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Preface

Data analysis is a process of inspecting, cleaning, transforming, and modeling data
with the goal of highlighting useful information, suggesting conclusions, and
supporting decision making. Data management is the development, execution and
supervision of plans, policies, programs and practices that control, protect, deliver,
and enhance the value of data and information assets. Data analysis and data
management both have multiple facets and approaches, encompassing diverse
techniques under a variety of names, in different business, science, and social
science domains. Intelligent Data Analysis and Management (IDAM) examines
issues related to the research and applications of Artificial Intelligence techniques
in data analysis and management across a variety of disciplines. It is an inter-
disciplinary research field involving academic researchers in information tech-
nologies, computer science, public policy, bioinformatics, medical informatics,
and social and behavior studies, etc. The techniques studied include (but are not
limited to): Data visualization, data pre-processing, data engineering, database
mining techniques, tools and applications, evolutionary algorithms, machine
learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge fil-
tering, and post-processing, etc.

On June 8, 2012 the IDAM was first held in College of Management, National
University of Kaohsiung and the second IDAM was held on May 17, 2013. The
third IDAM gathers people from previously disparate communities to provide a
stimulating forum for exchange of ideas and results. We invite academic
researchers (in information technologies, computer science, business and organi-
zational studies, and social studies), as well as information technology companies,
industry consultants, and practitioners in the fields involved.
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The IDAM proceedings consist of 15 papers covering different aspects of
Intelligent Data Analysis and Management. Authors of the papers come from
many different countries such as Australia, India, Korea, Singapore, and Taiwan.

We would like to thank our authors, reviewers, and program committee for their
contributions and the National University of Kaohsiung for hosting the conference.

Without their efforts, there would be no conference or proceedings.

Kaohsiung, Taiwan, September 2013 Lorna Uden
Leon S. L. Wang
Tzung-Pei Hong

Hsin-Chang Yang
I-Hsien Ting
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Chapter 1
An Information Quality (InfoQ)
Framework for Ex-Ante and Ex-Post
Evaluation of Empirical Studies

Galit Shmueli and Ron Kenett

Abstract Numbers are not data and data analysis does not necessarily produce
information and knowledge. Statistics, data mining, and artificial intelligence are
disciplines focused on extracting knowledge from data. They provide tools for
testing hypotheses, predicting new observations, quantifying population effects,
and summarizing data efficiently. In these fields, measurable data is used to derive
knowledge. However, a clean, exact and complete dataset, which is analyzed
professionally, might contain no useful information for the problem under inves-
tigation. The term Information Quality (InfoQ) was coined by Ref. [15] as the
potential of a dataset to achieve a specific (scientific or practical) goal using a
given data analysis method. InfoQ is a function of goal, data, data analysis, and
utility. Eight dimensions that relate to these components help assess InfoQ: Data
Resolution, Data Structure, Data Integration, Temporal Relevance, Generaliz-
ability, Chronology of Data and Goal, Construct Operationalization, and Com-
munication. The eight dimensions can be used for developing streamlined
evaluation metrics of InfoQ. We describe two studies where InfoQ was integrated
into research methods courses, guiding students in evaluating InfoQ of prospective
and retrospective studies. The results and feedback indicate the importance and
usefulness of InfoQ and its eight dimensions for evaluating empirical studies.
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Srini Raju Centre for IT and the Networked Economy,
Indian School of Business, Hyderabad, 500032India
e-mail: galit_shmueli@isb.edu
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1.1 Introduction and Motivation

The term Intelligent Data Analysis (IDA) implies an expectation that data analysis
will yield insights and knowledge. Research and academic environments focus on
developing intelligent tools for extracting information from data. Statistics edu-
cation is typically aimed at teaching analysis quality. Godfrey [10] describes low
quality of analysis as ‘‘poor models and poor analysis techniques, or even ana-
lyzing the data in a totally incorrect way’’. The book Guide to Intelligent Data
Analysis [4] has the subtitle How to Intelligently Make Sense of Real Data and is
focused on pitfalls that lead to wrong or insufficient analysis of results. In other
words, intelligent most often refers to the analysis quality.

While analysis quality is critically important, another key component of IDA is
the usefulness of a particular dataset for the problem at hand. The same data can
contain high-quality information for one purpose and low-quality information for
another purpose. An important question that arises both in scientific research and
in practical applications is therefore: what is the potential of a dataset to achieve a
particular goal of interest? This is related to the Zeroth Problem, coined by
Mallows [18], which is the general question of ‘‘how do the data relate to the
problem, and what other data might be relevant?’’ Hand [11] notes, ‘‘statisticians
working in a research environment… may well have to explain that the data are
inadequate to answer a particular question’’. Patzer [19] comments: ‘‘data may be
of little or no value, or even negative value, if they misinform’’.

There is therefore a need to formalize these important aspects of IDA that have
thus far not been formalized. Recently, Kenett and Shmueli coined the term
Information Quality, or InfoQ, to define the potential of a dataset to achieve a
specific (scientific or practical) goal using a given data analysis method ([15] with
discussion and rejoinder). InfoQ lies on the interface of data, goal, and analyst and
is tightly coupled with the analysis context. This is schematically illustrated in
Fig. 1.1.

Fig. 1.1 InfoQ depends on
data quality and analysis
quality, conditional on the
goal at hand
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The focus of this paper is on integrating InfoQ into the thought process of data
analysts, while conducting an active empirical study as well as for ex-post eval-
uation of empirical studies. We proceed as follows: Sect. 1.2 introduces InfoQ, its
components, terminology and formal definition. In Sect. 1.3 we describe eight
dimensions of InfoQ that are useful for assessing InfoQ in practice. Section 1.4
discusses an evaluation methodology, and then describes two studies. The first
study describes the integration of InfoQ into a graduate-level research methods
course at Ljubljana University. The second study describes an InfoQ assignment
designed for ex-post evaluation of empirical studies, and its implementation in a
Masters in Statistical Practice program at Carnegie Mellon University. We con-
clude and offer future directions in Sect. 1.5.

1.2 Information Quality: Terminology and Definition

InfoQ is a function of several components: data, analysis goal, data analysis
method, and the anticipated utility from the analysis. We describe each of these
four components and then define the InfoQ function.

1.2.1 InfoQ Components

Analysis Goal (g): Data analysis is used for variety of purposes. Three general
classes of goals are causal explanation, prediction, and description [21, 22]. Causal
explanation includes questions such as ‘‘Which factors cause the out-come?’’
Prediction goals include forecasting future values of a time series and predicting
the output value for new observations given a set of input variables. Descriptive
goals include quantifying and testing for population effects using data summaries,
graphical visualizations, statistical models, and statistical tests. Deming [6]
introduced the distinction between enumerative studies, aimed at answering the
question ‘‘how many?’’ and analytic studies, aimed at answering the question why?
Later, Tukey [23] proposed a classification of exploratory and confirmatory data
analysis. Our use of the term goal generalizes all of these different types of goals
and goal classifications.

Data (X): The term data includes any type of data to which empirical analysis
can be applied. Data can arise from different collection tools: surveys, laboratory
tests, field and computer experiments, simulations, web searches, observational
studies and more. Data can be univariate or multivariate (one or more variables)
and of any size (from a single observation in case studies to many observations). It
can also contain semantic, unstructured information in the form of text or images
with or without a dynamic time dimension. Data is the foundation of any appli-
cation of empirical analysis.

1 An Information Quality (InfoQ) Framework 3



Data Analysis Method (f ): We use the term data analysis to refer to statistical
analysis and data mining. This includes statistical models and methods (para-
metric, semiparametric, nonparametric), data mining algorithms, and graphical
methods. Operations research methods, such as simplex optimization, where
problems are modeled and parametrized, fall into this category as well.

Utility (U): The extent to which the analysis goal is achieved is typically
measured by some performance measure. We call this measure utility. For
example, in studies with a predictive goal a popular performance measure is
predictive accuracy. In descriptive studies, common utility measures are goodness-
of-fit measures. In explanatory models, statistical power and strength-of-fit mea-
sures are common utility measures.

1.2.2 Information Quality (InfoQ): Definition

Following Hands definition of statistics as The technology of extracting meaning
from data [11], we consider the utility of applying a technology (f ) to a resource
(X) for a given purpose (g). In particular, we focus on the question ‘‘What is the
potential of a particular dataset to achieve a particular goal using a given empirical
analysis method?’’ To formalize this question of interest, we define the concept of
Information Quality (InfoQ) as:

InfoQ f ;X; gð Þ ¼ U f X j gð Þð Þ ð1:1Þ

InfoQ is affected by the quality of its components g (quality of goal definition),
X (data quality), f (analysis quality), and U (quality of utility measure) as well as
by the relationships between X, f , g and U.

1.2.3 Example: Online Auctions

Some of the large online auction websites, such as eBay, provide data on closed
and ongoing auctions, triggering a growing body of research in academia and in
practice. A few popular analysis goals have been:

• Determining factors affecting the final price of an auction [17]
• Predicting the final price of an auction [8]
• Descriptive characterization of bidding strategies [2, 5]
• Comparing behavioral characteristics of auction winners versus fixed-price

buyers [1]
• Building descriptive statistical models of bid arrivals or bidder arrivals [5].

Given the diverse goals, it is intuitive that one dataset of eBay auctions would
hold different value (InfoQ) in terms of its potential to derive insights.
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