being relevant to computational experiment that 
draws on the power of technology in the creation of arrays of numbers, geometric 
images and graphs.

Conceptualization of computational experiment as a meaning-making process 
can be tied to the ideas about two major functions of text—transmission of con-
stant information and dialogic interanimation. The sociocultural perspective makes 
a clear distinction between authoritative and internally persuasive discourse in a 
problem-solving context; that is, it discriminates between static and dynamic mean-
ing structures of associated texts. Consider two types of texts—Type I and Type II 
applications of technology to the teaching of mathematics. The former type can be 
advanced to the latter type if, in Lotman’s (1988) terms, one can extract a text from 
a state of semiotic equilibrium, activate its self-development, and make it function 
as a generator of new meanings.

Type I application is aimed at the correct answer only and, typically, it is framed 
by authoritative discourse. In the context of the spreadsheet pictured in Fig. 1.2, 
the goal of computation could be to find the sum of the first ten odd numbers. 
Type II application, however, provides means to consider computational experi-
ment as a thinking device so that one can shift the attention from a particular inquiry 
(finding the number 100) to a whole class of similar explorations for which tech-
nology application proves to be equally effective. As noted by Kline (1985), “A 
farmer who seeks the rectangle of maximum area with given perimeter might, after 
finding the answer to his question, turn to gardening, but a mathematician who 
obtains such a neat result would not stop there” (p. 133). This note characterizes 
the crux of the current signature pedagogy of mathematics. Exploring problems 
in open way, seeking for extensions and generalizations, reflecting meaningfully 
on effective strategies in search for new results constitute the essence of an inter-
nally persuasive discourse of TEMP. For example, within a Type II application of 
the spreadsheet pictured in Fig. 1.2 one can see the sequence in column A as an 
arithmetic sequence the difference of which can be varied. Through this variation, 
the numbers in column B would vary as well so that the arithmetic sequence with 
difference d ≥ 1 (and the first term equal to one) yields polygonal numbers of side 
d + 2 as its partial sums.
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