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                 Abstract     Innate immunity is the fi rst line of defense against invading microorganisms 
in plants. Pathogen-associated molecular patterns (PAMPs) are the classical acti-
vators of immune responses. These are alarm signal molecules are perceived as 
‘nonself’ by plant pattern recognition receptors (PRRs) to switch on the plant 
immune responses. PAMPs are not only detected in pathogens, but also detected in 
nonpathogens and even in saprophytes. The PAMPs are often called as microbe-
associated molecular patterns (MAMPs). MAMPs are molecular signatures typical 
of whole classes of microbes and their recognition by PRRs activates the plant 
innate immunity. Most of the PRRs are receptor-like kinases (RLKs) and RLKs are 
proteins with a “receptor” and a “signaling domain” in one molecule. The extracel-
lular domains of RLKs bind directly to legands to perceive extracellular signals, 
whereas the cytoplasmic kinase domains transduce these signals into the cell. PRRs 
interact with additional transmembrane proteins which act as “signaling amplifi -
ers”. PAMPs induce autophosphorylation of the kinase domain of PRRs and the 
autophosphorylated PRRs are translocated to endosomes. The biogenesis of trans-
membrane PRRs occurs through endoplasmic reticulum (ER) with the aid of 
ER-resident chaperones. The PRR in ER is transported from ER to plasma mem-
brane and  N -glycosylation of PRRs is required for the transport of PRRs. Second 
messengers deliver the information generated by the PAMP/PRR signaling complex 
to the proteins which decode/interpret signals to initiate defense gene expression. 
Calcium ion is a ubiquitous intracellular second messenger involved in various 
defense signaling pathways. Ca 2+  is a master regulator of gene expression in plants. 
Calcium signatures are recognized by calcium sensors to transduce calcium-
mediated signals into downstream events. Guanosine triphosphate (GTP)-binding 
proteins (G-proteins) act as molecular switches in signal transduction system. 
Mitogen-activated protein kinase (MAPK) cascades transduce extracellular stimuli 
into intracellular responses in plants. Reactive oxygen species is a second messen-
ger in transmitting the PAMP signal. Nitric oxide (NO) is a diffusible second 
messenger acting in cellular signal transduction through stimulus-coupled 
S-nitrosylation of cysteine residues. The plant hormones salicylic acid, jasmonate, 
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ethylene, abscisic acid, auxin, cytokinin, gibberellins, and brassinosteroids play 
important role in immune response signaling. Plant hormones activate different 
signaling pathways inducing distinctly different defense genes. These signaling 
pathways can crosstalk with each other and this crosstalk helps the plant to “decide” 
which defensive strategy to follow, depending on the type of attacker it is encounter-
ing. Potential pathogens produce several effectors to nullify the defense responses 
induced by the innate immune system. Pathogens may also hijack some signaling 
systems to cause disease. The war between the plant and pathogen appears to be in 
fi ne-tuning the signaling systems to cause disease or to enhance host defense 
response. Recent advances in our understanding of the molecular basis of plant 
innate immunity have opened new era in developing potential tools in management 
of crop diseases.  

  Keywords     Pathogen-associated molecular patterns (PAMPs)   •   Microbe-associated 
molecular patterns (MAMPs)   •   Plant pattern recognition receptors (PRRs)   • 
  Endocytosis of PRR proteins • PAMP-triggered immunity (PTI) • PAMP-PRR 
signaling complex   

1.1         Classical PAMPs 

    Innate immunity is the fi rst line of defense against invading microorganisms in 
vertebrates and the only line of defense in invertebrates and plants (Silipo et al. 
 2010 ; Zamioudis and Peterse  2012 ). Several elicitors of microbial origin have been 
identifi ed as primary danger/alarm signal molecules to switch on the plant immune 
systems culminating in activation of defense genes (Aziz et al.  2003 ; D’Ovidio et al. 
 2004 ; Cavalcanti et al.  2006 ; Vidhyasekaran  2007 ; Thomma et al.  2011 ). The classical 
general elicitors reported in plant pathogens resemble the pathogen-associated 
molecular patterns (PAMPs), the classical activators of innate immune responses in 
mammals (Nürnberger and Brunner  2002 ; Nürnberger et al.  2004 ; Nürnberger and 
Lipka  2005 ). These historically termed general elicitors have been renamed as 
PAMPs (Jones and Dangl  2006 ; Bent and Mackey  2007 ). PAMPs are often vital for 
microbial survival and are therefore not subject to mutational variation (Gust et al.  2007 ; 
Zhang and Zhou  2010 ). PAMPs are defi ned as evolutionarily conserved building 
blocks of microbial surfaces that directly bind to plant pattern recognition receptors 
(PRRs) and induce defense responses (Nürnberger and Brunner  2002 ; Qutob et al.  2006 ; 
Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ; Thomma et al.  2011 ). The molecular 
signatures in PAMPs are not present in the host and these are perceived as ‘non-self’ 
by plant pattern recognition receptors (Mackey and McFall  2006 ). 

 PAMPs that trigger innate immune responses in various vertebrates and non- 
vertebrate organisms include eubacterial fl agellin, elongation factors, lipopolysac-
charides (LPS) from gram-negative bacteria, viral and bacterial nucleic acids, fungal 
cell wall-derived chitins, glucans, mannans, or proteins and peptidoglycans from 
gram-positive bacteria (Zipfel and Felix  2005 ; Jones and Dangl  2006 ). Similar 
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PAMPs have been detected in a wide range of plant pathogens (Shinya et al.  2007 ; 
Boller and Felix  2009 ; Silipo et al.  2010 ; Tsuda and Katagiri  2010 ; Nürnberger and 
Kufner  2011 ). One of the common features of PAMPs is their presence in a broad 
range of microbial species (Brunner et al.  2002 ). The general structure of lipopoly-
saccharides (LPS) is shared by all gram-negative bacteria (Medzhitov  2001 ) and the 
protein PAMP fl agellin is highly conserved among bacterial taxa (Felix et al.  1999 ). 
Chitin is the widespread, conserved, and intrinsic structure detected in fungi 
(Thomma et al.  2011 ). CBEL (for  C ellulose- B inding  E licitor  L ectin) is a glycopro-
tein PAMP and it occurs widely in the oomycete  Phytophthora  species (Khatib et al. 
 2004 ). The PAMP double-stranded RNA is a structural signature of several groups 
of viruses (Medzhitov  2001 ; Ding  2010 ). 

 PAMPs are exclusively recognized as the molecules involved in triggering innate 
immunity. PAMPs are actually defi ned as the molecules, which bind to plant PRRs 
and induce defense responses (Nicaise et al.  2009 ; Tsuda and Katagiri  2010 ). 
However, most of the PAMPs also have virulence functions besides eliciting defense 
responses (Thomma et al.  2011 ). The well characterized PAMP fl agellin also has a 
role in virulence. Glycosylation of the fl agellin molecule has been shown to be 
required for virulence in  Pseudomonas syringae  pv.  tabaci  (Taguchi et al.  2010 ). 
 P .  syringae  pv.  tabaci  fl agellin mutants affected in their elicitor activity also showed 
reduced virulence in plants due to reduced motility (Naito et al.  2008 ; Taguchi et al. 
 2010 ). The bacterial lipopolysaccharide (LPS) generally acts as PAMP inducing 
defenses (Tellström et al.  2007 ; Aslam et al.  2008 ; Silipo et al.  2008 ; Thomma et al. 
 2011 ). However, changes in composition of LPS affect bacterial virulence, suggesting 
a role for LPS in virulence of pathogens (Newman et al.  2007 ). When the PAMP 
chitin synthesis was disrupted in the fungal pathogen  Botrytis cinerea , virulence of 
the pathogen was drastically reduced (Soulie    et al.  2006 ). Mutation of peptidoglycan 
(PGN) genes reduces the virulence of  Ralstonia solanacearum  and of  Erwinia 
amylovora  (Cloud-Hansen et al.  2006 ), suggesting the role of the PAMP peptido-
glycan in virulence of pathogens. 

 PAMPs are detected not only in pathogens, but also in several nonpathogens, and 
saprophytes. Since the PAMPs are detected in all microbes, the PAMPs are better 
called as microbe-associated molecular patterns (MAMPs) (Viterbo et al.  2007 ; Zhang 
et al.  2007 ; Denoux et al.  2008 ; Aslam et al.  2009 ; Jeworutzki et al.  2010 ; Thomma 
et al.  2011 ; de Freitas    and Stadnik  2012 ). MAMPs are molecular signatures typical 
of whole classes of microbes, and their recognition plays a key role in innate immunity 
(Boller and Felix  2009 ).  

1.2     Plant Pattern Recognition Receptors (PRRs) 

 PAMPs are perceived as alarm/danger signals by cognate plant pattern recognition 
receptors (PRRs) and the PAMP-PRR complex activates the plant immune system 
(Takakura et al.  2004 ; Jones and Dangl  2006 ; Altenbach and Robatzek  2007 ; He 
et al.  2007 ; Wan et al.  2008 ; Iriti and Faoro  2009 ). Several receptors for the PAMPs 
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have been recognized in plasma membrane of plant cells (Nicaise et al.  2009 ; 
Petutschnig et al.  2010 ; Shinya et al.  2010 ; Schulze et al.  2010 ; Segonzac and Zipfel 
 2011 ). The PRRs identifi ed to date are modular proteins harbouring an extracellular 
domain consisting of leucine-rich repeat (LRR) or lysine motifs (LysM) (Saijo 
 2010 ; Segonzac and Zipfel  2011 ). Most of the PRRs are receptor-like kinases 
(RLKs) and the sensors for extracellular molecules consisting of an extracellular 
ligand-binding domain, a single transmembrane domain, and a cytosolic protein 
kinase domain are called RLKs (Seifert and Blaukopf  2010 ). RLKs are proteins 
with a “receptor” and a “signaling domain” in one molecule. The extracellular domains 
of RLKs bind directly to legands to perceive extracellular signals (PAMPs), whereas 
the cytoplasmic kinase domains transduce these signals into the cell (Bi et al.  2010 ). 

 PRRs interact with additional transmembrane proteins which act as signaling 
amplifi ers to achieve their functionality (Zipfel  2009 ). PAMPs bind with PRRs and 
induce conformational alteration in PRRs leading to their activation (Ali et al.  2007 ). 
PAMPs trigger increased transcription of PRR genes and accumulation of PRR 
proteins (Qutob et al.  2006 ; Lohmann et al.  2010 ). Most of the PRRs are receptor 
kinases and the PAMPs induce autophosphorylation of the kinase domain of PRRs 
(Kanzaki et al.  2008 ; Xiang et al.  2008 ). 

 The plasma membrane resident autophosphorylated PRRs are translocated to 
endosomes and it helps to extend the signaling surface ensuring a robust and effi cient 
cellular signaling system (Geldner and Robatzek  2008 ). PAMPs induce ubiquitin- 
proteasome- or clathrin-mediated endocytosis of PRR proteins (Robatzek et al. 
 2006 ; Aker and de Vries  2008 ). PAMP-induced PRR-induced endocytosis has been 
shown to be dependent on phosphorylation of the PRR (Robatzek et al.  2006 ). 
PAMP-induced internalization of PRRs from the plasma membrane is closely 
correlated with their immune function (Bar et al.  2009 ; Saijo  2010 ). The biogenesis 
of trans-membrane PRRs may occur through the endoplasmic reticulum (ER) with 
the aid of ER –resident chaperones (Dodds and Rathjen  2010 ; Popescu  2012 ). After 
biosynthesis of PRR in ER, it is transported from the ER to the plasma membrane. 
 N -glycosylation of PRRs is required for transport of PRRs from ER to plasma 
membrane (Häweker et al.  2010 ). Sustained activation of plasma membrane–
resident PRR signaling is important for mounting robust PAMP-triggered immunity 
(Saijo  2010 ).  

1.3     Second Messengers in PAMP Signal Transduction 

 The plant immune system uses several second messengers to encode information 
generated by the PAMP/PRR signaling complex and deliver the information 
downstream of PRRs to proteins which decode/interpret signals and initiate defense 
gene expression (van Verk et al.  2008 ; Mersmann et al.  2010 ; Boudsocq et al.  2010 ; 
Hwang and Hwang  2011 ). It is still not known how the PAMP signals are transmitted 
downstream of PRR. In plant cells, the calcium ion is a ubiquitous intracellular 
second messenger involved in numerous signaling pathways (Luan  2009 ; McAinsh 
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and Pittman  2009 : Abdul Kadar and Lindsberg  2010 ; DeFalco et al.  2010 ; Hamada 
et al.  2012 ; Stael et al.  2012 ). 

 Guanosine triphosphate (GTP)-binding proteins (G-proteins) are the regulatory 
GTPases, which act as molecular switches in signal transduction system (Yalowsky 
et al.  2010 ; Zhang et al.  2011 ,  2012 ). Two classes of signaling G-proteins, het-
erotrimeric G-proteins and small monomeric G-proteins (Ras/Ras-like small 
GTPases), have been reported. In the Ras superfamily of small GTPases, only the 
Ras and Rho families have been shown to transmit extracellular signals (Gu et al. 
 2004 ). Ras superfamily is named the Ras superfamily because the founding members 
are encoded by human Ras genes initially discovered as cellular homologs of the 
viral  ras  oncogene. Plants do not possess a true Ras GTPase such as those that are 
pivotal signaling in animals. Instead, they have a unique subfamily of Rho- family 
GTPases, called ROPs (Rho-related GTPase of plants). ROP is the sole subfamily 
of Rho GTPase in plants. ROPs are also referred to as RAC (for Ras [rat sarcoma 
oncogene product] related C3 botulinum toxin substrate) proteins (Gu et al.  2004 ; 
Kiirika et al.  2012 ). RAC/ROP small GTPases share a common ancestor with Rho, 
cdc42 and Rac and they are the only Rho-like GTPases in plants (Gu et al.  2004 ). 

 Ca 2+  is a master regulator of gene expression in plants (Galon et al.  2010 ). 
Calcium ion acts as a signal carrier (Allen et al.  2000 ). Calcium signaling is modu-
lated by specifi c calcium signatures. Ca 2+  signatures are generated in the cytosol, 
and in noncytosolic locations including the nucleus and chloroplast through the 
coordinated action of Ca 2+  infl ux and effl ux pathways (McAinsh and Pittman  2009 ). 
Specifi c calcium signatures are recognized by different calcium sensors to transduce 
calcium-mediated signals into downstream events (Reddy et al.  2011 ; Wang et al. 
 2012 ; Hashimoto et al.  2012 ). 

 Mitogen-activated protein kinase (MAPK) cascades are major pathways 
downstream of sensors/receptors that transduce extracellular stimuli into intra-
cellular responses in plants (Hettenhausen et al.  2012 ; Zhang et al.  2012 ). A typi-
cal MAPK signaling module consists of three interconnected protein kinases: a 
MAP kinase kinase kinase (MAPKKK or MEKK [for  M APK/ E xtracellular 
 signal-regulated kinase  K inase  K inase]), a MAP kinase kinase (MAPKK or 
MKK), and a MAP kinase (MAPK or MPK) (Mészáros et al.  2006 ). MAP kinase 
cascade involves sequence of phosphorylation events (Hirt  2000 ). MAPKs func-
tion at the bottom of the three-kinase cascade and are activated by MAPKKs 
through phosphorylation on the Thr and Tyr residues in their activation motif 
between the kinase subdomain VII and VIII. The activity of MAPKKs is, in turn, 
regulated by MAPKKKs via phosphorylation of two Ser/Thr residues in the 
 activation loop of MAPKKs. MAPKKKs receive signals from upstream receptors/
sensors (Ichimura et al.  2002 ; Li et al.  2012 ). 

 The oxidative burst involving rapid and transient production of reactive oxygen 
species (ROS) is a very rapid response, occurring within seconds (Bolwell et al. 
 1995 ) or within a few minutes (Arnott and Murphy  1991 ) of PAMP treatment, suggest-
ing that the oxidative burst may not require  de novo  protein synthesis but involves 
the activation of pre-existing enzymes. NADPH oxidase (Bae et al.  2006 ), peroxi-
dases (Halliwell  1978 ; Lehtonen et al.  2012 ), and xanthine oxidase (Allan and Fluhr 
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 1997 ; Ori et al.  1997 ) have been shown to be involved in triggering ROS production. 
ROS is a messenger in transmitting the PAMP signal. Nitric oxide (NO) has been 
identifi ed as a gaseous second messenger (Besson-Bard et al.  2008 ; Bellin et al. 
 2013 ). NO is a diffusible molecular messenger that plays an important role in the 
plant immune response signal transduction system (Grennan  2007 ). PAMPs trigger 
NO burst within minutes in plant cells (Foissner et al.  2000 ; Lamotte et al.  2004 ; 
Tischner et al.  2010 ). NO acts substantially in cellular signal transduction through 
stimulus-coupled S-nitrosylation of cysteine residues (Benhar et al.  2008 ). It serves 
as a key redox-active signal for the activation of various defense responses (Klessig 
et al.  2000 ).  

1.4     Plant Hormone Signals in Plant Immune 
Signaling System 

 The plant hormones salicylic acid (Mukherjee et al.  2010 ; Dempsey et al.  2011 ; Liu 
et al.  2011a ,  b ), jasmonate (Wang et al.  2009 ; Sheard et al.  2010 ; Bertoni  2012 ), 
ethylene (Boutrot et al.  2010 ; Laluk et al.  2011 ; Nie et al.  2011 ; Nambeesan et al. 
 2012 ), abscisic acid (Yazawa et al.  2012 ), auxin (Fu and Wang  2011 ), cytokinin 
(Choi et al.  2011 ), gibberellins (Qin et al.  2013 ), and brassinosteroids (De Vleeschauwer 
et al.  2012 ) play important role in defense signaling against various pathogens. 
It has been demonstrated that specifi c plant hormone signaling pathways should be 
activated to confer resistance against specifi c pathogens. JA and SA signaling systems 
may differentially contribute for resistance against specifi c pathogens. JA-mediated 
pathway effectively confers resistance against necrotrophic fungal pathogens 
(Berrocal-Lobo and Molina  2004 ; McGrath et al.  2005 ; Zheng et al.  2006 ), while 
SA- mediated pathway confers resistance against biotrophic fungal pathogens and 
also against virus and bacterial diseases in some plants (Thomma et al.  1998 ,  2001 ; 
Thaler and Bostock  2004 ; Nie  2006 ; De Vos et al.  2006 ; Spoel et al.  2007 ; Zheng 
et al.  2006 ,  2007 ). Two forms of induced resistance, systemic acquired resistance 
(SAR) and induced systemic resistance (ISR), have been recognized based on the 
induction of specifi c plant hormone signaling systems (Li et al.  2008 ). SAR refers 
to a distinct signaling pathway mediated by SA (Oostendorp et al.  2001 ), while ISR 
refers to the signaling pathway mediated by JA and ET. SA signaling system acti-
vates not only local resistance, but also systemic acquired resistance (SAR) observed 
in distal (systemic) tissues. SAR is a SA-dependent heightened defense to a broad 
spectrum of pathogens that is activated throughout a plant following local infection 
(Liu et al.  2011a ). SAR is associated with priming of defense (Kohler et al.  2002 ; 
Jung et al.  2009 ; Luna et al.  2011 ) and the priming results in a faster and stronger 
induction of defense mechanisms after pathogen attack (Conrath  2011 ). The priming 
can be inherited epigenetically from disease- exposed plants (Pastor et al.  2012 ) and 
descendants of primed plants exhibit next- generation systemic acquired resistance 
(Slaughter et al.  2012 ; Luna et al.  2011 ). The transgenerational SAR has been 
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recently reported (Luna et al.  2011 ). Thus, SA signal is transduced not only within 
the plant tissues, but also transferred even to the next generations. 

 Plant hormones activate different signaling pathways inducing distinctly different 
defense genes (Spoel et al.  2007 ; Zhang et al.  2007 ; Mitsuhara et al.  2008 ). These 
signaling pathways are not simple linear and isolated cascades, but can crosstalk 
with each other. Both antagonism and synergism between the signaling systems 
have been reported. Cross-talk between defense signaling pathways is thought to 
provide the plant with a powerful regulatory potential, which helps the plant to 
“decide” which defensive strategy to follow, depending on the type of attacker it 
is encountering (De Vos et al.  2005 ). It may also allow pathogens to manipulate 
plants to their own benefi t by shutting down induced defense through infl uences on 
the signaling network.  

1.5     War Between Host Plants and Pathogens 
and the Winner Is ------- ? 

 Plant innate immune systems have high potential to fi ght against viral, bacterial, 
oomycete, and fungal pathogens and protect the crop plants against wide range of 
diseases (Knecht et al.  2010 ; Lacombe et al.  2010 ; Hwang and Hwang  2011 ; Alkan 
et al.  2012 ). However, potential pathogens produce several effectors to nullify the 
defense responses induced by the innate immune system (Wu et al.  2011 ; Akimoto-
Tomiyama et al.  2012 ; Cheng et al.  2012 ). To avoid or suppress or delay the expres-
sion of the defense gene- activating signaling systems, the pathogens secrete several 
effectors into the host cell (Göhre et al.  2008 ; Kim et al.  2010 ; Wu et al.  2011 ; 
Cheng et al.  2012 ). Pathogens may also hijack some signaling systems to cause dis-
ease (de Torres- Zabala et al.  2007 ; Thatcher et al.  2009 ; El Rahman et al.  2012 ). It 
has also been demonstrated that the virulent pathogen may suppress the particular 
defense signaling system which induce the expression of specifi c defense genes 
conferring resistance against the particular pathogen (van Verk et al.  2008 ; 
Koornneef and Pieterse  2008 ; Makandar et al.  2010 ). Activation of some signaling 
systems may induce susceptibility, rather than resistance (Atsumi et al.  2009 ; 
Yazawa et al.  2012 ). To overcome antiviral RNA silencing immunity, plant viruses 
express silencing-suppressor proteins which can counteract the host silencing-based 
antiviral process (Qu and Morris  2005 ; Ding and Voinnet  2007 ; Lewsey et al.  2010 ). 

 The war between the plant and pathogen appears to be in fi ne-tuning the signaling 
systems to cause disease or enhance host defense. Fast and strong activation of the 
plant immune responses aids the host plants to win the war against the pathogens 
(Großkinsky et al.  2011 ). Overexpression or suppression of some specifi c signaling 
systems in the plant immune system has been shown to help the plants to win in the 
arms race between plants and pathogens (Cheung et al.  2007 ; Zhang et al.  2008 ; 
Hwang and Hwang  2010 ,  2011 ; Wu et al.  2010 ). 

 Engineering durable nonspecifi c resistance to phytopathogens is one of the ultimate 
goals of plant breeding. However, most of the attempts to reach this goal fail as a 

1.5 War Between Host Plants and Pathogens and the Winner Is ------- ?
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result of rapid changes in pathogen populations and the sheer diversity of pathogen 
infection mechanisms. Recently several bioengineering and molecular manipula-
tion technologies have been developed to activate the ‘sleeping’ plant innate immune 
system, which has potential to detect and suppress the development of a wide range 
of plant pathogens in economically important crop plants (Lacombe et al.  2010 ). 
Enhancing disease resistance through altered regulation of plant immunity signaling 
systems would be durable and publicly acceptable (Yamamizo et al.  2006 ; Shao 
et al.  2008 ; Gust et al.  2010 ; Lacombe et al.  2010 ). Strategies for activation and 
improvement of plant immunity aim at enhancing host capacities for recognition of 
potential pathogens, at boosting the executive arsenal of plant immunity, and inter-
fering with virulence strategies employed by microbial pathogens (Gust et al.  2010 ). 
Major advances in our understanding of the molecular basis of plant immunity and 
of microbial infection strategies have opened new ways for engineering durable 
resistance in crop plants (Gust et al.  2010 ; Huffaker et al.  2011 ). This book describes 
the most fascinating PAMP-PRR signaling complex and signal transduction 
systems. It discusses the highly complex networks of signaling pathways involved 
in transmission of the signals to induce distinctly different defense- related genes to 
mount offence against different pathogens.     
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