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Göran Sundholm, Universiteit Leiden, The Netherlands
Bas van Fraassen, Princeton University, U.S.A.
Dov Gabbay, King’s College London, U.K.
Jaakko Hintikka, Boston University, U.S.A.
Karel Lambert, University of California, Irvine, U.S.A.
Graham Priest, University of Melbourne, Australia
Gabriel Sandu, University of Helsinki, Finland
Heinrich Wansing, Technical University Dresden, Germany
Timothy Williamson, Oxford University, U.K.

Logic, Epistemology, and the Unity of Science aims to reconsider the question of the
unity of science in light of recent developments in logic. At present, no single logical,
semantical or methodological framework dominates the philosophy of science. However,
the editors of this series believe that formal techniques like, for example, independence
friendly logic, dialogical logics, multimodal logics, game theoretic semantics and linear
logics, have the potential to cast new light on basic issues in the discussion of the unity
of science.

This series provides a venue where philosophers and logicians can apply specific
technical insights to fundamental philosophical problems. While the series is open to a
wide variety of perspectives, including the study and analysis of argumentation and the
critical discussion of the relationship between logic and the philosophy of science, the
aim is to provide an integrated picture of the scientific enterprise in all its diversity.

For further volumes:
http://www.springer.com/series/6936

http://www.springer.com/series/6936
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Preface

I came to write about this position as a result of my professional experience. I
attended and participated in a lot of conferences, mostly in Europe. They were
philosophy, mathematics and logic conferences. I observed that, for the most part,
mathematicians and logicians did not behave as though they adhered to a philosophy
of mathematics. In particular, with some exceptions, they did not seem to show
adherence to one foundation of mathematics in a philosophical way. Some were
working on some issues in a foundation, and were wedded to it as a result of
their invested time and energy, not so much (again with some exceptions) for
philosophical reasons. Yet, my studies in the philosophy of mathematics would have
me believe that it is imperative that one have a philosophical outlook or position, and
one should work within it. I was puzzled.

Oversimplifying: the philosophers seemed to be convinced that mathematics is
one thing and that to show this one just pointed to the foundation of mathematics,
and this was a particular theory in mathematics. The philosophers seemed to be
completely ignoring the fact that there are several rival foundations, and none has
a completely privileged position, except maybe Zermelo-Fraenkel set theory – but
even that could not support the philosophical claims, since there were all sorts of
equi-consistency proofs around. There would be no point in making such proofs if
the other ‘rival’ foundations were for nought. Mathematicians and logicians in their
presentations and in casual speech were quite willing to take seriously other theories
that conflicted with the ones they were working in. In fact that is one of the reasons
they go to conferences: to find out what is going on in other fields, to see how results
in one area of mathematics share features with their own. They would quite happily
talk of rival foundations in the same breath, and not be casting one away. Instead,
they embraced the lot.

I was convinced that if one wanted to give a philosophy of all of today’s
working mathematics, one had to give a philosophy that was not foundational. I was
going to call the position Meinongian structuralism, but Bill Griffiths convinced
me that the name was too baroque. It later occurred to me that ‘pluralism’ would
work as a name. Once I fastened on ‘pluralism’, I noticed the word used by a
few philosophers of mathematics such as Shapiro and Maddy. In contrast to the
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philosophers, mathematicians for the most part behave in a pluralist way. I conclude
that pluralism is ‘in the air’. But if we look at how the word is used, we find it is used
in so many different ways as to be almost useless! It occurred to me that it would
be a useful service to develop a philosophical account of pluralism as a philosophy,
as opposed to ‘pluralism’ being used to gesture towards a vague and ambiguous
attitude of tolerance.

I confess to feeling I am a bit of a philosophical charlatan, since I hardly think I
am doing anything original, again, since the idea is already very much in the air. At
other times I think I am a charlatan on the grounds that the position is so obvious,
as to be platitudinous. It seems to hardly qualify as a position at all, since it is
just an articulation of the prevailing attitude of practicing mathematicians. But, then
I quickly realise that this is not at all the case. Once developed in its entirety, I
discovered how radical the position is. It is deeply radical. As such, if my arguments
are persuasive, then the book will either convert readers, or act as a strong warning
to treat the word ‘pluralism’ with care, use it sparingly, or only in the negative. One
person’s modus ponens is another’s modus tollens.

Washington, DC, USA Michèle Friend
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José Felix Costa, Bill Griffith, Nicholas Joll, Brendan Larvor, Bob Lockie, João
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Chapter 1
Introduction

Abstract The introduction is meant as a guide to reading the book. I briefly
describe the parts and individual chapters of the book. I also outline some
conventions adopted in the book.

1.1 Introduction

There are four parts to this book. The first is motivational. I give motivations for
adopting pluralism from four separate starting points: realism, Maddy’s naturalism,
Shapiro’s structuralism and formalism. For reading this part of the book, I suggest
reading the first chapter on realism in order to gain some orientation concerning plu-
ralism, and as an introduction to some vocabulary which is used idiosyncratically.
There is a glossary for further reference, or to use as a reminder.

The three other chapters of the first part are self-contained, and are directed
towards philosophers with certain inclinations. That is, if one has naturalist inclina-
tions, one should read the naturalism chapter. If one has structuralist inclinations,
one should read the structuralism chapter and if one has formalist inclinations,
one should read the formalism chapter. If the reader is none of the above, then
she can read these chapters only to become acquainted with some motivations
for adopting pluralism. This part of the book is not exhaustive in discussing all
possible motivations for pluralism. Not only are there only a few non-pluralist
positions discussed, but even within the motivational chapters on naturalism and
structuralism I target one philosopher’s philosophy in this area, not all of the
well received versions. The philosophers in question are Maddy and Shapiro,
respectively. Motivating pluralism from other starting points is part of the greater
pluralist programme. Similarly, comparing and contrasting other positions with
pluralism is part of the greater programme. I return to it in one section of Chap. 14.

Pluralism is not just one position in the philosophy of mathematics, it is a family
of positions. This is one of the reasons I call it a ‘programme’. This book gives a
starting push to the programme. Different members of the family are distinguished
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2 1 Introduction

along the dimensions of: degree (of pluralism), underlying logic and sort of
pluralism. Examples of sorts are: foundational, methodological, epistemological
and alethic. The pluralist not only distinguishes himself from other positions in
the philosophy of mathematics, he is inspired by other positions. In particular, the
pluralist retains lessons from the realist, the naturalist, the structuralist, the formalist
and the constructivist. The last source of inspiration will be put to work in the fourth
part of the book.

The second part of the book concerns the details of how to cope with the
inevitable conflicts and contradictions which surface when entertaining very differ-
ent philosophical positions and mathematical theories under one theory. This part
concerns reasoning in the light of contradiction and conflict. I first present pluralism
as a philosophical position in its own right. I make reference to a paraconsistent
formal system as a guide to reasoning about conflicting ideas without necessarily
having to decide that one idea is correct and the other is not, or that one position
‘wins’ over another. Sometimes one does win, but in more sophisticated arguments,
there will not be a clearly correct position. Since I am presenting a philosophical
position, I can only make reference to a formal system of logic, as opposed to
using a formal system. This is because the pluralist philosopher is not comparing
propositions or well-formed formulas and reasoning from these to theorems or
conclusions. This is why I write about using a formal logic metaphorically in
Chap. 7. The logic is used to set parameters and to sanction and guide the reasoning
about whole theories. For this reason, the notions of rigour of argument and the idea
of communication become very important to the pluralist. These are discussed in
Chaps. 8, 9, and 14. We shall see in these chapters a tension and a struggle with
meaning, ontology and truth. These are traded for the more practice reflecting:
communication, rigour and protocol. The struggle is the struggle of the pluralist.
It is the cost of taking on board the task of explaining what mathematics is about
without compromising on the real subtleties in operation in mathematics.

In the third part of the book I work with the paradoxes of tolerance and the idea of
transcending one’s own position. The paradoxes of tolerance surface when we ask
the questions: ‘does it makes sense to be tolerant towards those who are intolerant of
our own tolerant position?’ and ‘are there not some things the pluralist is intolerant
towards?’ In Chap. 10, I discuss the paradoxes, and explain that the pluralist is
not a global pluralist, but a maximal pluralist. He would be a global pluralist if
he were tolerant of everything. He is a maximal pluralist if he is as tolerant as
possible without his position becoming self-defeating. The maximal pluralist is
intolerant towards dogmatism, and particular moves made by, say, realists, naturalist
and structuralists against other positions, and pluralism.

In Chap. 11 we visit the more subtle question of whether the pluralist is pluralist
towards himself. Another way to ask this is to ask if the pluralist is dogmatic in the
ways identified in the previous chapter. To answer this question, we first explore
Meyer’s collapsing lemma. I use this to a very modest end, to indicate that the
paraconsistent logician wedded to LP (a particular paraconsistent logic) will have to
be pluralist about interpretations of his logic. The result generalises to anyone who
is both pluralist and fixes on a particular logic to underpin his pluralism.
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1.2 A Note on Conventions 3

In contrast, if we are logical pluralists, then we have another reason to be pluralist
about pluralism. Using other logics will give a different flavour to pluralism. The
pluralist is pluralist towards himself just in virtue of admitting alternative logical
formal systems to underpin pluralism. Again, qua programme, here we see that we
can make different versions of pluralism by adopting different underlying formal
logical systems.

The fourth part of the book puts the pluralist to work. I indicate some sample
pluralist exercises. The first concerns the notion of proof in mathematics. The
pluralist analyses the notion of proof as it is used by the working mathematician
and draws conclusions about the role of proof in mathematics. In Chap. 13, I
undertake a different sort of exercise. This concerns pluralism about conflicting
philosophies of logic. In Chap. 14, I launch three sorts of project, one is to take
a feather from Maddy’s hat, and identify an aspiration of some mathematicians,
articulate and define the aspiration and put it to work to partly resolve a technical
problem, and to deepen our understanding concerning the problem. The second
project is to explore the notion of rational reconstruction, to see what they can teach
us. The third discusses the issue of working in a trivial setting. This part of the
book demonstrates how pluralism is programmatic. There is a lot of work for the
pluralist philosopher of mathematics. For the reader who is interested in reading
as little as possible, while still forming a view of pluralism, I suggest reading
Chaps. 2, 6, and 11.

1.2 A Note on Conventions

Definitions for technical terms are usually given at their first mention, but not
invariably, for example in this introduction I have used many such words without
giving a definition. Technical terms are given a definition in the glossary. The index
should provide further guidance.

‘The pluralist’ is used to name a character who takes on some sort of pluralist
philosophy of mathematics. The definite article is used in the same way as when we
say ‘the logician’ and are referring, not to an individual (person) but to a species,
or type of person. More technically, ‘the pluralist’ is not a first-order singular term,
but a second-order singular term. Pluralism is a family of positions. As such, the
different pluralisms have many features in common, and can all avail themselves of
most of the same arguments against other positions.

I use ‘he’ throughout for the pluralist. This is because I am a ‘she’ and I do
not want to show prejudice. Other philosophical or mathematical characters might
be given the preposition ‘he’, ‘she’ or ‘it’. I use ‘it’ for the more obscure, remote
or extreme positions, which are just philosophical constructs. In these cases it is
possible that no one ever did or ever will hold the position. It is supposed that if
someone were to hold the position, such a person would not hold it for long. It is
more a position to be temporarily entertained than seriously defended. An example
is the trivialist. An example is the trivialist position. A trivialist is an ‘it’.

http://dx.doi.org/10.1007/978-94-007-7058-4_13
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4 1 Introduction

Foreign words, and phrases which I wish to emphasise, are italicised. There
should not be very much confusion resulting from italics playing two roles. ‘Or’
is taken as inclusive throughout the text.

There are two chapters which were co-written with Pedeferri. Therefore, in
both these chapters I use the first person plural. In other chapters, I use the first
person singular. After the acknowledgments, preface and introduction, names of
philosophers or mathematicians are only ever written using the family name.

My punctuation might also raise eyebrows. I part company with Fowler and
Gowers, and put a comma after ‘for’ when it is used in the sense close to that of
‘since’. I part company with the conventions of the grammar check on my computer,
and do not always precede ‘which’ with a comma. Single quotation marks, or
inverted commas, are use to show that a term is a technical term. They are also
sometimes used to show mild irony. For the most part, they could be replaced by
the words: ‘as it were’ or ‘so called’, but this would be more tedious than using the
elegant single inverted comma.

Finally, I should add a word about the index. The index is lengthy, and has
some odd entries. The purpose of the index is twofold. One purpose is for a reader
interested in, say, finding out what I have to say about realism, and nothing else. But
the other use is when a reader wants to re-read, say, an example, and remembers that
it concerned an unusual phrase such as: ‘the inconsistency of UN declarations’. For
this second reason, odd entries, such as, ‘UN declaration’ are in the index.
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Chapter 2
The Journey from Realism to Pluralism

Abstract In this chapter I take the reader on a journey from a naı̈ve realist position
through to the beginnings of pluralism. Some simplifying assumptions are made,
but this is done in order to introduce some of the concepts we find in pluralism,
not to defeat all realist positions. In particular, in order to set the stage, the naı̈ve
realist will take Zermelo Fraenkel set theory to be the foundation for mathematics
in a philosophically robust sense of capturing the essence, ontology and absolute
truth of mathematics. The reader is given several reasons to abandon the naı̈ve
realist conception and to consider a more pluralist conception. The main aspect
of pluralism discussed here is pluralism in foundations. ‘Pluralism in foundations’
is an oxymoron, and therefore, is unstable. Some other aspects of pluralism are
then introduced: pluralism in perspective, pluralism in methodology and pluralism
in measure of success.

2.1 Introduction: ZF Monism

Since this is the beginning of the of book, I should issue a warning. Especially in
this chapter, I tell some lies. Or, rather, I begin with oversimplifications. This will
be alarming for the more sophisticated readers. However, rest assured that as we
proceed through the book, most of these oversimplifications will be re-expressed,
refined, honed and made more explicit. The reason for the oversimplifications is
that since this is a new position in the philosophy of mathematics, I prefer to start
with some very naı̈ve ideas.

In explaining a philosophical position, it is sometimes useful to start from a
quite different, but easily recognised position, even if we think no one occupies
it.1 Realism is a familiar position in the philosophy of mathematics. However, since

1As we shall see in the subsequent chapters, I shall take the reader through journeys with other
starting points: naturalism, structuralism and formalism. Balaguer (1998) works through different
versions of realism, and teaches us to use the word carefully. It is quite possible that no one
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8 2 The Journey from Realism to Pluralism

‘realism’ is such a broad term with so many connotations and aspects, I shall fix the
term and restrict ‘realism’ to a ‘monist foundationalist’ position, where Zermelo-
Fraenkel set theory (henceforth: ‘ZF’) is The Foundation.2

Explaining and defining the terms just used: ZF is an axiomatic theory. Zermelo
developed most of the axioms and Fraenkel added the axiom of replacement (Potter
2004, 296). The theory is very general. In ZF we study sets of objects, combinations
of sets, the comparison of sets with each other, and the creation of one set from
another, or of a new set from several others: for example, by taking their intersection
or union.

Definition3 The Foundation is an axiomatically presented mathematical theory to
which all or most of successful existing mathematics can be reduced. It can be used
normatively to exclude from bona fide mathematics any purported mathematics
which cannot be reduced to the axiomatic theory.

Definition Successful existing mathematics is the body of mathematical theories
and results about those theories that are currently judged by the mathematical
community to be ‘good mathematics’ (as indicated by publication, reference in
discussion, use in classrooms and study groups, airing at conferences and so on).
This will include past mathematics not presently under mathematical investigation,
but, for all that, not dismissed as bad mathematics.

What counts as successful existing mathematics is revisable. We might find out
that what we thought was a good mathematical theory turns out not to be. Thus,
‘successful existing mathematics’ is a vague term, but the imprecision of the
boundaries of application of the term need not concern us in the present context.

Definition The monist foundationalist believes that there is a unique correct,
or true, foundation for mathematics, and uses The Foundation normatively to
determine what is to count as successful existing mathematics.

What might motivate someone to adopt monist foundationalism? In the late
nineteenth century and the early twentieth century, we developed various set
theories. They were not all fully axiomatised at first. Cantor’s set theory was not
presented as a fully axiomatised theory at all. Despite they’re not being presented as
fully axiomatised, we discovered that set theories were very powerful. By ‘powerful’
we mean that a great deal of mathematics can be reduced to set theory. That is, we
can translate, say, arithmetic, into the language of, say, ZF, avail ourselves of the
axioms and inference rules of the proof theory of ZF, contribute some definitions in
the language of ZF, and obtain, through proof, a number of theorems or ‘results’.

presently holds the position I give here. It is, admittedly, a caricature. That does not matter for
present purposes, since (1) the point is to start from a familiar position, not an occupied and
carefully defended position, and (2) this chapter is not meant as a knock-down argument against
realism in all its forms. Rather, we begin with a naı̈ve and familiar view in order to introduce
pluralism.
2This is quite different from a ‘full-blooded realism’ (Balaguer 1998, 5).
3 The definitions in this chapter are to be read as working definitions. As such, in a more exacting
context, they might require further refinement. Definitions are repeated in the glossary.
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We can then translate back into the language used in the original arithmetic. If we
compare the results we obtained in the original arithmetic to those we obtain in the
ZF version of arithmetic, then we can prove that we can in principle reproduce all of
the results of the original arithmetic in ZF. That is, there is no theorem of arithmetic,
which does not have an analogue in ZF. Therefore, in principle, there is a complete
reduction of arithmetic into ZF. The power of set theory consists in the fact that
not only arithmetic, but also analysis and geometry, and therefore most of working
mathematics can all be reduced to set theory. Because of the power of ZF, it can be
presented as a candidate for founding mathematics.

ZF was not the only set theory developed. There were (and still are) rival theories
of sets, and there arose problems with some of the theories with the discovery
of paradoxes. Even apart from the paradoxes, other conceptual puzzles surfaced
such as how to conceive of very large totalities, which many of us now think
of as proper classes. These were both philosophical and technical problems. The
paradoxes and puzzles produced a crisis in mathematics (Giaquinto 2002) and hailed
the foundational and axiomatic movements. It was thought that mathematics needed
a ‘secure’ foundation, since it was clear that some mathematical activity was deeply
flawed. Philosophers, or professional mathematicians assuming a philosophical role,
(henceforth: philosophers)4 contributed in culling some set theories, such as the so-
called naı̈ve theories. The culling did not eliminate all but one set theory. So we
had no clear unique founding set theory, we had several. Nevertheless, we can say
that presently we have honed in on one. Under the received view today, we can say
that ZF is the ‘orthodoxy’ of mathematics (Maddy 1997, 22). ‘Orthodoxy’ can be
taken to mean ‘the most accepted theory’ or reference point for mathematics. Or,
it can mean that ZFC (ZF with the axiom of choice) ‘codifies current mathematical
practice’ (Hrbacek et al. 2009, 2). How might a philosopher interpret such phrases?
There are conceptually distinct roles that ZF can play as ‘orthodoxy’. Let us start at
one extreme. The position: monist foundationalism reads ‘orthodoxy’ to mean that
ZF sets the parameters for what is to count as mathematics. The reason for starting
with this is not plausibility, but familiarity and conceptual simplicity. Philosophers
are all familiar with some (less extreme) version of realism. At this extreme end of
realism, The Foundation plays the following four roles.

1. All of what is counted as ‘mathematics’ has to be reducible to, or can be
faithfully5 translated into, The Foundation. The Foundation gives the scope of

4Obviously, being a professional mathematician does not preclude one from having philosophical
thoughts or from writing quite philosophically about mathematics. The distinction here is not
professional but conceptual, in the sense of philosophical and mathematical problems or puzzles
requiring different sorts of solution.
5By ‘faithfully’ I mean that the language being translated into, here the language of ZF, has the
expressive power to capture the nuances of the original concepts as expressed in the original
language. A test for loyalty of a definition, say, would be that analogues of all of the same theorems
can be derived when the definition is expressed in ZF as can be derived using the definition of the
original language, all other definitions, theorems, lemmas and proof techniques remaining equal.
In contrast, a reduction would be unfaithful if fewer or more (non-equivalent) theorems could be
derived. Ancient Latin can only make an unfaithful translation of a modern computer manual.



10 2 The Journey from Realism to Pluralism

the correct use of the word ‘mathematics’, or, we might say, the foundational
theory determines the extension of the term ‘mathematics’. We might call this
‘the semantic determining role of The Foundation’.

Another, but related, role is that

2. the foundational theory tells us what the basic ontology of mathematics is: what
it is that mathematicians ultimately study. In the case of ZF, it is sets, and not, for
example, lines, planes, numbers or cuts. We might call this ‘the ontological role
of The Foundation’.

As a corollary,

3. what counts as correct, or legitimate methodology is also determined by ZF. This
is ‘the methodological role’ played by The Foundation. We give some axioms,
elaborate definitions and then prove theorems within ZF.

We might even

4. confer an epistemic role to ZF, by saying that to really understand and know
mathematics, we have to study set theory. The rest of mathematics, written in
other languages, is a pale imitation, and studying mathematics, not presented
as a part of set theory, might even mislead us into thinking that we know an
area of mathematics when we do not. Call this ‘the epistemological role of The
Foundation’. All these roles meant to have normative force over the practice of
mathematics.

To hold that ZF plays all four roles is quite extreme, but this is where we shall
begin our journey. The monist foundationalist who confers all four roles on the
foundational theory is also the most extreme opponent to pluralism. So the journey
from monist foundationalism to pluralism is long. In the course of the journey, we
shall meet considerations that trouble the extreme position. Since considerations are
not full arguments, each elicits different legitimate reactions. There will be better
arguments in the chapter on structuralism. Thus, before we see the considerations
we should add a note about how to think of them.

Upon thinking about the considerations, a reader might be prompted to muster
arguments against the pluralist, or she might modify, or even change, her position.
Thus, the considerations, can be thought of as: (a) points of re-entrenchment for
the convinced monist foundationalist, (b) calls for conservative modification of
the monist foundationalist view or (c) points of rejection or doubt towards monist
foundationalism. The last leads us closer to the pluralist position. Since not every
reader will be willing to follow me for the whole journey, we can think of the journey
as an exercise in mapping out the philosophical territory and discovering where one
stands ab initio (Fig. 2.1).

The monist foundationalist holds an extreme position because it has a vision of
reformation.

Definition The reformation is a movement to constrain successful existing mathe-
matics by The Foundation.
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Fig. 2.1 ZF set theory as a foundation

If ZF is the orthodoxy of mathematics in a strong sense and is a good candidate
for The Foundation, then we might think that we have an equal trade-off between
good mathematics, as practiced, and set theory. If we have an equal trade-off, then
we can do mathematics in the language of set theory or we can do mathematics in
the original language developed for that theory, and the two are equivalent. In other
words, we could set up two communities of mathematicians. One would continue
to work in the languages of our plethora of mathematical theories: Euclidean
geometry, topology, calculus, algebra and so on, but not set theory directly (in the
sense of using only the language of set theory). The other would simply work in
set theory. According to our reducing results concerning The Foundation, in the
long run, the plethora community would produce a number of results; and the set
theory community would produce analogues of all of the results of the plethora
community. The order of producing the results would be different – because notation
is differently suggestive, but ‘at the end of the day’ equivalent results would be
generated. If this is an accurate prediction of what would happen, then this confirms
(in a somewhat circular manner) that we have an equal trade-off.

However, the prediction would probably not be met. This is because the set
theoretic community will produce some results not produced by the plethora
community. The latter would concern results unique to set theory. It would seem
that the set theory community is, therefore, better off, at least in the long run.

We now have good reason to initiate the reformation. It would be a wonderful
feat to reform mathematical practice by stipulating that we only do mathematical
work in the language of set theory, and we confine ourselves to the axioms of set
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theory and are allowed to introduce definitions only in the language of set theory.
This would clear up misunderstandings, cut down on the time spent learning new
symbols and vocabulary, and cut out all of the work which we do showing that two
theorems in different areas of mathematics are equivalent in some respects since
this would be clear and explicit if our work was all done within set theory in the
first place. Under the reformation, mathematics would become an explicitly unified
discipline.

Unfortunately, the suggested reformation would incur considerable loss. It is not
at all clear that the set theory community simply reproduces all of the results of the
plethora community, plus some more. Sometimes we use one area of mathematics
to inform us about another area. We translate from the first area into the second,
make a proof in the second and re-translate back to the original area. The reason for
taking this circuitous route is that the execution of the proof, and what to look for,
are much more obvious in the second area than in the first. For example, Arrighi
and Dowek (2010) turn to quantum computing to make some sense of the notion of
computable function in a space of infinite dimensions. Note that, strictly speaking,
they could have generated the same results in the original classical theory.6 However,
it would not have been obvious, and it would not have been at all evident in the
classical logic framework. Lobachevsky, whose work we shall discuss later in the
book, turns to hyperbolic geometry to make sense of the notion of an indefinite
integral in Euclidean geometry. So there is a heuristic advantage, and maybe even
an epistemic advantage to working in different frameworks or theories. Moreover,
it would be a mistake to think that these are isolated cases. Therefore, this is one
reason to be cautious about the reformation.

However, the reformer would be quite right to retort that this is not a serious
objection. The difference between the plethora community and the set theory
community influences the order in which results are discovered, not in the body of
results themselves. Furthermore, strictly speaking, and as we noted earlier, the set
theory community will produce some results not produced in the other community.
Moreover, their work will be more efficient, since they are not doubling up on
results, and then have to prove the equivalence of theorems.

Notice that this retort is strongly underpinned by the sort of realism that
emphasises monism in the sense of pre-supposing that there is a unique body of
truths, or theorems, to be discovered. If we do not hold this pre-supposition, then
the retort carries no weight. But it is a difficult presupposition to give up altogether,
as witnessed by the very fact that philosophers are at pains to give arguments as to
why non-uniqueness should not worry us. For example, see Balaguer (1998). Let us
introduce some more vocabulary, and re-express the two antagonistic positions in
that new vocabulary.

6This point was made in the oral presentation of the material, (Computability in Europe 2010) but
is not obvious in the written version.
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Definition Realism in mathematics has two conceptually distinct versions: realism
in ontology and realism in truth-value (Wright 1986, 9).

Definition Realism in ontology is the position that the ontology of the subject we
are realists about is independent of our investigations or knowledge.7

Some pluralists are anti-realist in ontology.

Definition Anti-realists are all those who are not realists. Following Wright (1986,
2), there are two sorts. Anti-realists can assume just a negative view vis-à-vis the
realist and be sceptics. On the positive side they can be idealists, who believe that it
is our ideas that shape the world around us, and determine our ontology. The idealist
anti-realist is someone who epistemically constrains truth (rejects verification-
transcendent truths).8

Definition A realist in truth-value of the sentences of a theory holds that the truth-
value of sentences of a theory is independent of our ability to judge or establish or
discover them.

Some pluralists are anti-realist in truth-value.
Note that one person can be a realist about one area of discourse and an anti-

realist about another; for example, it is common to be a realist about physical
objects, but an anti-realist about humour. Such split positions are fairly common.
It is less common to be a global realist or anti-realist. Returning to mathematics, the
anti-realist thinks of the mathematician as a sort of creator. In contrast, the realist
thinks of the mathematician as a discoverer, who then enters the discoveries in a
well-organised form in, what is suggestively called ‘The Book of Proofs’.

Definition The Book of Proofs is a unique book that records all of the proofs of
mathematics made in the foundational theory in normal form.9

Under this conception, mathematics consists in the results of the completed Book of
Proofs. The process of doing mathematics is subservient to the discovery of those
results.

The alternative anti-realist view emphasises the epistemology over the ontology,
and thinks of mathematics as a process that leads to results. The importance of
results lies in their continuing the process of establishing knowledge – ‘results’ are
not ends. They are steps in a process.

7Ontology is usually presupposed to be consistent. There are no impossible objects, there are
no pairs of objects whose existence precludes each other. Of course, paraconsistent ontologies
are a different matter (no pun intended). For our gross sketch, we need not consider this added
complexity.
8In the last chapter of the book, I am more explicit and subtle than this. It will turn out that the
pluralist is, in some respects, a type of sceptic, and he is neutral on the realist, idealist axis of
debate; but this added subtlety will be introduced in due course.
9The idea of The Book of Proofs has a history. In the original conception, all perfect proofs were
entered. There was no guarantee that there would only be one proof for each theorem, since there
was no presupposition that there was only one founding theory for mathematics. However, if we
assume monism in foundations, then The Book of Proofs will only have one proof per theorem.


