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1Introduction

Though there is some dispute about whether
barrels were first invented by the Egyptians, or
rather by Greeks and Romans (some even claim
the achievement for the Celts), earliest finds have
been dated back to as early as 2500 B.C. and there
is no discussion on that the barrel geometry fa-
cilitates transport by maximizing cube utilization
allowing tight loading of ships and wagons [1]
and that even more importantly casks generally
hold good things, such as wine, oil, beer, honey
or in case of a “barrel of laughs” also fun.

Keeping in mind the macroscopic wooden
barrel’s great transport and packing-component
potentials, as well as its importance for the civ-
ilization and technology development, this book
will call to the reader’s attention a completely
different kind of barrel: the nano-sized so-called
“-barrel membrane protein (see Fig. 1.1).
“-barrel membrane proteins that regardless of

their nanoscopic size have as great potential as
their large wooden counterparts These potentials
lie within their structure that forms channels in
hydrophobic membranes and that it is for a pro-
tein exceptionally robust imparting outstanding
nano-material properties.

1.1 Nano-technology – An
Overview

Originally the term nano-technology was used for
anything technologically applicable and smaller
than microscopic. More recently the term is
associated with the bottom-up construction of

nano-scale components purposefully built to
be assembled to form nano-materials. Nano-
technology thus operates at the first level of
organization, means at the level of atoms and
molecules (10�9 m) and it promises the ability
to build precise machines and components at the
molecular size scale. In theory the feasibility of
nano-technology was envisioned and prophesied
by the physicist Richard Feynman [2] as early as
1959 in his famous talk entitled “There’s plenty
of room at the bottom” [3] (available online at
http://www.zyvex.com/nanotech/feynman.html).

As nano-structures can be either derived from
non-biological or biological components and as
nano-materials can be applied to a broad range of
fields like electronics including opto-electronics,
medicine, pharmaceutical drug development,
water-purification, food-technology to name but
a few, nano-technology research necessitates the
cooperation of scientists from various disciplines,
such as physicists, engineers, chemists, and
biologists.

1.2 Biological Nano-materials

The aim of nano-technology is as mentioned
the design of new functional materials and de-
vices through controlling their organization at
the atomic and molecular level. One common
strategy when designing a new nano-device is to
survey naturally occurring biological structures
with the ability to perform the desired process
and use them as nano-material components or

M. Fioroni et al., ß-barrel Channel Proteins as Tools in Nanotechnology, Advances
in Experimental Medicine and Biology 794, DOI 10.1007/978-94-007-7429-2__1,
© Springer ScienceCBusiness Media Dordrecht 2014
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2 1 Introduction

Fig. 1.1 “-barrel shaped membrane protein “in the light
of” its macroscopic geometrical counterpart

scaffolds based on which to build the new nano-
construct. This approach opens the promising
field of bio-nanomaterial design.

In this sense the intrinsic nano-scale architec-
ture and rich chemistry of proteins, as well as
their catalytic activity in the case of enzymes,
may be exploited to build a wide array of specific
components in sophisticated nano-sized devices
such as nano-motors, nano-reactors or stochastic
nano-sensors. The protein based nano-material
development is backed up by the vast progress
that has been made in the molecular biology and
biotechnology field, specifically in the develop-
ment and optimization of advanced genetic en-
gineering techniques allowing a tailoring of pro-
teins towards a specific technical application [4].

Many of the possible applications of protein
nano-materials (i.e. nano-reactors, functional-
ized nano-compartments, nano-sensors, drug-
release systems) require channel shaped nano-
components that allow the controlled transport
of matter or the detection and analysis of an
analyte that interacts with the channel interior
by channel conductance measurements (nano-
sensing elements).

Having said this, a rather obvious protein
choice is the class of transmembrane proteins that
reside within the various biological membranes,
as many of these proteins form channels and
pores to facilitate the passive or active transport
of solutes, nutrients or cellular waste over the
membrane. From the two types of channel
shaped transmembrane protein classes, i.e. ’-
helical bundle and “-barrel proteins, the “-
barrel structure stands out due to its versatility,
flexibility, exceptional robustness and stability.
Moreover “-barrel membrane proteins have the
ability to refold in vitro and to reconstitute
or insert into artificial lipid and polymer flat
membranes or lipid and polymer vesicle (i.e.
liposome and polymersome) membranes.

Due to the mentioned robustness of the
“-barrel membrane proteins, they are easily
modified by genetic engineering without loss
of overall structure or function allowing
the resulting protein nano-channels to be
adapted to the non-biological synthetic polymer
environment, rendering them competitive with
artificial non-biological nano-pores. An example
of the conception of a “-barrel nano-channel
employing polymersome release system is given
in Fig. 1.2.

Therefore the “-barrel and its serviceability for
the nano-material design will be the chief topic
of the present book and on the example of the
Escherichia coli FhuA (ferric hydroxamate up-
take component A) the design of a set of protein
nano-channels with tailored geometry (diameter,
length), conductance and functionality will be
reported as a case study.

In order to make this book a valuable source of
information for both biotechnologists and other
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Fig. 1.2 Schematic conception work-flow of a hybrid
bio-polymer nano-system on the example of a synthetic
block copolymer based (A – hydrophophilic block, B –
hydrophobic block) polymersome functionalized with a

tailored “-barrel nano-channel for controlled compound
release; involving protein engineering, protein polymer
assembly and the resulting finished nano-release system

scientists interested in bio-nanotechnology an
overview of the different steps involved in the
nano-channel protein design and production will
be reported, including concept design, theoretical
considerations, genetic engineering and large
scale production, as well as the system assembly
and biophysical characterization.

In the following section a brief outline on the
individual chapters will be given.

1.3 Outline

1.3.1 Chapter 2

To enter the membrane protein nano-channel ma-
terial design topic, Chap. 2 will introduce to
the biological basics of natural membranes and
membrane proteins in general.

It will give some elementary information on
the lipid bilayer composition and function, the
main models to describe the bilayer membrane as
well as on the lipids that assemble to form the
membrane.

The various classes of membrane proteins (i.e.
integral vs. peripheral) and their key differences
will be mentioned. The two main structural

classes of integral membrane proteins (i.e. ’-
helical and “-barrel) will be presented with regard
to their biological origin, functional and struc-
tural features (considering primary, secondary,
tertiary and quaternary sequence/structure), their
biogenesis and their usability as bio-based nano-
material components. For both protein classes
several well-known and well-studied literature
examples will be given.

In the light of the present book’s title:
ˇ-Barrel Channel Proteins as Tools in Nano-
technology, the main focus however will be
on the characteristics and unique structural
and functional properties of the “-barrel outer
membrane proteins (OMPs). Their relevance
for the nano-channel material design will be
emphasized by presenting recent examples of
the nano-technological use of lipid or polymer
reconstituted “-barrel channel proteins.

The E. coli outer membrane iron transporter
FhuA, which is a member of the TonB protein-
dependent transporters and is one of the largest
known “-barrel membrane proteins, will be in-
troduced. Its unique biological characteristics (re-
garding structure and function) will be outlined.
Since the FhuA and its engineered variants have
been successfully employed as a model for the

http://dx.doi.org/10.1007/978-94-007-7429-2_2
http://dx.doi.org/10.1007/978-94-007-7429-2_2


4 1 Introduction

transformation of a “-barrel outer membrane pro-
tein into a custom-made nano-channel, Chap. 2
aims to use the FhuA example to view “-barrel
proteins not only within their biological context
but to already introduce the reader to the rele-
vance of members belonging to this membrane
protein class for the nano-material sciences and
specifically to their use for the design of biolog-
ical nano-channels that can be reconstituted into
artificial lipid or polymer membranes.

1.3.2 Chapter 3

The biophysical characterization of “-barrel outer
membrane proteins (OMPs) opens the master
way for the OMP behavioral understanding
under the alien conditions they experience in
a new environment such as a polymersome
membrane.

The OMP characterization, furthermore,
grounds the basics for a rational protein
engineering necessary to solve the problems
related to their functional reconstitution and
widens their use and applications in technologies
such as drug delivery, stochastic sensors and
bio-nanoelectronics (see Chap. 6).

The main tools for the structural characteriza-
tion of channel proteins and OMPs in particular
is given in Chap. 3, where the state of the art
of the main biophysical techniques used in “-
barrel membrane protein analysis will be in-
troduced, specifically mentioning X-ray crystal-
lography, Circular Dichroism (CD) and Nuclear
Magnetic Resonance (NMR).

The main problems, difficulties and limita-
tions for each of the single techniques will be re-
ported and most importantly, their alliances with
other sophisticated techniques i.e. synchrotron
radiation, to obtain structural, kinetic as well as
thermodynamical informations will be reported.

Obviously the chapter is not intended as an
exhaustive description of the single techniques,
where existing reviews and books have been cited
alongside the text, but has the aim to show how
the X-ray diffraction measurements of protein
crystals, CD spectroscopy and NMR have been
and are used to study channel proteins further

illustrating the direction toward which modern
methodology and applications are facing.

However in the reported case of studies, many
of the characterization problems associated with
channel proteins and OMPs are intertwined with
the difficulties deriving from the expression and
purification methods that can be, quite often, the
determining step in membrane proteins studies.

A particular stress will be given to Circular
Dichroism. CD is a qualitative undervalued tech-
nique which gives general content in secondary
structure of a protein and, in some cases, clues on
the tertiary/quaternary structural changes, with
no atomistic detail. However its use due to its
quite user friendly experimental procedure and
rapid data acquisition and processing, can rapidly
uncover basic information on the protein stability
within different environments not always easily
obtainable or even impossible to obtain for ex-
ample, by NMR analysis.

The obvious aim of each scientist working in
the channel protein field is to obtain complete
knowledge on the system with which he/she is
working, however the fast development and num-
ber of bio-technologically modified “-barrel pro-
teins to be, for example, embedded in liposomes
or polymersomes, result in a need of a rapid
characterization, a need that CD can promptly
answer to, giving first clues on the obtained
mutant secondary structure and stability.

1.3.3 Chapter 4

Chapter 4 will describe different theoretical
and computational approaches that are useful
to model and design new nano-systems based
on “-barrel membrane proteins. Computational
power in terms of continuously growing
hardware facilities together with the continuous
development of theoretical methodologies makes
biomolecular modeling and bioinformatics
a basic tool to complement experiments in
many ways. In this sense computational
simulations can provide valuable information
on the specific system under study. Chapter
4 will moreover stress on the importance of
computational simulations and bioinformatic
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1.3 Outline 5

tools to interpret experimental observables, to
rationally guide further improvements providing
data unaccessible or difficult to access by
experimental studies.

The chapter has been divided in two parts.
The first part aims to provide the reader with a
broad scope about the most common and useful
simulation tools in biomolecular modeling stress-
ing on the advantages and limitations of each
methodology. At first will be presented the basis
of Quantum Mechanics (QM) based methods,
including an analysis on the case studies to which
QM can be fruitfully applied.

Even though QM represents matter at the most
accurate level of description, QM based meth-
ods are computationally very expensive and their
practical application in the context of the present
book will be limited only to small parts of the
system. In this sense the present chapter will
illustrate the importance of QM methods to de-
sign new functional groups that can be used
to functionalize “-barrel membrane proteins for
nano-technological applications. Secondly atom-
istic Molecular Dynamics (MD) simulations and
their suitability to simulate “-barrel membrane
proteins will be presented. Atomistic MD simu-
lations represent a system in the Molecular Me-
chanics framework, where atoms are represented
as spheres and bonds as harmonic springs, and
allow the simulation of systems to be analyzed at
the nanosecond timescale with a resolution at the
atomistic level.

However many important processes such as
refolding or self-assembly of lipid/copolymer bi-
layers occur at the microsecond timescale, far
beyond the timescale reachable by atomistic MD
simulations. To that end will be introduced a
third level of biomolecular simulations, i.e. the
so-called Coarse Grained (CG) simulations. In
CG simulations many atoms are grouped into a
single bead and consequently the total number of
particles is drastically reduced compared to the
total number of particles present in a full atom-
istic description, which allows reaching longer
timescales.

The second part of the chapter will briefly
introduce some common bioinformatic structure
prediction tools used to perform a first 2D and

3D structure prediction of the “-barrel membrane
proteins focusing on the challenges and problems
one might encounter when applying these tools to
predict the structure of non-natural (engineered)
“-barrel membrane proteins. The basic logic al-
gorithms used by these tools will be summarized
and reviewed.

1.3.4 Chapter 5

Chapter 5 will assist the experimentalist that
plans to work with membrane proteins and in
particular with bacterial “-barrel outer membrane
proteins in the context of the development of new
nano-material components (i.e. nano-channels).
It will offer an overview on genetic engineering
methods as well as expression, extraction and pu-
rification procedures considering standard tech-
niques, new alternatives as well as methods com-
patible with scale-up and high yield production
purposes, including difficulties that the beginner
might encounter and tips and suggestions on how
to overcome these difficulties.

In a narrower sense Chap. 5 will explain in
detail how to practically transform a “-barrel
membrane protein into a nano-channel with de-
sired geometrical and functional features, starting
from the gene design, when planning an entirely
novel protein variant. Site-specific mutagenesis
for slight changes or the introduction of amino
acid residues suitable for chemical modification
purposes will be furthermore discussed. An over-
view on commonly used protein chemical modifi-
cations (useful to introduce triggers and switches
to OMP channels) will be given focusing on outer
membrane protein examples. Here the FhuA pro-
tein of E. coli will serve as the main example,
as it has great potentials as a starting-template
to develop a set of engineered nano-channels
with tailored geometry and controllable channel
function and as the reader will see considerable
steps toward this goal have been already made
during the last decade.

Chapter 5 will then summarize the conven-
tional means of production and purification
of bacterial OMPs (outer membrane proteins),
stressing on the problems and challenges of
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