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 Sex was a key novelty in the evolutionary history of the Eukaryota, and for most Metazoa a 
combination of sex and replication is the only way of reproducing (Barnes et al. 2001; Cavalier- 
Smith 2002). Sexual reproduction typically involves gonadogenesis, gametogenesis, fertiliza-
tion, embryogenesis (often accompanied by incubation of the embryos) and, in species with a 
larval stage, larval ontogenesis and metamorphosis. These reproductive stages are imple-
mented by means of various provisional and permanent structures, such as gonads, gonoducts 
and associated glands, organs responsible for gamete release into the environment, their trans-
fer to the partner and for their storage, incubation chambers and various larval organs. Although 
having a general similarity in different metazoan groups, the reproductive stages vary greatly 
in their phenomenology as do the organs in their structure. This diversity is expressed in: (1) 
gender (unisexuality or gonochorism vs. different variants of hermaphroditism), (2) the struc-
ture of gonads as well as the sources, ways, timing and sites of their origin and fi nal location, 
and their maturation time and duration of functioning, (3) gametic structure and development, 
(4) place, time and methods of insemination and fertilization and the structures ensuring these 
processes, (5) incubation modes and structures, (6) modes of embryogenesis, (7) larval types, 
and (8) modes of metamorphosis (reviewed in Franzén 1956; Raven 1961; Adiyodi and Adiyodi 
1983, 1989, 1990; Wourms 1987; Giese et al. 1987; Eckelbarger 1994; McEdward 1995; 
Ivanova- Kazas 1995; Drozdov and Ivankov 2000; Schmidt-Rhaesa 2007; etc.). This broad 
range of diversity indicates that sexual reproduction has been evolving in concert with the 
organisms themselves. Being stable in the essentials, sexual reproduction has been constantly 
changing in its details. 

 Various combinations of the reproductive characters listed above can be taken as represent-
ing particular reproductive patterns – specifi c variants or stable complexes of the sexual traits 
characteristic of a species or a group of living organisms. Note, however, that in biological 
literature the term “reproductive pattern” is often not quite correctly understood as a synonym 
of “reproductive strategy.” In general, a reproductive strategy is a method of energy input into 
the offspring defi ned by the amount of resources allocated for the production and parental care 
of a single offspring (Vance 1973). These methods may be quite different, representing the so- 
called r–K continuum (MacArthur and Wilson 1967; Pianka 1999). Besides, each strategy is 
characterized by a specifi c set of features ensuring reproduction, that is, by the reproductive 
pattern, and similar strategies may have different patterns. For instance, during lecithotrophic 
and placentotrophic development, the offspring obtains the necessary resources in different 
ways and at different stages. The result, however, is very much the same. To sum up, the term 
“reproductive strategy” describes the general character of resource allocation (for which data on 
seasonal dynamics of reproduction are usually necessary; see, for instance, Dyrynda and Ryland 
1982), whereas the term “reproductive pattern” refers to a specifi c complex of reproductive 
traits, including the mode of oogenesis, method of gamete manipulation (spawning, copulation), 
time and site of syngamy, incubation mode, larval type, etc. It should be noted that marine inver-
tebrates are sometimes said to possess larval (planktotrophic and lecithotrophic) and embryonic 
(lecithotrophic and placentotrophic) reproductive strategies (Thorson 1950; Mileikovsky 1971; 
Kasyanov 1989; Levin and Bridges 1995). This classifi cation is based on the  ways  in 
which the embryos and larvae obtain resources during different phases of their development. 

  Introd uction   
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Also Chia (1974) classifi ed “developmental patterns”, combining larval types (feeding vs. 
 non-feeding) and their “habitat” during development (pelagic, benthic, brooded, viviparous). 

 What are the prerequisites, causes and consequences of the emergence of different repro-
ductive strategies and patterns? And what are the trends in the evolution of their key compo-
nents: gametogenesis, fertilization and parental care? Finally, can we use data on sexual 
reproduction for reconstructing stages in the evolutionary history of life, for instance, in speci-
fying phylogenies and constructing evolutionary scenarios? 

 Since the main objective of zoology is the study of diversity, evolution and phylogenetic 
relations among different animal groups, evolutionary studies of sexual reproduction would 
appear to have a very important role. Traditionally, such information is widely applied when 
reconstructing the historical past of organisms, since it concerns two key aspects of their exis-
tence: their structure and its replication. Changes in sexual reproduction are directly refl ected 
in the evolutionary trajectories of the various groups. For instance, the transition from a long- 
lived feeding larva to a short-lived non-feeding one, associated with changes in the mode of 
oogenesis, should result in the isolation of distant populations, thus accelerating speciation 
rates (Jablonski 1986, 2005; Jablonski and Lutz 1983). The origin of parental care certainly 
resulted in better survival of progeny, and thus might have infl uenced the evolutionary success 
of the animal group (Clutton   -Brock 1991). 

 Investigations conducted within the framework of traditional morphological methodology 
are usually confi ned to the comparative anatomy of reproductive systems, the results of this 
kind of analysis being then applied to evolutionary and phylogenetic constructions. Numerous 
studies also deal with the comparative morphology of gametes, the features of gametogenesis, 
fertilization, and incubation and the structures responsible for them. However, the multi-sided 
approach, integrating data from the various aspects of reproduction, is rare and the reviews on 
reproduction in most invertebrate groups are often incomplete and fragmentary as well as lack-
ing recent data. Besides, for obvious reasons, the evolution of sexual reproduction in most 
groups is reconstructed mainly on the basis of information about living organisms. 

 The state of knowledge about sexual reproduction in marine invertebrates can be exempli-
fi ed by bryozoans (phylum Bryozoa Ehrenberg, 1831). An analysis of the literature shows that 
over 230 articles and monographs published since the pioneering works of Ellis (1753, 1755) 
and Pallas (1766) contain data on various aspects of sexual reproduction in more than 350 spe-
cies of marine gymnolaemates (class Gymnolaemata Allmann, 1856). Notwithstanding, infor-
mation adequate enough to allow a comprehensive picture of reproductive cycles can be found 
in fewer than two dozen publications covering about 30 species (see Appendix I for the species 
list and history of studies). As for the most abundant bryozoan order, Cheilostomata Busk, 
1852, comprising more than 1,060 genera and 150 families (Gordon 2012), reproduction has 
been studied in some detail in just 10 species representing 10 families. This is the factual basis 
for the best review on sexual reproduction in the Bryozoa (published by Reed 1991). Can we 
extrapolate these data to present an adequate picture for the whole phylum? Obviously we can-
not. As a result, the evolution of sexual reproduction in bryozoans is hardly ever discussed in 
the literature, even oogenetic changes appear to have played a crucial role in the emergence of 
the lecithotrophic larva and possibly the consequent radiations of bryozoan clades (Taylor 
1988; Ostrovsky 2009). 

 At present, researchers working with marine invertebrates tend to pay much more attention 
to the study of larval types. Several explanations for this tendency may be proposed (discussed 
in Strathmann 1978, 1986). Firstly, many structural features of planktotrophic larvae, being 
highly conservative, have played a traditionally important role in evolutionary morphological 
and phylogenetic reconstructions (e.g. Schneider 1869; Hatschek 1877, 1878, 1888–91; 
Ostroumoff 1886a, b, c; Garstang 1951; Nielsen 1971, 1977, 1995, 1998, 2001, 2008, 2013; 
Jägersten 1972; Zimmer 1973; Farmer 1977; Ivanova-Kazas 1986, 1995; Wray 1995a; Hall 
and Wake 1999; Hickman 1999; Rouse 1999; Williamson 2001; Malakhov 2004). 

 Secondly, major differences in the dispersal of planktotrophic and lecithotrophic larvae have 
formed the basis of zoogeographical studies as well as studies of genetic exchange between 
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populations (e.g. Thorson 1950; Mileikovsky 1971; Sheltema 1971; Jablonski 1986; Strathmann 
1986; Kasyanov 1989; Poulin and Féral 1994, 1996; McEdward 1995; Levin 2006). 

 Thirdly, the transition from planktotrophy to lecithotrophy, which occurred repeatedly in 
the history of different groups of marine invertebrates, has enabled studies of the evolutionary 
ecology of larval types and reconstructions of the evolution of life cycles (e.g. Vance 1973; 
Smith and Fretwell 1974; Strathmann 1977, 1985, 1993, 2007; Christiansen and Fenchel 1979; 
Kasyanov 1989; Havenhand 1995; Nielsen 1998; Hall and Wake 1999; Pechenik 1999; 
Hickman 1999; Peterson 2005). 

 Fourthly, the presence of different larval types within the same taxon affords an opportunity 
to study the molecular basis of the emergence and further evolution of the new larval types as 
well as developmental changes accompanying this process (Strathmann 1978; Sinervo and 
McEdward 1988; Byrne and Barker 1991; Wray and Raff 1991; Wray 1995b; Byrne 1995; 
Byrne and Cerra 1996; Raff 1996). 

 On the whole, most researchers have focused their attention not on the causes but on the 
consequences of the transition to a new larval type or else on the adaptive costs and benefi ts of 
the retention of larval types under changed environmental conditions (see McEdward 1995). 
The fact that the emergence of new larval types is caused by changes in reproductive processes 
in the maternal organism, which is also subject to external infl uences, is generally left without 
comment. 

 In my opinion, the situation calls for a synoptic approach, with all the important compo-
nents of sexual reproduction such as gametogenesis, fertilization, incubation of embryos and 
development of larvae being studied together in a holistic evolutionary dynamic. Especially 
promising in this regard are clades including both living taxa with different reproductive pat-
terns and fossil taxa with identifi able reproductive characters. Comparison of reproductive 
strategies and the corresponding patterns, the analysis of their distribution within clades and 
information about the time of their origin allow us to formulate ideas about the directions and 
stages of the evolution of sexual reproduction. This information may then be used for recon-
struction of the evolutionary history and phylogenetic relationships of these groups. 

 This approach seems to hold much promise. For instance, successful attempts have recently 
been made to use data on the distribution of planktotrophy, lecithotrophy and parental care for 
reconstructions of the evolution and phylogeny of echinoderms, in particular, sea stars and sea 
urchins (e.g. Wray 1996; Smith 1997; Jeffery 1997; Byrne 2006). Owing to the extensive fossil 
record of Echinoidea, this kind of analysis was able to embrace both Recent and fossil species 
and turned out to be very fruitful, confi rming previous phylogenetic relationships constructed 
on the basis of morphological (skeletal) characters. 

 Bryozoa are another promising model for such research. With their high diversity of repro-
ductive patterns and larval types, as well as their extensive fossil record, they are in fact ideally 
suited for the application of the synoptic approach mentioned above. 

    Phylogenetic Relationships of the Phylum Bryozoa 

 Bryozoans (=Ectoprocta Nitsche, 1869) had been traditionally assigned, together with phoro-
nids and brachiopods, to the group Tentaculata (Hatschek 1888–91; Marcus 1958; Ivanova- 
Kazas 1977; Hadorn and Wehner 1978; Westheide and Rieger 2007). Later, this name was 
superseded by its synonym Lophophorata (Hyman 1959; Emig 1982, 1984; Willmer 1990; 
Brusca and Brusca 2003; Malakhov 2004). The validity of Lophophorata as a monophyletic 
group and its position amongst the Metazoa remains ambiguous (Willmer 1990; Nielsen 2001, 
2002a; Dewel et al. 2002; Ruppert et al. 2004; Valentine 2004). On the basis of comparative 
embryological and morphological data, most zoologists considered lophophorates as proto-
stomes (Marcus 1958; Hyman 1959; Beklemishev 1969; Hadorn and Wehner 1978; Remane 
et al. 1989; Malakhov 2004; Nielsen 2012), whereas some assigned them, either altogether or 
in part, to Deuterostomia (Zimmer 1973; Meglitsch and Schram 1991; Eernisse et al. 1992; 
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Ruppert and Barnes 1994; Nielsen 2001) or placed them together within Lophodeuterostomia 
(Ruppert et al. 2004) or Radialia (Westheide and Rieger 2007). Many zoologists pointed to the 
fact that the lophophorates combined the characters of protostomes and deuterostomes (e.g. 
Zimmer 1973; Ivanov 1976; Willmer 1990; Ruppert and Barnes 1994; d’Hondt 1997). As a 
result, Lophophorata (or members thereof) have often been placed at the base of the evolution-
ary bifurcation between Protostomia and Deuterostomia, being put closer either with the for-
mer or with the latter or being treated as a “transitory”, stem or sister group of Deuterostomia 
(Marcus 1958; Hyman 1959; Hennig 1979; Dogiel 1981; Salvini-Plawen 1982; Willmer 1990; 
Schram 1991; Ax 1995; Lüter and Bartolomaeus 1997; Sørensen et al. 2000; Brusca and 
Brusca 2003; Westheide and Rieger 2007; see also discussions in Zrzavy et al. 1998; 
Passamaneck and Halanych 2004; Helmkampf et al. 2008a, b; Gruhl 2008). For instance, 
Anderson (2001) interpreted lophophorates to be protostomatous in origin, having acquired 
morphological and embryological characters of deuterostomes as a result of convergent 
evolution. 

 Molecular data are not supportive of Lophophorata as a monophyletic group. At present, 
Bryozoa, Phoronida and Brachiopoda are included in the Lophotrochozoa or Spiralia within 
Protostomia (Halanych et al. 1995; Halanych 1996, 2004; Mackey et al. 1996; Cohen and 
Gawthrop 1996; Erber et al. 1998; Abouheif et al. 1998; Peterson and Eernisse 2001; 
Waeschenbach et al. 2006; Baguña et al. 2008; Helmkampf et al. 2008a; Bourlat et al. 2008; 
Dunn et al. 2008; Giribet et al. 2009; Jang and Hwang 2009; Hejnol et al. 2009; Sun et al. 
2009, 2011; Mallatt et al. 2010, 2012; Edgecombe et al. 2011; Nesnidal et al. 2011; Shen et al. 
2012, see also Giribet 2002, 2008; Passamaneck and Halanych 2004). However, their exact 
positions within the Lophotrochozoa are still not resolved. 

 Zoologists have traditionally affi liated bryozoans with phoronids, treating them as sister 
groups originating from pro(to)lophophorates or protophoronids or deriving Bryozoa from 
Phoronida (i.e. considering early Phoronida as the stem group for Bryozoa) (Caldwell 1882; 
Korschelt and Heider 1893; Borg 1926; Cori 1941; Marcus 1958; Hyman 1959; Brien 1960; 
Farmer et al. 1973; Jebram 1973, 1986; Farmer 1977; Emig 1984; Malakhov 1995; Gorjunova 
1996; Ruppert et al. 2004). Silén (1944, p. 100) wrote that phoronids are not “true ancestors of 
the Bryozoa”, but there is “perhaps … a parallelism as to certain features of the two groups”. 
Emig (1982, p. 79) considered brachiopods and bryozoans to be “blind branches” of a trunk 
whose evolution resulted in the emergence of the phoronids, in his opinion the most advanced 
lophophorates. In contrast, Beklemishev (1969) and d’Hondt (1986) viewed brachiopods as a 
group separate from bryozoans and phoronids. Resurrecting the old view (see Van Beneden 
1845; Leidy 1851; Allman 1856; Hatschek 1877), Nielsen (1971, 1995, 2000, 2001, 2002a, b) 
united Bryozoa and Kamptozoa (Entoprocta) into a superphylum Bryozoa (see also Cuffey 
1973) within the protostomes and considered Phoronida and Brachiopoda as related basal 
deuterostomes. Recently, however, this author included Brachiozoa (Brachiopoda + Phoronida) 
in the Spiralia (Nielsen 2012; see also below). 

 Molecular studies and a combined “morphomolecular” analysis usually also place Bryozoa 
apart from Phoronida and Brachiopoda (whether uniting phoronids and brachiopods or setting 
them apart) (Halanych et al. 1995; Halanych 1996; Cohen and Gawthrop 1996; Mackey et al. 
1996; Littlewood et al. 1998; Zrzavý et al. 1998; Abouheif et al. 1998; Cohen et al. 1998; 
Winnepenninckx et al. 1998; Cohen 2000; Peterson and Eernisse 2001; Waeschenbach et al. 
2006; Baguña et al. 2008; Dunn et al. 2008; Bleidorn et al. 2009; Hejnol et al. 2009; Hausdorf 
et al. 2010; Mallatt et al. 2012; Edgecombe et al. 2011; Nesnidal et al. 2011; see also discus-
sion in Gruhl 2008; Giribet et al. 2009). Also, different authors refute (Mallatt et al. 2010, 
2012) or, on the contrary, support (Hausdorf et al. 2007, 2010; Helmkampf et al. 2008a; Hejnol 
et al. 2009; Bleidorn et al. 2009; Witek et al. 2009; Philippe et al. 2011; Edgecombe et al. 2011) 
a close relationships between bryozoans and entoprocts (see also Abouheif et al. 1998; Baguñá 
et al. 2008; Giribet et al. 2009; Nesnidal et al. 2011; Fuchs 2011). Recently Bryozoa, Entoprocta 
and Cycliophora have been united under the name Polyzoa (Cavalier-Smith 1998; Hejnol et al. 
2009; summarized in Hejnol 2010; Nielsen 2012). 
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 Moreover, some molecular data (Halanych et al. 1995; Halanych 1996; Mackey et al. 1996; 
Winnepenninckx et al. 1998; Giribet et al. 2009; Peterson and Eernisse 2001; Helmkampf 
et al. 2008a; Mallatt et al. 2010, 2012) indicate bryozoans as basal to the Phoronida–
Brachiopoda “group”, which, though hypothetically possible, does not correspond to paleon-
tological data (Conway Morris et al. 1996; see also Cohen and Gawthrop 1996; Zrzavý et al. 
1998; Halanych 2004). In contrast, Dewel et al. (2002) united phoronids and brachiopods, 
placing them in a position basal to Bryozoa, while in the analysis by Hejnol et al. (2009) these 
three spiralian groups are distant to each other, with Phoronida being the basal-most. In the 
multigene analysis of Helmkampf et al. (2008b), bryozoans and phoronids (to the inclusion of 
annelids) form a monophyletic group, while brachiopods were considered basal to them; 
although nodal support was low for these inferences. On the other hand, Bourlat et al. (2008) 
united bryozoans and brachiopods without making any connection to the phoronids. Analysis 
of complete mitochondrial genomes made by Jang and Hwang (2009) showed bryozoans 
forming a monophyletic clade with brachiopods, while the sister group to the phoronids was 
unresolved. Conversely, analyses of the mitochondrial protein-coding genes at the amino acid 
level by Sun et al. (2009, 2011), Shen et al. (2012) and Waeschenbach et al. (2006) resolved 
chaetognaths to be the sister group to Bryozoa, a fi nding which is likely to be the result of long- 
branch attraction. Nesnidal et al. (2011, p. 1) demonstrated that “the relationships of the 
lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the 
used method”. Earlier Jenner and Littlewood (2008, p. 1508) wrote in this context: “Taxa such 
as … Ectoprocta behave like phylogenetic renegades, residing in as many different clades as 
there are studies”, whereas Hejnol (2010) pointed to the problem of the phylogenetic place-
ment of the Polyzoa (Ectoprocta + [Entoprocta + Cycliophora]) within Spiralia (see also 
Nielsen 2012). Thus, at the moment we can only state that lophotrochozoan affi nities are well 
supported for these three groups, but much more research is needed to reveal their exact 
position. 

 The evolution of views on the origination sequence of different bryozoan groups and their 
phylogenetic relations can be summarized as follows. Phylum Bryozoa comprises three 
classes: Stenolaemata (exclusively marine bryozoans), Gymnolaemata (mostly marine, rarely 
brackish-water and freshwater bryozoans) and Phylactolaemata (exclusively freshwater bryo-
zoans). According to early hypotheses, Phylactolaemata, which shares greatest morphological 
similarity with the phoronids, is the most ancient bryozoan group (Caldwell 1882; Korschelt 
and Heider 1893, see also Hyman 1959 for discussion), Gymnolaemata is derived from the 
Phylactolaemata (Gerwerzhagen 1913) (i.e. phylactolaemates are paraphyletic, and the ancient 
phylactolaemates are the stem group for gymnolaemates), and gymnolaemates and stenolae-
mates share a common ancestor (“ancestral Gymnolaemata”) that originated from the ancient 
phylactolaemates (Jebram 1973, 1986). Although not mentioning a common ancestor, Silén 
(1944) speculated that phylactolaemates and stenolaemates originated from an ancestral form 
with a primitive colonial structure and that gymnolaemates (“Cheilo-Ctenostomata”) could 
have evolved from ancient Phylactolaemata. A diametrically opposed viewpoint is that 
Phylactolaemata is the most derived group, originating from the more primitive marine gym-
nolaemate (ctenostome) bryozoans (Schneider 1869; Kraepelin 1887; Marcus 1924; Bassler 
1953). Borg (1926) suggested that all three bryozoan classes were independent lineages that 
evolved from the common ancestral group “Pro-bryozoa”, with phylactolaemates and stenolae-
mates being somewhat more closely related to each other than to gymnolaemates (see also 
Silén 1942, 1944; Hyman 1959). Lemche (1963) derived marine bryozoans from early phoro-
nids, and, curiously, freshwater bryozoans from the “Prae-Rhizostomeae” (rhizostome medu-
sae). Yet another hypothesis allows the possibility that marine and freshwater bryozoans 
evolved independently from different phoronid-like ancestors, while stenolaemates evolved 
from Gymnolaemata (Mundy et al. 1981) (for additional discussion see also Larwood and 
Taylor 1979; McKinney and Jackson 1989; Todd 2000; Taylor and Ernst 2004; Wood and Lore 
2005; Ernst and Schäfer 2006; Hausdorf et al. 2010). It should be noted that some molecular 
studies question the monophyly of bryozoans (Cohen and Gawthrop 1996; Helmkampf et al. 

Introduction



xviii

2008b). For instance, the data of Helmkampf et al. (2008b) suggest that phylactolaemate bryo-
zoans are more closely related to phoronids than to gymnolaemate bryozoans. 

 Yet other molecular studies show the Phylactolaemata as the sister group to the clade unit-
ing sister groups Stenolaemata and Gymnolaemata (Fuchs et al. 2009; Hausdorf et al. 2010; 
Waeschenbach et al. 2012; Mallatt et al. 2012; see also the cladogram in Todd 2000). Another 
combined analysis unites Phylactolaemata and Stenolaemata as sister taxa, making this clade 
a sister group to Gymnolaemata (Fuchs et al. 2009). Anstey (1990) found Phylactolaemata to 
form a monophyletic group with Stenolaemata, suggesting a sister relationship of this group 
with the gymnolaemate order Cheilostomata, however. The third variant of interactions 
between the classes was presented by Cuffey (1973), who united phylactolaemates with gym-
nolaemates, considering this clade as a sister to stenolaemates (see also Cuffey and Blake 
1991). At present, bryozoan researchers tend to support the fi rst hypothesis (discussed also in 
Gruhl 2008).  

    Brief Overview of Bryozoa 

 Bryozoa, predominantly marine epibionts, are active suspension-feeders consuming phyto-
plankton, bacteria and dead organic matter in diverse habitats from the intertidal zone to hadal 
depths exceeding 8,000 m (Ryland 1967, 1970, 1976, 1982, 2005; Kluge 1975; Boardman 
et al. 1983; McKinney and Jackson 1989; Taylor 1999; Gordon 2003; Gordon et al. 2009). All 
bryozoans are colonial organisms consisting of modules, so-called zooids, which are usually 
less than a millimetre long. The pelago-benthic life cycle of Bryozoa includes the formation of 
gametes in a hermaphrodite colony, sperm release followed by internal fertilization and devel-
opment of an exotrophic (planktotrophic) or incubated endotrophic (lecithotrophic or matro-
trophic) free-swimming larva, which, when competent, fi nds a place for settlement, attaches to 
the substratum and undergoes catastrophic (phylactolaemates excepted) metamorphosis. The 
result is the formation of a founder zooid (ancestrula) or group of zooids (ancestrular complex) 
that begins to bud the daughter generations of zooids. On attaining maturity, the colony starts 
gametogenesis (reviewed in Reed 1991). Budding is traditionally considered as asexual repro-
duction though in case of colonial organisms it would be more correct to call it colonial growth, 
since in these organisms budding is never complete, the colony members remaining physically 
interconnected and physiologically dependent throughout their life time. Besides, the zooids 
are genetic copies while the colony is a modular organism forming genetically ‘identical’ 
gametes. 

 According to the latest estimation, about 6,000 species of extant marine bryozoans and over 
15,000 species of extinct bryozoans (Gordon et al. 2009) have been described. These fi gures, 
however, are likely to represent as little as one third of the actual diversity of this group (Taylor,  
personal communication, 2007). 

 Traces of boring non-skeletal ctenostome bryozoans (class Gymnolaemata) and fossilized 
skeletons of stenolaemate bryozoans are known from marine sediments beginning with the 
Early Ordovician (Taylor and Curry 1985; Hu and Spjeldnaes 1991; Todd 2000; Xia et al. 
2007; Zhang et al. 2009). Thus, both classes of marine Bryozoa and, according to Todd (2000), 
all superfamilies of the order Ctenostomata already existed at that time. A recent report on the 
fi nding of Cambrian stenolaemate bryozoans (Landing et al. 2010) is highly dubious. However, 
on the basis of the basal position of bryozoans in gene trees relative to brachiopods and mol-
luscs, whose fossilized remains are known from Early Cambrian sediments, Passamaneck and 
Halanych (2006) suggested that the origin of Bryozoa dates back at least to the Early Cambrian. 
In turn, Buge (1952), Brien (1960) and Emig (1984) argued that bryozoans originated as early 
as the Precambrian (see also Hyman 1959). Fossil statoblasts (resting buds) of Phylactolaemata 
are known from Middle–Late Triassic deposits (Kohring and Pint 2005; Schcerbakov 2008). 

 Ctenostomata is one of the oldest surviving groups of bryozoans lacking a mineralized 
skeleton, traditionally considered as ancestral to all other groups of marine bryozoans (Banta 
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1975; Larwood and Taylor 1979; Cheetham and Cook 1983; Taylor and Larwood 1988, 1990; 
Todd 2000). Stenolaemata, with their calcifi ed zooids, probably evolved from a ctenostome 
ancestor in the Late Cambrian; molecular analysis showed sister relationships between 
Stenolaemata and Gymnolaemata (see above). The explosive evolution of Stenolaemata 
resulted in fi ve orders – Cyclostomata, Trepostomata, Cystoporata, Cryptostomata and 
Fenestrata – which achieved a high taxonomic diversity and played an important role in the 
benthic communities of Paleozoic seas (Taylor and Larwood 1990; Anstey and Pachut 1995; 
Taylor and Ernst 2004). One of the contributing factors in the evolutionary success of 
Stenolaemata might have been the origin of parental care. The existence of embryonic incuba-
tion was suggested by Dunaeva (1968) and Astrova (1978) for Trepostomata and by Buttler 
(1991) for Cystoporata. Putative embryo incubation chambers are an important character in the 
systematics of the order Fenestrata (Tavener-Smith 1966; Stratton 1975, 1981; Southwood 
1985; Bancroft 1986, 1988; Morozova 2001; see also Ernst and Schäfer 2006). 

 Orders Cyclostomata, Trepostomata and, possibly, Cystoporata survived, though with 
losses, the global Permian-Triassic extinction event, but, with the exception of Cyclostomata, 
became extinct in the Triassic (Cryptostomata and Fenestrata disappeared in the Permian) 
(Taylor and Larwood 1988; Taylor and Ernst 2008). In contrast, the diversity of cyclostome 
bryozoans, previously far outshone by their more successful relatives, began to increase. The 
cyclostome heyday was the second half of the Mesozoic (Taylor and Larwood 1990; Lidgard 
et al. 1993; McKinney et al. 2001; McKinney and Taylor 2001). 

 There are several sound arguments in favour of the hypothesis that the Paleozoic cyclo-
stomes became extinct without leaving any descendants, and a very similar group appeared in 
the Triassic that survives to this day (Ernst and Schäfer 2006; Taylor and Ernst 2008). Whatever 
the case, during the Late Cretaceous extinction, the Cyclostomata again sustained heavy losses 
(Taylor and Larwood 1988, 1990; Boardman et al. 1983; McKinney et al. 2001). Nevertheless, 
bryozoans from this order are rather common in present-day bottom communities. Again, as 
with Paleozoic stenolaemates, embryonic incubation is considered a key factor in the progress 
of the Mesozoic cyclostomes, whose incubation chambers (gonozooids) are known from the 
Late Triassic onward (Taylor and Michalik 1991; Lidgard et al. 1993). Details of gonozooid 
structure are important in the systematics of fossil and living cyclostomes (Borg 1926; Brood 
1972; McKinney 1987; Schäfer 1991; Viskova 1992; Ostrovsky 1991, 1995, 1998a, b; 
Ostrovsky and Taylor 1996). 

 In the Late Jurassic, the Ctenostomata gave rise to a new gymnolaemate order, the 
Cheilostomata (Pohowsky 1973; Banta 1975; Taylor 1981, 1986a, 1988, 1990, 1994; Taylor 
and Ernst 2008). In the Late Cretaceous, after 60 Ma of low diversity, cheilostomes went 
through a phase of explosive radiation, quickly becoming the dominant bryozoan group and 
retaining this position until the present day (Cheetham and Cook 1983; McKinney and Jackson 
1989; Taylor 2000). Jebram (1992) considered cheilostomes to be polyphyletic, a possibility 
discussed by some other authors (Taylor 1988; Todd 2000). 

 Cheilostomes are one of the most diverse and numerous groups of marine colonial epibi-
onts. Represented by 150 families and more than 1,060 genera, they make up about 95% of the 
diversity of Recent Bryozoa (Gordon 2012). Moreover, сheilostomes are among the most 
abundant marine foulers: for instance, in the Antarctic they may cover up to 90% of all rocky 
surfaces, achieving densities in 1,000s colonies per square meter and being inferior in biomass 
only to sponges, annelids and ascidians (Ryland 1967, 1982; Hayward 1995; Barnes and 
Brockington 2003). Able to colonize all possible substrata – hard and soft, moving and immo-
bile – cheilostome bryozoans are a key component of biocenoses, providing ample shelter as 
well as settlement and feeding substrata for other organisms (Ryland 1970, 1976; McKinney 
and Jackson 1989; Hayward and Ryland 1998, 1999; Ryland 2005). 

 The evolutionary success of the Cheilostomata can be explained by high integration of 
modules within the colony and the extreme morphological and physiological plasticity 
 underlying the most diverse forms of colonial growth coupled with the emergence of an aston-
ishing morphological and functional diversity of zooids (polymorphism) (Hyman 1959; 
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Beklemishev 1969; Cook 1979; Ryland 1979; Cheetham and Cook 1983; McKinney and 
Jackson 1989; Reed 1991; Viskova 1992; Taylor 1999; Lidgard et al. 2012). 

 Like many other kinds of colonial epibionts, bryozoans can regenerate very well (Levinsen 
1907; Winston 1983; Ostrovsky 1997; O’Dea 2006; O’Dea et al. 2008), reproducing not only 
sexually but also asexually. In some cases, asexual reproduction by fragmentation dominates 
over sexual reproduction. This often depends on the growth form of the colony: for example, 
half or even most of the increase in the abundance of populations of some bryozoans with tree- 
like colonies is due to fragmentation (Winston 1983; Thomsen and Håkansson 1995; Cheetham 
et al. 2001). Among free-living species (with non-attached colonies) there are those reproduc-
ing mostly by fragmentation and those relying mostly on sexual reproduction (O’Dea et al. 
2004, 2008; O’Dea 2006). There are also species actively using both these means (O’Dea et al. 
2010). Some encrusting forms are known to “switch” from sexual reproduction to asexual in 
response to changes in environmental conditions. It has been shown that in populations repro-
ducing mostly asexually, the number of fertile zooids (those forming ovaries) in the colonies is 
much lower than in populations where sexual reproduction dominates (Thomsen and Håkansson 
1995). In any case, sexual reproduction is an obligatory component of the bryozoan life cycle 
and for many the only possible way to reproduce. 

 The feeding zooid (autozooid) in Cheilostomata (Fig.  1 ) is an organic module consisting of 
the cystid (receptacle of the polypide) and the polypide (retractable tentacular crown with a 
centrally positioned mouth, loop-shaped intestine and associated muscles) (Ryland 1970; 
Boardman et al. 1983; Mukai et al. 1997). The cystid is sac-like or box-like, its wall consisting 

 Fig. 1    Generalized scheme of zooid structure in Cheilostomata (e.g. superfamily Calloporoidea). The ooecial 
communication pore is  arrowed . Abbreviations:  a  anus,  ann  annulus of mural pore chamber,  bw  basal wall,  cg  
cerebral ganglion,  cp  communication pore,  div  depressor muscle of inner (ooecial) vesicle,  dz  distal zooid,  e  
embryo,  eco  ectooecium,  eno  entooecium,  f  funiculus,  fm  frontal membranous wall,  fw  frontal wall,  gyc  gym-
nocyst,  iv  inner vesicle,  msc  mesocoel (ring coelom),  mtc  metacoel (visceral coelom),  oc  ovicell,  oco  opercular 
muscle,  oe , ooecium,  op  operculum,  ov  ovary,  ph  pharynx,  pm  parietal muscles,  re  rectum,  riv  retractor muscle 
of inner (ooecial) vesicle,  rm  retractor muscle of polypide,  snp  supraneural pore,  spl  pore plate (septulum) in 
lateral wall,  st  stomach,  t  tentacle,  te  testis,  tw  transverse wall (From Ryland 1970, with modifi cations, courtesy 
of John Wiley & Sons)  
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of an external cuticle and a calcifi ed layer underlain (and formed) by a thin epithelium and loose 
peritoneum. In some cheilostomes the frontal wall is not calcifi ed and, as parietal muscles 
contract, it fl exes inwards, thus applying pressure to the coelomic fl uid and resulting in the 
protrusion of the tentacular crown. In many cases, however, there is a frontal skeletal wall and 
the parietal muscles are attached to the fl oor of a special compensatory sac (ascus) serving as the 
hydrostatic apparatus. The polypide is retracted with the help of two retractor muscles and 
the zooidal orifi ce is closed by a chitinized fold (operculum). The only ganglion is located near 
the pharynx. The coelomic cavity is represented by two communicating parts: the main visceral 
coelom and the lophophoral coelom (circular peripharyngeal canal with radiating tentacular 
coeloms). The peritoneum of the body wall is connected with the peritoneal lining of the intes-
tine by funicular strands, considered as homologues of blood vessels by Carle and Ruppert 
(1983). The cavities of neighbouring zooids communicate by means of pores closed by the 
specialized pore-cell complexes associated with funicular strands. Polypides are renewed in the 
course of degeneration and regeneration cycles, and their remnants are either removed or kept 
inside zooids as so-called brown bodies. There are no specialized excretory organs.      

    Bryozoan colonies are hermaphroditic, consisting of sterile and gonochoric and/or her-
maphroditic zooids (Reed 1991; Ostrovsky 2009). The gonads are located either on the internal 
surface of the cystid walls or on the gut. In both cases they are associated with funicular strands 
or occur on the strands themselves. Fertilization is internal. Sperms are released into the envi-
ronment via pores in the tentacle tips, and enter the maternal coelom via the intertentacular 
organ or the supraneural coelomopore. In non-brooding species, planktotrophic larvae with a 
cuticularized bivalve shell, known as cyphonautes larvae, are formed from the spawned eggs. 
In brooding species, embryos develop to become endotrophic coronate larvae. It is worth not-
ing that the non-feeding larvae of some gymnolaemate species have retained some features 
characteristic of cyphonautes such as the shell and/or a rudimentary intestine. Cleavage is 
complete, biradial, equal at early stages and unequal at later stages, asynchronous and non-
determined. Gastrulation is by invagination or by immersion of four cells of the presumptive 
mesentoderm into the blastocoel (Zimmer and Woollacott 1977; Reed 1991; Temkin 1994, 
1996; Mukai et al. 1997; Gruhl 2008, 2010). Depending on the species, larval production 
either peaks in a certain season or is more or less even throughout the year (reviewed in Ryland 
1967; Reed 1991; Seed and Hughes 1992). 

 Order Cheilostomata is subdivided into four suborders (Gordon 2012). The paraphyletic 
suborder Malacostegina exhibits primitive zooidal morphology, planktotrophic larvae and no 
parental care. Suborder Flustrina (=Neocheilostomina), considered to be monophyletic, com-
prises the overwhelming majority of brooding cheilostomes, except those in the suborders 
Inovicellina and Scrupariina. A characteristic feature of all brooding bryozoans is endotrophic 
larvae that develop in incubatory chambers. Malacostegina is considered as ancestral to brood-
ing cheilostomes, but whether or not the other suborders are monophyletic remains an open 
question (Taylor 1988). 

 The fi rst fi ndings of fossil cheilostomes are from the Late Jurassic (Taylor 1981, 1986a, 
1994). During the Early Cretaceous this group had low taxonomic diversity, being represented 
only by two families of Malacostegina, Electridae and Wawaliidae (summarized in Taylor 
1986b; Ostrovsky et al. 2008). However, starting from the Middle Cretaceous, the Cheilostomata 
entered a phase of rapid diversifi cation (Taylor 1988), which, alternating with periods of 
extinction and gradual decline, continued for about 90 Ma (Voigt 1985; Taylor and Larwood 
1988; Lidgard et al. 1993; Macleod et al. 1997; McKinney et al. 1998; Sepkoski et al. 2000; 
Taylor 2000). 

 The fi rst evidence of parental care in the Cheilostomata, namely the presence of brood 
chambers, is from the Late Albian (Cheetham 1954, 1975; Cheetham et al. 2006). This means 
that the emergence of larval brooding shortly preceded the onset of the above-mentioned diver-
sifi cation phase. Based on this evidence, Taylor (1988) suggested that the presence of brood 
chambers in cheilostomes meant that their larvae had become non-feeding (lecithotrophic). 
According to this idea, lecithotrophy would have enhanced speciation, triggering the subse-
quent dramatic radiation within the order. The transition to lecithotrophy must have greatly 
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reduced the duration of the dispersal phase, which in planktotrophic cyphonautes larvae may 
last 1–2 months, resulting in the isolation of distant populations. It is the disruption of genetic 
exchange between populations that is considered as a direct cause of speciation (allopatric and 
parapatric models) (Jablonski and Lutz 1983; Jablonski 1986; Poulin and Féral 1994; dis-
cussed in Havenhand 1995). Modern data support this scenario: bryozoan species with endo-
trophic larvae are much more genetically heterogeneous than those with planktotrophic larvae 
that also have wider geographical range (Goldson et al. 2001; Porter et al. 2002; Watts and 
Thorpe 2006). 

 However, as emphasized above, the emergence of a non-feeding larva is the result of dra-
matic changes in the maternal organism, namely, a shift in oogenesis. Transition from an exo-
trophic larva to an endotrophic one is based on an increase in the amount of energy input into 
a single offspring with an accompanying decrease in the number of descendants, and this 
means a change in reproductive strategy. Besides,  all  incubating Bryozoa, marine as well as 
freshwater, have an endotrophic larva. Does this mean that the transition to a new larval type 
in bryozoans was in some way associated with the origin of parental care? 

 So far the only well-substantiated and non-contradictory explanation of the Late Cretaceous 
radiation of Cheilostomata appears to be the hypothesis suggested by Taylor (1988). While 
agreeing with it in general, Gordon and Voigt (1996) nevertheless asked: could lecithotrophy, 
once acquired, have sustained high speciation rates for so long? The above authors put forward 
their own hypothesis, according to which the progressive evolution of cheilostome bryozoans 
was based on the emergence of new types of protective skeletal structures, the frontal shields. 
The evolution of non-feeding larvae and brooding is seen as a trigger of radiation, later sus-
tained by the evolution of skeletal structures. Jablonski et al. (1997) posited that Taylor’s 
hypothesis is contradicted by the fact that in cyclostome bryozoans (which usually coexist with 
cheilostomes), the acquisition of gonozooids (and, possibly, of an endotrophic larva) in the 
Late Triassic (Taylor and Michalik 1991) resulted only in moderate diversifi cation (see also 
Taylor and Larwood 1990; Lidgard et al. 1993). At the same time, these authors stressed that 
the available data were insuffi cient for any fi nal judgement. However, the fact that endotrophic 
larvae and incubation are widespread in bryozoans indicates that these novelties might have 
played a very important role in their evolution. 

 Parental care is a common phenomenon. In particular, invertebrates are known to have dif-
ferent variants of brooding (Porifera, Cnidaria, Annelida, Mollusca, Arthropoda, Kamptozoa, 
Echinodermata, Brachiopoda, Phoronida, Pterobranchia), viviparity and matrotrophy (found 
in representatives of more than twenty of the 34 known phyla) (Giese and Pierse 1974, 1975a, 
b, 1977; Giese et al. 1979, 1987, 1991; Adiyodi and Adiyodi 1989, 1990; Levin and Bridges 
1995; Batygina et al. 2006). Bryozoans are no exception: parental care is characteristic of most 
representatives of the phylum. All cyclostomes (and, presumably, some others of the Paleozoic 
stenolaemates) as well as the cheilostome family Epistomiidae are viviparous. All phylactolae-
mates and most gymnolaemates brood their offspring in specialized brood chambers. The 
question is, how and under what circumstances did different modes of parental care evolve? 
What were the evolutionary consequences of these innovations? Why and in what directions 
was sexual reproduction within the order Cheilostomata and other bryozoan groups evolving, 
and how did this infl uence the evolutionary fate of these epibiotic organisms?  

    About This Book 

 This monograph is the result of a long period of comparative-anatomical study of oogenesis, 
fertilization, brooding and associated organs and structures in cheilostome bryozoans. 
Altogether, 258 recent and fossil species from 148 genera and 66 families have been studied 
using light and scanning electron microscopy (see Appendix II: Materials and Methods and 
List of Taxa Studied). Comparative analysis of the data obtained made it possible to recon-
struct the main stages and to reveal the major trends in the evolution of sexual reproduction in 
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the Cheilostomata during their history. The results of this study indicate that the evolutionary 
success of Cheilostomata may have been based on changes in sexual reproduction, namely, the 
evolution of new reproductive strategies and patterns involving the origin of parental care. 
Importantly, the complex approach applied during this study was instrumental in revealing 
numerous examples of parallelisms and convergent evolution. The large suite of new data on 
bryozoan reproduction was also useful for understanding trends in the evolution of sexual 
reproduction in marine invertebrates in general. 

 The monograph consists of three chapters. The fi rst chapter is devoted to comparative anal-
ysis of reproductive patterns in Bryozoa: fi rst of all, oogenesis, fertilization and brooding in the 
Cheilostomata. Detailed consideration is given to the position of gonads, the sexual structure 
of the colonies, sexual polymorphism and oviposition. The second chapter deals with the struc-
tural diversity, independent origin and evolution of brood chambers in different cheilostome 
groups. These two chapters are mostly based on the results of original research, which is com-
pared with information in the literature. The third chapter contains an analysis of the main 
directions in the evolution of sexual reproduction in bryozoans and a reconstruction of the 
stages: changes in modes of oogenesis and fertilization and their consequences, the transition 
to the non-feeding larva, the origin of embryonic incubation, and repeated evolution of matrot-
rophy and placental analogues. The trends that emerge from this analysis are compared with 
analogues in the evolution of the bryozoan order Ctenostomata as well as other marine inver-
tebrate groups (predominantly, echinoderms, molluscs and annelids). The conditions under 
which the cheilostomes radiated in the Late Cretaceous are considered in detail, and the con-
sequences of the transitions to new reproductive patterns are analyzed. Finally, the stages in the 
evolution of sexual reproduction in other bryozoan groups (classes Phylactolaemata and 
Stenolaemata) are reconstructed. The monograph contains    12 tables, including those with data 
on the sexual structure of colonies, the position of gonads in zooids and the size and number 
of the oocytes at various stages of development, embryonic increase during incubation, etc., as 
well as a review of the history of study of sexual reproduction in the Gymnolaemata with a list 
of the species studied. This review also references the major publications on bryozoan life 
cycles, which are not analyzed in the main body of the text. 

 The fi rst version of this monograph was published by the Publishing House of Saint 
Petersburg State University (Unipress) in 2009 under the title “Evolution of sexual reproduc-
tion in the bryozoan order Cheilostomata (Gymnolaemata)” (Ostrovsky 2009). Since that time, 
new data emerged that led to a critical reassessment of some parts of the book. As a result the 
text of the present English edition has been considerably rewritten and supplemented. In par-
ticular, bryozoan reproduction is compared throughout the monograph with that in other 
aquatic invertebrates. These changes called for a change in the title of the book. 
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