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The remainder of the twenty-first century will
pose significant challenges for natural
resource managers as they respond to rapid
and unexpected changes. We have spent most
of our careers studying how forest
ecosystems work and how to keep them
working so they can continue to provide a
myriad of benefits to society. We hope that
our efforts in producing this book will help
ensure the sustainability of forests in the face
of climate change for future generations. We
dedicate this book to Gordon Weynand for his
unwavering support and to the next
generation, future stewards of the global
environment: Aadya, Aaron, Christian,
Christina, Nate, and Zak.





Foreword

Managing forest ecosystems has always been about dealing with change and
providing for the future. Climate Change and United States Forests shows how
changes in the climate are causing pervasive and far-reaching changes in forest
ecosystems. The book helps us, the benefactors of services provided by forest
ecosystems, connect the scientific dots and better understand the big patterns.
Hopefully, these insights will drive our thinking and actions as we confront recent
and future changes in our forests.

The authors have methodically surveyed the scientific literature for a wide
range of climatic effects, organizing them into regional projections for the future
and calling for flexibility and nuance in management and policy action. Their
exploration of a large and growing body of science gives us a clear, intricate,
and balanced picture of both challenges and opportunities, unencumbered by
ideological advocacy and policy prescriptions. What follows is not a doomsday
prophecy supported by selections from the literature, but a clear-eyed synthesis of
observations and insights from climate and forest science. It offers both alarm and
hope, challenging us to address the overarching asynchrony of a climate changing
faster than some forest systems and species can adapt. Whether, when, and how
to intervene with proactive adaptation are ultimately society’s decisions, but the
assessment that follows can help assure that these choices are well-informed.

The picture here is not of a new scientific terrace where we can stop and catch
our breath, but of systems in motion, where we must use scientific inquiry and
management experience to provide signals of pattern shifts, new configurations,
and emerging issues. This is the science of the unsettled, where decision makers
and citizens must learn to refuel in flight.

This is a summary for those who take and learn from actions. It raises hope and
provides examples of taking action to deal with the changing climate. It encourages
us to move forward with actions that help us understand and deal more effectively
with the complexities of different climatic effects in different systems. While the
myriad uncertainties about climate change are obsessively debated and amplified
by theorists, policy scholars, wonks, ideologues, and advocates, it is refreshing
that science can be interpreted from the perspective of proactive adaptation and
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viii Foreword

learning. We have the tools—silviculture, genetics, fire and fuels management,
engineering, hydrology, forest products, forest economics—that can be modified
or used in different combinations to help steer adaptive processes. We may need to
deploy these tools not just to manipulate systems but also for learning, because as
the book fully discloses, there is a lot we do not yet know. It is heartening to know
that resource managers and institutions are already taking action, establishing new
partnerships, and innovating strategies and techniques that will allow us to adapt to
a cadence of change that will accelerate.

The authors emphasize that actions must be based on new realities. Most obvious
but perhaps underappreciated is the fact that the climate is indeed changing. These
changes, which have become increasingly supported by observation by scientists,
managers, and citizens, have profound effects on forest resources and our abilities
to use, appreciate, and manage them. And they call on us to reexamine and challenge
assumptions about stationarity and heretofore predictable and recurring cycles that
may underlie some of our forest management practices. These changes must be
put in temporal and spatial perspective and understood in the context of what we
already know about how forests grow and change. We know a lot about how forests
vary geographically, how they respond to multiple stresses, and the roles they play
in various biogeochemical cycles. The book challenges us to integrate these new
findings into the design of actions and measures of success as the forest around us
moves and changes.

We are now encouraged to build “climate smartness” into how we undertake
forest management and how we assess issues of policy and social expectations.
The changing climate should not be a stand-alone issue, but rather a property of all
resource discussions and decisions. By describing climate change effects in a risk
management framework, the authors have provided a structure to guide integration.
All decisions involve weighing the tradeoffs among benefits, costs, opportunities,
and risks, and it is easier to blend climatic effects on forests into ongoing decision
processes when they are expressed in the common language of risk assessment and
risk management. Climate change is a component of broader risk-based thinking
in which all elements of forest enterprise are integrated—vegetation protection and
management, roads and access, harvesting and products.

The book is a vivid reminder that we humans influence forests through (1) the
overarching and increasingly evident role of global climate change, and (2) multiple,
direct influences of an expanding population on urban development, fire manage-
ment, commerce, water use, and other resource-dependent activities. Where these
two factors collide in systems already attuned to patterns of natural disturbance,
we are seeing changes we have not had to deal with before. Deforestation of the
last two centuries may have been acute and visible, but the solution was inherently
simple yet massive: protect, reforest, manage. Today’s issues created by climate
change intersecting with the intricacies of an existing forest are more complex and
less amenable to blunt national policy prescriptions.

The overall impact of the book may be to change the way we think and talk about
forests. The authors assure us that despite the effects of a changing climate, all is
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not chaos. But we do need to “get up and move around a little” to get new blood
flowing to our collective brain. As climate changes play out into different regional
weather patterns and responses, we cannot assume that forests will stay as they are
or where they are today. We need to reexamine what we expect from forests and
what ecosystem services they can provide. Forests and their changing provision of
services are not limited to the traditionally defined rural sector that produces forest
products; forests are also vital elements of infrastructure in urban and agricultural
systems. Changes are underway not only for the forest landscape, but also for the
forest in the landscape, wherever it may occur.

We can now address multiple, interacting sources of stress and disturbance and
the rapid changes they create as they combine, and not limit our thinking to just fire,
insects, disease, air pollution, invasive species, and human development as separate
influences. Paying more attention to extreme conditions and events will allow us
to understand how their patterns differ over time and space and their influence in
the life cycles of forest systems. It is critical that we closely follow regenerative
pathways after these events, no longer assuming that the system will be “reset”
predictably to some familiar forest condition. Rather than looking at effects on
one species at a time, we need to monitor and understand changes in entire forest
systems, positioned at the intersection of cycles for water, carbon, and other vital
ecosystem functions.

An emerging imperative from the book concerns our most basic approaches to
creating and using knowledge in a rapidly changing world. The results described
here serve as both warning and inspiration to develop better ways to convert existing
and emerging knowledge into proactive decisions about tomorrow. We need to
become better at interpreting trends, describing alternative futures and designing
forest management actions that are robust and flexible to a wider range of future
conditions. Research and development are vital for finding our way forward through
a changing climate. Without the integration of advancing forest and climate science,
a broad picture of our nation’s changing forests is not possible. Syntheses such as
this help us identify gaps, reset our focus, and remind us that resource management
is itself a learning device.

But this book also shows that the best science for adaptation will be conceived
in strong adaptive research-management partnerships. We must find new ways
for scientists, managers, and citizens to work together to pool their observational
powers and intelligence to continually reexamine the realities of forest systems.
With so many changes underway and more to come, we cannot afford to follow
the linear, sequential model of science-based management in which actions are
contingent on research providing the absolute certainty that never quite arrives.
New relationships between science and management, as demonstrated in examples
here, will streamline our learning and integrate emerging lessons from experimental
science, experiential learning, and traditional forms of knowledge.

Ultimately, adaptation is not an action or a set of actions. It is a way of gaining
and using knowledge, of creating and preserving options, and of cultivating new
institutions that are agile, open, and flexible enough to provide enduring values
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in dynamic forest ecosystems. Climate Change and United States Forests can
be viewed as a call for new strategies and institutional arrangements to address
adaptation in this larger sense, as we venture from forests as they are today to
forests of the future, shaped by the interacting forces of climatic, demographic, and
economic change.

Climate Change Advisor David Cleaves
U.S. Forest Service
Washington, DC



Preface

Climate Change and United States Forests assesses the current condition and
likely future condition of forest resources in the United States relative to climatic
variability and change. Derived from a report that provides technical input to the
2014 U.S. Global Change Research Program National Climate Assessment, it serves
as a framework for managing forest resources in the United States in the context of
climate change. A complete synthesis of all of the effects of climatic variability and
change on forest resources in the United States would require a multi-volume effort,
especially given the enormous scientific literature on climate change over the past
20 years. Therefore, we focus on topics that have the greatest potential to alter the
structure and function of forest ecosystems, and therefore ecosystem services, by
the end of the twenty-first century.

Part I provides an environmental context for assessing the effects of climate
change on forest resources. First, recent changes in environmental stressors, includ-
ing climatic (e.g., temperature, droughts) and other biophysical phenomena (e.g.,
wildfire, insects), are summarized in Chap. 1. Then, state-of-science projections for
future climate are presented for parameters relevant to forest ecosystems (Chap. 2).

Part II provides a wide-ranging assessment of vulnerability of forest ecosystems
and ecosystem services to climate change. Biogeochemical cycling (including
carbon), hydrology, and forest dynamics, which are strongly affected by climate
and are expected to change significantly in some regions of the United States, are
the focus of Chap. 3. We anticipate that altered disturbance regimes and stressors
will have the biggest effects on forest ecosystems, causing long-term and in some
cases permanent changes in forest conditions. Chap. 4 documents the effects of
ecological disturbance and examines projected future disturbance regimes. Forest
values and the socioeconomic context for human-forest interactions in the United
States, ranging from rural to urban environments, are discussed in Chap. 5. Chapters
3, 4 and 5 cannot capture the enormous variability in biogeographic phenomena
across U.S. forests; therefore, Part II concludes with a series of short summaries of
climate change effects, issues, and adaptation for eight regions of the United States
(Chap. 6).
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Part III describes social and management responses to climate change in U.S.
forests. Current status and trends in forest carbon, effects of carbon management,
and carbon mitigation strategies are summarized in Chap. 7. Current and projected
greenhouse gas emissions make climate change inevitable, so it is imperative that
we prepare forest ecosystems and land management organizations for a permanently
warmer climate. We are fortunate that principles of climate change adaptation are
well established and that tools and resources to facilitate this management transition
are available (Chap. 8). Risk assessment is regarded as a foundation for the 2013
National Climate Assessment and the Fifth Assessment of the Intergovernmental
Panel on Climate Change (IPCC) (expected in 2014). Part III concludes with a
framework for risk assessment, including case studies, to provide a structured
approach for projecting future changes in resource conditions and ecosystem
services (Chap. 9).

Finally, Part IV describes how sustainable forest management, the paradigm
that guides activities on most public and private lands in the United States, can
provide an overarching structure for mitigation of and adaptation to climate change
(Chap. 10).

Because of the complexity of forest ecosystems, it is often difficult to conclude
whether recently observed trends or changes in ecological phenomena are the
direct result of human-caused climate change, climatic variability, or other factors.
Regardless of the cause, forest ecosystems in the United States at the end of the
twenty-first century will differ from those of today as a result of changing climate.
Surprises are likely—some forests may change faster than we expect, some forests
may be more tolerant of a warmer climate than we expect, or a new non-native
insect may be a “game changer” by quickly killing large areas of native forest
species. Because the current trajectory of greenhouse gas emissions implies at least
one to three centuries of higher temperatures, preparing for future changes in forest
ecosystems is imperative.

Climate change science must quickly move from the academic realm to the
applied world of resource management. Land managers in the United States are
faced with a landscape that has been greatly altered, with some 90 % of the nation’s
forest having been harvested in the nineteenth and twentieth centuries. Urban areas
are encroaching on wildlands. Private forest land is becoming increasingly frag-
mented and is expected to decrease in the future. Non-native flora often comprises
more than 10 % of the vegetation in a given location. Although production forestry is
still important in some regions, especially the southeastern United States, restoration
is dominant in other regions. Because restoration must now occur in a warmer
climate, we can no longer use static images of the past (e.g., historic range of
variability) as targets for future conditions. We must provide land managers with the
expertise, scientific principles, and techniques for transitioning forest ecosystems
into a warmer, more variable climate.

Because our charge was to provide input to the U.S. National Climate Assess-
ment, we have a provincial focus on United States forests and have not considered
the broader geographic realm of North America and other continents. However, we
anticipate that this book will contribute to ongoing efforts to synthesize information
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at continental and global scales (e.g., the Fifth IPCC Assessment). In terms
of on-the-ground management of forest resources, vulnerability assessments and
adaptation strategies are most useful at the regional to sub-regional scales, and we
hope that recent collaborative efforts described in this book will propagate across
all landscapes in the United States.

We are optimistic about the future of forest resources in the United States,
assuming that a strong commitment to monitor and respond to climate change is
institutionalized within land management agencies and other organizations. Failure
to do so may preclude future options for ensuring the long-term productivity and
functionality of forest ecosystems. How will future generations judge the resource
stewardship of our generation?

Seattle, WA, USA David L. Peterson
Raleigh, NC, USA James M. Vose
Arlington, VA, USA Toral Patel-Weynand
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