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Preface

As it was stated in the Nine Chapters on the Mathematical Art (Jiu Zhang SuanShu)
‘‘Mathematics problems are able to vary to be extremely infinite, fine or unmeasurable.
In spite of the much complexity, the approaches can always be discovered, not as
difficultly as supposed, which involve no more than measurement, reasoning and
calculation to learn common laws’’.

—Hui Liu, The Nine Chapters on the Mathematical Art, no later than 100 BC

The field of optimization is vast with applications appearing in almost every area
of science and engineering. Generally speaking, optimization is to do with mini-
mizing or maximizing an objective function (e.g. cost, energy, profit) subject to
various types of constraints that arise due to engineering requirements or physical
specifications. The optimization techniques for solving optimization problems are
particularly important in the aspects of engineering and science applications. There
are many efficient optimization techniques available in the literature, while many
new techniques continue to be developed so as to meet the needs of solving
various new practical problems in areas such as industrial engineering and
construction, which are motivated by the need of satisfying more stringent
requirements on energy saving, environment protection, and green manufacturing
and construction. The natural formulations of the corresponding optimization
problems have become much more complicated. The purpose of this edited book is
to gather papers which address interesting optimization and control methods and
new applications of optimization methods in industrial engineering and con-
struction. Topics include optimization and control theory, statistical measurement,
monitoring, fault detection, process control, construction design and production
management. This edited book could be used as a reference book for researchers
and postgraduate students in science and engineering.

The book is composed of three parts. The first three chapters are devoted to the
development of new optimization methods. From ‘‘Optimum Confidence
Interval Analysis in Two-factor Mixed Model with a Concomitant Variable for
Gauge Study’’ to ‘‘Economic Scheduling of CCHP Systems Considering the
Tradable Green Certificates’’, the focus is on the new applications of optimization
and control methods in industrial engineering. For the rest of the chapters, different
optimization problems in construction projects are being addressed.
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In ‘‘Robustness of Convergence Proofs in Numerical Methods in Unconstrained
Optimization’’, the robustness of convergence proofs in numerical methods of
unconstrained optimization is presented. It is developed based on an important
principle in dynamic control system theory, where control policies are preferred to
be of feedback form, rather than in an open loop manner. In ‘‘Robust
Optimal Control of Continuous Linear Quadratic System Subject to
Disturbances’’, the robust optimal control of linear quadratic system is consid-
ered. It is formulated as a minimax optimal control problem which admits a unique
solution. A control parameterization scheme is developed to transform the infinite
dimensional optimal control problem to one with finite dimension. It is further
shown that the transformed finite-dimensional optimal control problem can be
solved through semi-definite programming. In ‘‘A Linearly-Growing Conversion
from the Set Splitting Problem to the Directed Hamiltonian Cycle Problem’’, a
linearly growing conversion from the set splitting problem to the directed
Hamiltonian cycle problem is discussed. A constructive procedure for such a
conversion is given, and it is shown that the input size of the converted instance is
a linear function of the input size of the original instance.

In ‘‘Optimum Confidence Interval Analysis in Optimum Confidence Interval
Analysis in Two-Factor Mixed Model with a Concomitant Variable for Gauge
Study’’, the efforts on optimum confidence interval analysis in two-factor mixed
model for gauge study are studied. The analysis of variance is performed in the
model and variabilities in the model are represented as a linear combination of
variance components. Optimum confidence intervals are constructed using a
modified large sample approach and a generalized inference approach is proposed
to determine the variability such as repeatability, reproducibility, parts, gauge and
the ratio of variability of parts to the variability of gauge. In ‘‘Optimization
of Engineering Survey Monitoring Networks’’, the focus is on various ways of
engineering survey monitoring networks, such that those used for tracking
volcanic and large-scale ground movements may be optimized to improve the
precision. These include the traditional method of fixing control points,
the Lagrange method, free net adjustment, the g-inverse method and the singular
value decomposition (SVD) approach using the pseudo-inverse. In ‘‘Distributed
Fault Detection Using Consensus of Markov Chains’’, a fault detection procedure
appropriate for use in a variety of industrial engineering contexts is proposed,
where consensus among a group of agents about the state of a system is employed.
Markov chains are used to model subsystem behaviours, and consensus is reached
by way of an iterative method based on estimates of a mixture of the transition
matrices of these chains. In ‘‘Engineering Optimization Approaches of Nonferrous
Metallurgical Processes’’, an intelligent sequential operating method based on
genetic programming is developed for solving nonferrous metallurgical processes,
where optimization is being carried out while avoiding violent variation by
operating the parameters in the ordered sequence. Real practical industrial data are
used for carrying out the verification. In ‘‘Development of Neural Network Based
Traffic Flow Predictors Using Pre-processed Data’’, a simple but effective training
method by incorporating the mechanisms of back-propagation algorithm and the
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exponential smoothing method is proposed to pre-process traffic flow data before
training purposes. The pre-processing approach intends to aid the back-propaga-
tion algorithm to develop more accurate neural networks, as the pre-processed
traffic flow data are more smooth and continuous than the original unprocessed
traffic flow data. This approach is evaluated based on some sets of traffic flow data
captured on a section of the freeway in Western Australia. Experimental results
indicate that the neural networks developed based on this pre-processed data
outperform those that are developed based on either original data or data which are
pre-processed by the other pre-processing approaches. In ‘‘Economic
Scheduling of CCHP Systems Considering the Tradable Green Certificates’’,
tradable green certificate mechanism is introduced for the operation of CCHP
system, and the impacts of tradable green certificate on the scheduling of CCHP
system are studied. Then the economic dispatch model for multi-energy comple-
mentary system considering the TGC is proposed to maximize renewable energy
utilization. This is a non-convex scheduling optimization problem. A global
descent method is applied, which can continuously update the local optimal
solutions by global descent functions. Finally, one modified IEEE 14-bus system is
used to verify the performance of the proposed model and the optimization solver.

The remainder of the book relates to construction engineering optimization,
more or less. Many types of optimization problems arise in construction engi-
neering, such as sizing optimization, shape optimization, topology optimization,
production optimization, contract dispatching and project management. Consid-
ering the differences in production conditions in the manufacturing industry, these
problems are worth studying and complex for seeking valuable laws in optimi-
zation. First, the construction is rooted in place and conducted as on-site manu-
facturing. Second, every construction project is unique and a one-of-a-kind
production, managed by a temporary organization, and consists of several com-
panies. Third, highly interdependent activities have to be conducted in limited
space, with multiple components, a lack of standardization and with many trades
and subcontractors represented on-site. In ‘‘Optimizations in Project Scheduling:
A State-of-Art Survey’’, a state-of-art survey of project management and sched-
uling is presented. This survey focuses on the new optimization formulations and
new solution algorithms developed in the recent years. In ‘‘Lean and Agile
Construction Project Management: As a Way of Reducing Environmental
Footprint of the Construction Industry’’, a way of reducing the environmental
footprint of the construction industry is proposed with the concept of lean and agile
construction project management. It focuses on the construction project manage-
ment with respect to the agility and leanness perspective and provides an in-depth
analysis of the whole project life cycle phases based on lean and agile principles.
Considering managing construction projects in Hong Kong, dynamic implications
of industrial improvement strategies are analysed in ‘‘Managing Construction
Projects in Hong Kong: Analysis of Dynamic Implications of Industrial
Improvement Strategies’’. Based on a series of face-to-face interviews with
experienced practitioners and a focus group exercise, this chapter presents the
mapping of various interacting and fluctuating behaviours patterns during the site
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installation stage of building services in construction projects, with the aid of a
generic system dynamics model, and draws interesting conclusions about the
relationships among factors in construction project management. In ‘‘Dynamic
Project Management: An Application of System Dynamics in Construction
Engineering and Management’’, system dynamics (SD) are taken into consider-
ation for construction engineering and project management. It is expected to serve
as a useful guideline for the application of SD in construction and to contribute to
expanding the current body of knowledge in construction simulation. Since
production control is an essential part of any complex and constrained construction
project, a lean framework for production control in complex and constrained
construction projects (PC4P) is discussed in ‘‘A Lean Framework for
Production Control in Complex and Constrained Construction Projects (PC4P)’’,
which is based on an open system-theory mindset and consists of components,
connections and inputs. In ‘‘Optimization in the Development of Target
Contracts’’, by formulating the sharing problem in optimization terms, specific
quantitative results will be obtained for all the various combinations of the main
variables that exist in the contractual arrangements and project delivery. Such
variables include the risk attitudes of the parties (risk-neutral, risk-averse), single
or multiple outcomes (cost, duration, quality), single or multiple agents
(contractors, consultants), and cooperative or non-cooperative behaviour. This
chapter will be particularly of interest to academics and practitioners in the dis-
cipline of the design of target contracts and project delivery. It provides an
understanding of optimal sharing arrangements within projects, broader than
currently available.

We take this opportunity to express our immense gratitude to Prof. Kok Lay
Teo for his guidance and encouragement all the time. We would also like to
acknowledge financial support from Curtin University and the Natural National
Science Foundation of China (11171079). In addition, we wish to thank Nathalie
Jacobs and Cynthia Feenstra from Springer for their kind cooperation and
professional support. Our special thanks go to Dr. Xiaofang Chen for his technical
support during this book’s editing process. Finally, we would like to convey our
appreciation to all contributors, authors and reviewers who made this book
possible.
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Robustness of Convergence Proofs in Numerical
Methods in Unconstrained Optimization

B. S. Goh, W. J. Leong and K. L. Teo

Abstract Numerical methods to solve unconstrained optimization problems may
be viewed as control systems. An important principle in dynamic control system
theory is that control policies should be prescribed in a feedback manner rather than
in an open loop manner. This is to ensure that the outcomes are not sensitive to small
errors in the state variables. A standard proof in numerical methods in unconstrained
optimization like the Zoutendijk method is, from the control theory point of view,
an open loop type of analysis as it studies what happens along a total trajectory for
various initial state variables. In this chapter, an example is constructed to show that
the eventual outcome and convergence to a global minimum point or otherwise can
be very sensitive to initial values of the state variable. Convergence of a numerical
method in unconstrained optimization can also be established by using the Lyapunov
function theorem. The Lyapunov function convergence theorem provides feedback
type analysis and thus the outcomes are robust to small numerical errors in the initial
states. It requires that the level sets of the objective function are properly nested
everywhere in order to have global convergence. This means the level sets of the
objective function must be topologically equivalent to concentric spherical surfaces.

1 Introduction

An iterative method to compute the minimum point in an unconstrained optimization
problem can be viewed as a control system. Thus to achieve robust solutions it
is desirable to have feedback solution rather than open loop control policies [1].
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A typical proof of a numerical method in optimization examines what happens along
the total path of a trajectory for all admissible initial values. Thus, it is an open
loop type of analysis. On the other hand, a proof of convergence of a numerical
method by Lyapunov theorem in an unconstrained optimization problem examines
what happens to changes in the value of the objective function relative to the level
sets of the function in a typical iteration and it is re-started with numerical errors of
the state variable. This is an example of feedback type control analysis and thus it is
robust to numerical errors in the computation of the current position.

We shall draw on an example due to Barbashin and Krasovskii [1–3], and use
Lyapunov function theory to illustrate the differences between open loop and closed
loop convergence analysis of a numerical method in unconstrained optimization. It
will also be demonstrated that open loop type of convergence along each trajectory
for all possible initial conditions may not guarantee convergence to a global mini-
mum point. It only establishes convergence to stationary points. What is needed is
the concept of properly nested level sets of the objective function which is a key
requirement for global convergence in a proof by using Lyapunov function theorem.
Globally, an objective function has properly nested level sets if all the level sets are
topologically equivalent to concentric spherical surfaces.

For convenience, brief reviews of Lyapunov function theorem for the global con-
vergence of an iterative system and the Zoutendijk theorem for the convergence of a
line search method in optimization will be given.

2 Convergence Proof by Using Lyapunov Function
Theorem in Optimization

The traditional statement of the Lyapunov function theorem [1, 4–7] for a system of
iterative equations is as follows: Let x∗ be the optimal solution in an optimization
problem. It is the equilibrium point of a system of iterative equations. Let L and C
be positive constants. The vector iterative equation is,

x(k + 1) = F[x(k)], x ∈ Rn, k = 0, 1, 2, . . . , (1)

where F(x) is a vector of continuous functions which does not explicitly contain
the time variable k. It is said to be a time independent system. Thus, this analysis
is not immediately applicable to time varying iterative systems like Quasi-Newton
iterations in optimization. Some changes of this analysis can be made and they would
then be applicable to time dependent systems.

We seek a continuous and nonnegative scalar function, V(x), such that,

ζV [x(k)] = V [F(x(k))] − V [x(k)] < 0, k = 0, 1, 2, . . . (2)
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for all x(k) ∈ {x|0 ≤ V(x) ≤ L} = η(x, x∗, L) and where x ≈= x∗. At the equilibrium
point, V(x∗) = 0 and trivially, ζV(x∗) = 0. By definition, a sublevel set of the
function V(x)is defined by η(x, x∗, L) = {x|0 ≤ V(x) ≤ L}. Here, if L is a large
positive constant, it defines a large sublevel set of V(x). On the other hand, a level
set of the function V(x) is the set given by τ = {x|V(x) = C}. If condition (2) is
satisfied, the function ζV(x) is said to be negative definite in the sublevel region,
η(x, x∗, L). It is important to differentiate between a level set and a sublevel set in
a convergence analysis.

In an unconstrained optimization problem with objective function f (x), the fol-
lowing function is a natural Lyapunov function

V(x) = f (x) − f (x∗). (3)

Clearly, V(x) is a merit function in optimization theory, with an additional require-
ment that it has a zero value at the optimal point, x∗. Furthermore, all the level sets of
the function V(x) must be properly nested in a sublevel set or global region, which
means that they are topologically equivalent to concentric spherical surfaces. The
function V(x) with the required properties is called a Lyapunov function. The con-
dition that the level sets of a function are properly nested can be verified easily for
a function of two variables. This is done by plotting samples of the level sets of the
function and by invoking the assumption that the function is continuous.

Suppose that f (x) is the objective function for an unconstrained optimization
problem with higher dimension. Then a sufficient condition to ensure that the level
sets of a Lyapunov function are properly nested globally is that there exists a positive
constants, γ , such that

V(x) − V(x∗) = f (x) − f (x∗) ≥ γ ||x − x∗||, (4)

for all x ∈ Rn, where ||.|| is a norm. If (4) is satisfied globally, the Lyapunov function
is also said to be radially unbounded. In (4), a fixed point at the point x∗ is used.
On the other hand, a Lipschitz type condition in place of (4) for use in convergence
analysis in numerical methods, would require that for all x and y in a finite region,

||∇f (x) − ∇f (y) ≤ γ ||x − y||. (5)

Note that the inequality signs in (4) and (5) are in opposite directions. Furthermore,
(4) is a condition on the objective function rather than its gradient function in (4).

Theorem 2.1 The equilibrium, x∗, of the iterative equation (1) is globally convergent
if

(i) there exists a continuous nonnegative function V(x) with V(x∗) = 0, such that
the function change ζV(x) in (2) is negative definite globally and

(ii) all the level sets of V(x), are properly nested.

Proof Suppose as k → ∞ the function V [x(k)] → K∞ ≈= 0
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We maximize the function

W(x) = ζV [x(k)] = V [F(x(k))] − V [x(k)] (6)

for all x(k) ∈ η(x, K∞, V(x(0))) = {x|K∞ ≤ V(x) ≤ V(x(0))}. This set, which
is bounded by the two level sets of the function, V(x), is a closed and bounded
(i.e., compact) set because of the assumption that the level sets of V(x) are properly
nested. Thus, by Weierstrass’s theorem for continuous functions, the maximum of
W(x) = ζ V(x) = V [F(x)] − V(x) in η(x, K∞, V(x(0))) exists and it is attained in
this compact set. Let the maximum value of W(x) = −θ . Furthermore, θ is a nonzero
positive parameter as ζ V(x) is negative definite and by assumption, K∞ ≈= 0.
We have

V [x(N)] =
N−1∑

0

ζV [x(k)] + V [x(0)] ≤ −Nθ + V [x(0)]. (7)

This implies that V [x(N)] → −∞ as N → ∞. This is impossible as V(x) is
nonnegative for all values of N . Hence we must have K∞ = 0.This shows that the
equilibrium is globally asymptotically convergent.

Corollary 2.1 Suppose that the two conditions in Theorem 2.1 are satisfied only in a
finite sublevel region, η(x, x∗, L). Then the convergence is valid in the finite region.

To apply Theorem 2.1 to a numerical method in an unconstrained optimization
problem, minimize f (x), a natural choice of the Lyapunov function is,

V(x) = f (x) − f (x∗).

This implies that,
ζV(x) = ζ[f (x) − f (x∗)] = ζf (x). (8)

It is an important practical result, because ζV(x) can be calculated in each step of
an iterative method for an optimization problem even though the Lyapunov function
V(x) is not explicitly defined. This property provides an important way to ensure that
the Lyapunov function theorem is satisfied in a specific problem when a numerical
method is used.

On careful examination of (7), it is observed that the reduction of value of the
Lyapunov function is finite and negative in a typical iteration. When the Lyapunov
function theorem is applied to a numerical method for finding a solution of a specific
problem, ζ V(x) = ζf (x) can be computed at each step. If numerical errors of
an algorithm cause it to be positive in a particular iteration, ζV(x) = ζf (x) would
require re-computation until it is negative or stop—indicating failure of the numerical
method.
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3 Zoutendijk Convergence Analysis of a Numerical
Method in Optimization

The Zoutendijk theorem is a set of prototype conditions which are used to establish
the convergence of a numerical method for computing the minimum point of an
optimization problem. It examines what happens along the total trajectory for a given
initial state. A numerical method in unconstrained optimization may be viewed as
a control system where the position is called the state vector and the steplengths
and directions are control variables. For a control system, a feedback control policy
is preferred over an open loop control policy [1, 8]. This is because an open loop
control can be very sensitive to errors in the initial or current values of the state
variables. This sensitivity of outcomes to numerical errors in the initial or current
state variables will be explicitly and clearly demonstrated in an example.

For convenience, we briefly describe the application of Zoutendijk theorem to
establish convergence of a line search method in unconstrained optimization of the
objective function f (x). Assume a line search method generates the iterative equation,

x(k + 1) = x(k) + α(k)p[x(k)], x ∈ Rn, k = 0, 1, 2, . . . . (9)

The key conditions required are: (i) The objective function is bounded below; and
(ii) the gradient vector of the objective function satisfies the Lipschitz condition in
an open subset η(x, x0) of the sublevel set {x|f (x) ≤ f (x0)}. This means that for any
pair of points x and y in η(x, x0), there exists a positive constant γ such that,

||∇f (y) − ∇f (x)|| ≤ γ ||y − x||. (10)

Furthermore, the steplength in the iterative equation (9) is chosen to satisfy the
Wolfe’s conditions, namely,

f [x(k) + α(k)p(k)] ≤ f [x(k)] + c1α(k)∇f [x(k)]T p(k), (11)

∇ f [x(k) + α(k)p(k)]T p(k) ≥ c2∇f [x(k)]T p(k). (12)

The positive constants c1andc2 are such that 0 < c1 < c2 < 1.
Under these conditions, the Zoutendijk theorem states that,

∑
cos2θ(k)||∇f [x(k)]||2 < ∞. (13)

Here, θ(k) is the angle between the search direction p(k) and the steepest descent
direction, −∇f [x(k)]. Thus, if there exists a positive constant σ such that

cos(θ(k)) ≥ σ > 0, (14)

then it can be deduced that
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lim ||∇f [x(k)]|| = 0 (15)

as k → ∞. This means that the trajectory generated from an arbitrary initial point
x0 would converge to a stationary point.

It is important to note that condition (13) or (15) is a property of the total trajectory
from an arbitrary initial point x0. Thus, there is no way to predicts what will happen if
there are numerical errors in the initial state vector or a current vector as the iterative
method progresses. In control system terminology, this may be viewed as an open
loop control policy which is sensitive to numerical errors in the state variable during
the computation of successive iterations. We shall demonstrate this by a specific
example in the next section. Furthermore, the convergence of the iterative method is
only to a stationary point which may not be even a local minimum point. This will
be shown in an example.

4 Analysis of a Counterexample Without Properly
Nested Level Sets

We shall adapt a counterexample due to Barbashin and Krasovskii [1–3] in Lyapunov
theory for a system of ordinary differential equations to a system of iterative equation
equations. For a system of ordinary differential equations, without the property that all
the level sets are properly nested, an objective function can be monotonic decreasing,
but the trajectories may not converge to the global minimum point.

From this counterexample, it is observed that if all the level sets of the objective
function are not properly nested, then the solutions can be very sensitive to errors in
the values of initial variables and hence they are not robust against numerical errors.

Example 4.1 Consider an unconstrained optimization with its objective function,

V(x) = f (x) = x2
1/(1 + x2

1) + x2
2 . (16)

Its global minimum is at the origin. For convenience, let

w = (1 + x2
1). (17)

It does not have properly nested level sets for states in the set defined by

{x|V(x) ≥ b > 1},

where b is a constant.
Assume that the iterative equations to compute the minimum point are given by

x1(k + 1) = x1(k) − α(k)[6x1(k)/w2(k) + 2x2(k)], (18)
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Fig. 1 Objective function has properly nested level sets only in a sublevel set {x|f (x) ≤ c < 1}.
Lyapunov theorem guarantees convergence only is such sets. Zoutendijk theorem applies globally
as function is monotonic decreasing everywhere. But trajectories with initial condition (0,a) with
a ≥ 2.61 converge to (∞, 0). BRS and APM show sensitivities to initial values

x2(k + 1) = x2(k) − α(k)[2(x1(k) + x2(k))/w2(k)], (19)

with the steplength, α(k) = 0.01
With sufficiently small steplengths, it follows from Taylor’s approximation that

ζ V(x) = V [x(k + 1)] − V [x(k)] (20)

= ∇V [x(k)]T ζx(k)

= −12αx2
1/w4 − 4αx2

2/w2 < 0.

Thus, the objective function is monotonic decreasing globally except at the origin.

Apply the Zoutendijk theorem to this example, we deduce that

lim cos2 θ ||∇f (x)||2 → 0, (21)

with iterations from any point, globally. But the outcomes could be the global mini-
mum point at the origin or a stationary point at (∞, 0) or (−∞, 0).

By Lyapunov function theorem, the level sets of the objective function are only
properly nested in a sublevel set, {x|f (x) = V(x) ≤ c < 1}, where c is a constant.
Thus, by Lyapunov function theorem, we are ensured that all trajectories with initial
points in this sublevel set will converge to the global minimum at the origin (0,0), as
depicted in Fig. 1.
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Zoutendijk theorem can be applied to all initial points but for initial points, such
as (0,a) with a ≥ 2.61, the trajectories converge to (∞, 0), rather than the global
minimum point. A more important issue is that as under an open loop control pol-
icy, the trajectories can be sensitive with respect to numerical errors in the initial
state vector. This is illustrated by the trajectories APM from (0,2.6) and BRS from
(0,2.61) in Fig. 1. Here, a small change in initial conditions leads to entirely different
outcomes. Thus, Zoutendijk theorem in a proof of convergence only provides con-
ditions for a trajectory from a typical initial point to converge to a stationary point.
More importantly, the trajectories can be very sensitive to the choice of the values
of the initial state variables. This phenomena is a well known weakness of an open
loop policy in control systems.

5 Conclusion

Numerical methods in unconstrained optimization can be viewed as control systems.
It is well know that a feedback control policy is much preferred over an open control
policy in control systems. Proofs of convergence of a numerical method, such as
those based on Zoutendijk theorem, are in the context of open loop control policies.
They examine what happens along the total path of a trajectory for different initial
values. Thus the outcome could be sensitive to numerical errors of the initial values
or the current state. Furthermore, Zoutendijk theorem ensures only convergence to
stationary points.

On the other hand, the Lyapunov theorem proof of the convergence of a numerical
method in unconstrained optimization is a feedback type of analysis. It requires that
in a typical iteration the decrease in the objective function must be finite and negative.
If numerical errors caused the failure of this monotonic decrease condition of the
objective function, then it requires new iterations by line search or otherwise to re-
compute a new iteration which causes a decrease in the objective function. Thus the
Lyapunov function approach has feedback properties.

Furthermore, the Lyapunov function requires that the objective function has prop-
erly nested level sets globally or in a finite sublevel set which defines an estimate of
its region of convergence. With the properly nested level sets property, convergence
to a minimum point is guaranteed and not just to a stationary point.
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Robust Optimal Control of Continuous Linear
Quadratic System Subject to Disturbances

Changzhi Wu, Xiangyu Wang, Kok Lay Teo and Lin Jiang

Abstract In this chapter, the robust optimal control of linear quadratic system is
considered. This problem is first formulated as a minimax optimal control prob-
lem. We prove that it admits a solution. Based on this result, we show that this
infinite-dimensional minimax optimal control problem can be approximated by a
sequence of finite-dimensional minimax optimal parameter selection problems. Fur-
thermore, these finite-dimensional minimax optimal parameter selection problems
can be transformed into semi-definite programming problems or standard minimiza-
tion problems. A numerical example is presented to illustrate the developed method.

1 Introduction

A fundamental problem of theoretical and practical interest, that lies at the heart of
control theory, is the design of controllers that yield acceptable performance for a
family of plants under various types of inputs and disturbances [1]. This problem
is often referred to as a robust optimal control problem. Normally, there are two
kinds of criteria to achieve robust controller design. One is based on a statistical
description, i.e., the criterion of the expectations of the cost and the constraints is
adopted [17]. For the other one, the worst-case performance criterion is adopted [2–4,
9–12, 15, 18].
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The dynamical systems can be classified into two kinds—discrete dynamical
system and continuous dynamical system. For the robust optimal control of linear
discrete dynamical system with quadratic cost function, there are many results avail-
able [2–5, 9–12, 15, 18]. If disturbances lie in an ellipsoid, then it is shown in [3] that
such an optimal control problem without constraints is equivalent to a semi-definite
programming (SDP) problem. If the optimal control problem is subject to constraints
on the state and control, it can be relaxed (see [3]) as a second-order cone program-
ming (SOCP). If disturbances lie in a polyhedral, then such a robust optimal control
problem becomes computationally highly demanding, (see [2, 12]). For other results
on such robust optimal control problems, see, for example, [2, 3, 10–12, 18]. For
robust optimal control governed by continuous dynamical system, a computational
scheme is developed in [16]. By introducing a linear operator and resorting to its
norm, the original minimax optimal control problem can be transformed into a stan-
dard optimal control problem. This method depends crucially on the special form of
the cost function. If the cost function is with the terminal cost, then this method does
not work.

In this chapter, we consider a class of robust optimal control problems governed
by continuous dynamical systems subject to constraints on the admissible controls
and the disturbances. The cost function involves not only a quadratic integral cost,
but also a terminal cost expressed in the form of quadratic terminal state. Further-
more, we will use piecewise functions, rather than orthornormal basis as in [16],
to approximate admissible control functions. We first show that this robust optimal
control problem admits a solution. Based on this result, we show that this infinite-
dimensional minimax optimal control problem can be approximated by a sequence of
finite-dimensional minimax optimal parameter selection problems. Then, we show
that these minimax optimal parameter selection problems can be transformed into
SDPs. We also show that these minimax optimal parameter selection problems can
also be transformed into standard minimization problems. Thus, gradient-based op-
timization methods can be applied. To illustrate our developed method, a numerical
example is presented.

2 Problem Formulation

Consider the continuous linear dynamical system

ẋ (t) = A (t) x (t) + B (t) u (t) + C (t) w (t) , t ∗ [0, T ] ,

x (0) = x0, (1)

where T is the given terminal time, x (t) ∗ R
n is the state at time t , x0 is a given

initial state, u (t) ∗ R
m is the input at time t , w (t) ∗ R

r is the uncertainty at time t ,
and A, B and C are matrices with appropriate dimension.
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Let

W =
{

w ∗ L2 ([0, T ] , R
r ) : ∈w∈2

L2 =
⎢ T

0
(w (t))T w (t) dt ≤ ζ 2

⎧
, (2)

and

U =
{

u ∗ L2 ([0, T ] , R
m) : ∈u∈2

L2 =
⎢ T

0
(u (t))T u (t) dt ≤ η2

⎧
. (3)

A function u is said to be an admissible control if u ∗ U . Note that W and U
are weakly closed in L2 ([0, T ] , R

r ) and L2 ([0, T ] , R
m), respectively. For brevity,

they are simply referred to as weakly closed.
Now our robust optimal control problem can be stated as follows.
Problem (P). Choose (u≈, w≈) ∗ U × W such that

J
(
u≈, w≈) = min

u∗U
max
w∗W

J(u, w) = (x (T ))T Px (T )+
⎢ T

0
(x (t))T Q (t) x (t) + (u (t))T R (t) u (t) dt, (4)

where P , Q (t) and R (t) are all positive definite matrices with appropriate dimen-
sions.

To proceed, we assume that the matrices A (t), B (t), C (t), Q (t) and R (t) are
continuous matrix-valued functions defined on [0, T ].

3 Existence Theorem

Note that for each given t ∗ [0, T ], P , Q (t) and R (t) are all positive definite
matrices. Let F (t, τ ) be the n × n state transition matrix that satisfies

Ḟ (t, τ ) = A (t) F (t, τ ),

F (τ, τ ) = I, (5)

where I is the identity matrix. Then, for each given u and w, the solution of (1) can
be expressed as

x (t |u, w) = F (t, 0) x0 +
⎢ t

0
F (t, τ ) B (τ ) u (τ ) dτ +

⎢ t

0
F (t, τ ) C (τ ) w (τ ) dτ.

(6)
Since P and Q (t) are positive definite matrices for each given t ∗ [0, T ], J (u, w) is
strictly convex with respect to x . From (6), it follows that x is linear with respect to
w. Thus, J (u, w) is strictly convex with respect to w. For each given u ∗ U , since
W is a weakly sequentially compact subset of L2 ([0, T ] , R

r ), there exists a w (u)
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such that
J (u, w (u)) = max

w∗W
J (u, w).

Let

G (u) =
⎢ T

0
(u (t))T R (t) u (t) dt.

Note that for each given t ∗ [0, T ], R (t) is positive definite, it is easily to verify
that G (u) is a strictly convex function with respect to u. Now we have the following
lemmas.

Lemma 1. If un γ u as n ≥ ∇, (un γ u means that un converges to u weakly in
L2 ([0, T ] , R

m)). Then,

u ∗ U and G (u) ≤ lim
n≥∇

G (un). (7)

If un ≥ u as n ≥ ∇, (un ≥ u means that un converges to u in the norm of
L2 ([0, T ] , R

m)), where {un} → U , then

u ∗ U and lim
n≥∇G (un) = G (u). (8)

Proof. Suppose that un γ u. Clearly, u ∗ U , as U is a weakly closed set in
L2 ([0, T ] , R

m). By the convexity of G (u), we have

G (un) ∞ G (u)+∩DG (u) , un − u≡ = G (u)+2
⎢ T

0
(un (t) − u (t))T R (t) u (t) dt.

(9)
Note that {un} → U and R (·) is continuous on [0, T ], we can show that

⎢ T

0
(un (t))T R (t) un (t) dt

is bounded uniformly with respect to n. Thus, lim
n≥∇

G (un) exists. Since R (·)
is continuous on [0, T ] and u ∗ L2 ([0, T ] , R

m), it follows that R (·) u (·) ∗
L2

(
[0, T ] , R

n×m
)
. Thus,

lim
n≥∇

⎢ T

0
(un (t))T R (t) u (t) dt =

⎢ T

0
(u (t))T R (t) u (t) dt (10)

as un γ u. Therefore, (7 ) holds.
Suppose that un ≥ u, i.e.,

∈un − u∈L2 ≥ 0. (11)
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Clearly, u ∗ U . Since {un} → U and R (·) is continuous on [0, T ], there exists a
constant κ such that

∈R (·) un (·)∈L2 ≤ κ for all n = 1, 2, . . .,

and
∈R (·) u (·)∈L2 ≤ κ.

Thus,

|G (un) − G (u)| ≤
⎪⎪⎪⎪
⎢ T

0
(un (t) − u (t))T R (t) un (t) dt

⎪⎪⎪⎪+
⎪⎪⎪⎪
⎢ T

0
(un (t) − u (t))T R (t) u (t) dt

⎪⎪⎪⎪

≤ κ ∈un − u∈L2 +
⎪⎪⎪⎪
⎢ T

0
(un (t) − u (t))T R (t) u (t) dt

⎪⎪⎪⎪ (12)

≤ 2κ ∈un − u∈L2 .

Since un ≥ u, it follows that lim
n≥∇G (un) = G (u). This completes the proof.

Define

F (u, w) = (x (T |u, w))T Px (T |u, w) +
⎢ T

0
(x (t |u, w))T Q (t) x (t |u, w) dt,

We have the following lemma.

Lemma 2. Suppose that un γ u and wn γ w as n ≥ ∇, where {un} → U and
{wn} → W . Then,

lim
n≥∇F (un, wn) = F (u, w), (13)

where u ∗ U and w ∗ W .

Proof. Since U and W are weakly closed, u ∗ U and w ∗ W . By the continuity
of A (t), F (t, ·) is continuous on [0, t] for each t ∗ [0, T ] Note that

|x (t |un, wn) − x (t |u, w)|
=
⎪⎪⎪⎪
⎢ t

0
F (t, τ ) B (τ ) (un (τ ) − u (τ )) dτ +

⎢ t

0
F (t, τ ) C (τ ) (wn (τ ) − w (τ )) dτ

⎪⎪⎪⎪

≤
⎪⎪⎪⎪
⎢ t

0
F (t, τ ) B (τ ) (un (τ ) − u (τ )) dτ

⎪⎪⎪⎪ +
⎪⎪⎪⎪
⎢ t

0
F (t, τ ) C (τ ) (wn (τ ) − w (τ )) dτ

⎪⎪⎪⎪

=
⎪⎪⎪⎪
⎢ T

0
F̃ (t, τ ) B (τ ) (un (τ ) − u (τ )) dτ

⎪⎪⎪⎪ +
⎪⎪⎪⎪
⎢ T

0
F̃ (t, τ ) C (τ ) (wn (τ ) − w (τ )) dτ

⎪⎪⎪⎪,
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where

F̃ (t, τ ) =
{

F (t, τ ) , i f τ ≤ t,
0n×n else.

Clearly, F̃ (t, τ ) B (τ ) and F̃ (t, τ ) C (τ ) are continuous on [0, T ] except at the
point τ = t and hence F̃ (t, τ ) B (τ ) ∗ L2

(
[0, T ] , R

n×m
)

and F̃ (t, τ ) C (τ ) ∗
L2

(
[0, T ] , R

n×r
)
. Thus, for each t ∗ [0, T ], we have

lim
n≥∇ xn (t |un, wn) = x (t |u, w). (14)

On the other hand,

|x (t |un, wn)| =
⎪⎪⎪⎪F (t, 0) x0 +

⎢ t

0
F (t, τ ) B (τ ) un (τ ) dτ+

⎢ t

0
F (t, τ ) C (τ ) wn (τ ) dτ

⎪⎪⎪⎪

≤ |F (t, 0) x0| +
⎪⎪⎪⎪
⎢ t

0
F (t, τ ) B (τ ) un (τ ) dτ

⎪⎪⎪⎪+
⎪⎪⎪⎪
⎢ t

0
F (t, τ ) C (τ ) wn (τ ) dτ

⎪⎪⎪⎪

≤ |F (t, 0) x0| +
⎥

m⎩

i=1

(⎢ t

0

(
(F (t, τ ) B (τ ))i

)2
dτ

)]1/2

⎥
m⎩

i=1

⎢ T

0

(
un,i (τ )

)2
dτ

]1/2

+
⎥

r⎩

i=1

⎢ t

0

(
(F (t, τ ) C (τ ))i

)2
dτ

]1/2

⎥
r⎩

i=1

⎢ T

0

(
wn,i (τ )

)2
dτ

]1/2

,

where (F (t, τ ) B (τ ))i is the i-th element of F (t, τ ) B (τ ). By the continuity of∫ t
0

(
(F (t, τ ) B (τ ))i

)2
dτ ,

∫ t
0

(
(F (t, τ ) C (τ ))i

)2
dτ and F (t, 0) x0, there exists a θ

such that

θ = max
i=1,...,m; j=1,...,r;t∗[0,T ]

{⎢ t

0

(
(F (t, τ ) B (τ ))i

)2
dτ,

⎢ t

0

(
(F (t, τ ) C (τ )) j

)2
dτ, |F (t, 0) x0|

⎧
.
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It follows that

|x (t |un, wn)| ≤ θ + θ1/2 (∈un∈L2 + ∈wn∈L2
) ≤ θ + θ1/2 (ζ + η) , ∀t ∗ [0, T ].

Since Q (t) is continuous on [0, T ] and is positive definite for each t ∗ [0, T ], we
have, for any t ∗ [0, T ],

0 ≤ (x (t |un, wn))T Q (t) x (t |un, wn) ≤ max
i, j=1,...,n;t∗[0,T ]

⎪⎪Qi, j (t)
⎪⎪

(
θ + θ1/2 (ζ + η)

)2
.

Therefore, by Lebesgue Dominated Convergence Theorem (Theorem 2.6.4 in
[14]), it holds that

lim
n≥∇

⎢ T

0
(x (t |un, wn))T Q (t) x (t |un, wn) dt

=
⎢ T

0
lim

n≥∇ (x (t |un, wn))T Q (t) x (t |un, wn) dt

=
⎢ T

0
(x (t |u, w))T Q (t) x (t |u, w) dt. (15)

By virtue of (14) with t = T and (15), we obtain

lim
n≥∇F (un, wn) = F (u, w).

This completes the proof.

From Lemma 1 and Lemma 2, we have the following lemma.

Lemma 3. If un γ u and wn γ w, where {un, wn} → U × W , then,

(u, w) ∗ U × W and J (u, w) ≤ lim
n≥∇

J (un, wn).

If un ≥ u and wn γ w, where {un, wn} → U × W , then,

(u, w) ∗ U × W and J (u, w) = lim
n≥∇ J (un, wn).

Now we have the following main theorem in this section.

Theorem 1. Consider Problem (P). Then, there exists a (u≈, w≈) ∗ U × W such
that

J
(
u≈, w≈) = min

u∗U
max
w∗W

J (u, w). (16)
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Proof. Note that L2 ([0, T ] , R
r ) is reflexive and U is a compact and convex set.

It follows that U is weakly sequentially compact. To prove (16), it suffices, by
Proposition 38.12 in [19], to prove that

J (u) = max
w∗W

J (u, w)

is weakly sequentially lower semi-continuous. That is to say, we only need to prove

J (u) ≤ lim
n≥∇

J (un) when un γ u. (17)

Suppose that un γ u. From Lemma 3, we know that

J (u, w) ≤ lim
n≥∇

J (un, w) , for any w ∗ W .

Clearly,
max
w∗W

J (un, w) ∞ J (un, w).

It follows that

J (u, w) ≤ lim
n≥∇

J (un, w) ≤ lim
n≥∇

max
w∗W

J (un, w) , for any w ∗ W .

Thus,

J (u) = max
w∗W J (u,w) ≤ lim

n≥∇
max
w∗W J (un, w) = lim

n≥∇
J (un, w (un)) = lim

n≥∇
J (un).

This completes the proof.

4 Problem Approximation

Consider a monotonically non-decreasing sequence {S p}∇p=1 of finite subsets of

[0, T ]. For each p, let n p + 1 points of S p be denoted by t p
0 , t p

1 , . . . , t p
n p . These

points are chosen such that

t p
0 = 0, t p

n p = T , and t p
k−1 < t p

k , k = 1, 2, . . . , n p.

Thus, associated with each S P there is the obvious partition I p of [0, T ] defined
by

I p = {I p
k : k = 1, . . . , n p},

where I p
k = [t p

k−1, t p
k ).
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We choose S P such that lim
p≥∇ S p is dense in [0, T ], that is

lim
p≥∇ max

k=1,...,n p

⎪⎪I p
k

⎪⎪ = 0,

where
⎪⎪I p

k

⎪⎪ = t p
k − t p

k−1, the length of the kth interval.
Let

u p(t) =
n p⎩

k=1

α p,kσI p
k
(t), (18)

wp(t) =
n p⎩

k=1

θ p,kσI p
k
(t), (19)

and

α p = [(α p,1)T , . . . , (α p,n p )T ]T and θ p = [(θ p,1)T , . . . , (θ p,n p )T ]T ,

where

α p,k =
[
α

p,k
1 , . . . , α

p,k
m

]T
, and θ p,k =

[
θ

p,k
1 , . . . , θ

p,k
r

]T
,

σI denotes the indicator function of I defined by

σI (t) =
{

1, t ∗ I,
0, elsewhere.

Define
Π p =

{
α p ∗ R

mn p : (α p)T
U Pα p ≤ η2

}
, (20)

Ξ p =
{
θ p ∗ R

rn p : (θ p)T
W Pθ p ≤ ζ 2

}
, (21)

U p =
{

u p(t) =
n p⎩

k=1

α p,kσI p
k
(t) : α p ∗ Π p

}
,

and

W p =
{

wp(t) =
n p⎩

k=1

θ p,kσI p
k
(t) : θ p ∗ Ξ p

}
,

where
U P = diag

(⎪⎪I p
1

⎪⎪ Im×m,
⎪⎪I p

2

⎪⎪ Im×m, . . . ,
⎪⎪I p

n p

⎪⎪ Im×m
)
,

and
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W P = diag
(⎪⎪I p

1

⎪⎪ Ir×r ,
⎪⎪I p

2

⎪⎪ Ir×r , . . . ,
⎪⎪I p

n p

⎪⎪ Ir×r
)
.

It is clear that U p ⊆ U and W p ⊆ W . Furthermore, we have the following
lemma.

Lemma 4. For any u ∗ U and w ∗ W , let

u p(t) =
n p⎩

j=1

α p, jσI p
j
(t) (22)

and

wp(t) =
n p⎩

j=1

θ p, jσI p
j
(t), (23)

where

α p, j = 1⎪⎪⎪I p
j

⎪⎪⎪

⎢

I p
j

u(t)dt

and

θ p, j = 1⎪⎪⎪I p
j

⎪⎪⎪

⎢

I p
j

w(t)dt.

Then, u p ∗ U p and wp ∗ W p. Furthermore,

u p ≥ u and wp ≥ w. (24)

Proof. Note that

⎢ T

0

(
u p(t)

)T
u p(t)dt =

⎢ T

0

⎛

⎝
n p⎩

j=1

α p, jσI p
j
(t)

⎞

⎠
T ⎛

⎝
n p⎩

j=1

α p, jσI p
j
(t)

⎞

⎠ dt

=
n p⎩

j=1

⎢

I p
j

(
α p, j

)T
α p, j dt =

n p⎩

j=1

1⎪⎪⎪I p
j

⎪⎪⎪

⎢

I p
j

uT (t)dt
⎢

I p
j

u(t)dt

≤
n p⎩

j=1

1⎪⎪⎪I p
j

⎪⎪⎪

⎪⎪⎪I p
j

⎪⎪⎪
⎢

I p
j

uT (t)u(t)dt =
⎢ T

0
uT (t)u(t)dt. (25)

Thus, u p ∗ U p. In a similar way, we can show that wp ∗ W p. From Lemma 6.4.1
of [14], we have

u p (t) ≥ u (t) , for almost all t ∗ [0, T ],
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and
wp (t) ≥ w (t) , for almost allt ∗ [0, T ].

Note that {u p}× {wp} → U × W and u × w ∗ U × W . We have ∈u p∈2
L2 ≤ η2 and

∈wp∈2
L2 ≤ ζ 2 for all p = 1, . . ., while ∈u∈2

L2 ≤ η2 and ∈w∈2
L2 ≤ ζ 2. Since T is a

finite number, the conclusion of the lemma follows readily.

With u ∗ U p and w ∗ W p, the dynamical system (1) becomes

ẋ (t) = A (t) x (t) + B (t)

n p⎩

k=1

α p,kσI p
k
(t) + C (t)

n p⎩

k=1

θ p,kσI p
k
(t),

x (0) = x0, (26)

and J (u, w) becomes

J̃
(
α p, θ p) = (x (T ))T Px (T ) +

⎢ T

0

{
(x (t))T Q (t) x (t) +

( n p⎩

k=1

α p,kσI p
k
(t)

)T

R (t)

( n p⎩

k=1

α p,kσI p
k
(t)

)⎫⎬

⎭ dt.

Now we define the following minimax optimal parameter selection problem.
Problem

(
Pp
) :For the given dynamical system (26), choose (α p,≈, θ p,≈) ∗ Π p×Ξ p

such that
J̃
(
α p,≈, θ p,≈) = min

α p∗Π p
max

θ p∗Ξ p
J̃
(
α p, θ p).

Remark 1. Following a similar argument given for the proof of Theorem 1, we can
show that for Problem

(
Pp
)
, there exists a (α p,≈, θ p,≈) ∗ Π p×Ξ p such that

J
(
α p,≈, θ p,≈) = min

α p∗Π p
max

θ p∗Ξ p
J̃
(
α p, θ p). (27)

Theorem 2. Suppose that (u≈, w≈) and (α p,≈, θ p,≈) are the optimal solutions of
Problem (P) and Problem

(
Pp
)
, respectively. That is,

J
(
u≈, w≈) = min

u∗U
max
w∗W

J (u, w) and J̃
(
α p,≈, θ p,≈) = min

α p∗Π p
max

θ p∗Ξ p
J̃
(
α p, θ p).

Then,
lim

p≥∇ J̃
(
α p,≈, θ p,≈) = J

(
u≈, w≈). (28)

Proof. Suppose that (28) is not true. Then, there exists an ε0 > 0 and a sub-sequence
{α pk ,≈, θ pk ,≈} such that


