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Preface to the Second Edition

It is with great pleasure that we are presenting to the community the second edition
of this extraordinary Handbook. It has been over 15 years since the publication of
the first edition and there have been great changes in the landscape of philosophical
logic since then.

The first edition has proved invaluable to generations of students and researchers
in formal philosophy and language, as well as to consumers of logic in many applied
areas. The main logic article in the Encyclopaedia Britannica 1999 has described
the first edition as ‘the best starting point for exploring any of the topics in logic’.
We are confident that the second edition will prove to be just as good!

The first edition was the second Handbook published for the logic community.
It followed the North Holland one-volume Handbook of Mathematical Logic,
published in 1977, edited by the late Jon Barwise. The four-volume Handbook of
Philosophical Logic, published in 1983–1989, came at a fortunate temporal junction
at the evolution of logic. This was the time when logic was gaining ground in
computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices which
help and/or replace the human in his daily activity. This pressure required the use
of logic in the modelling of human activity and organisation on the one hand and
to provide the theoretical basis for the computer program constructs on the other.
The result was that the Handbook of Philosophical Logic, which covered most of
the areas needed from logic for these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the development of
the subject directly and indirectly. It directly pushed research forward, stimulated
by the needs of applications. New logic areas became established and old areas
were enriched and expanded. At the same time, it socially provided employment
for generations of logicians residing in computer science, linguistics and electrical
engineering departments which of course helped keep the logic community thriving.
In addition to that, it so happens (perhaps not by accident) that many of the
Handbook contributors became active in these application areas and took their place

v



vi Preface to the Second Edition

as time passed on, among the most famous leading figures of applied philosophical
logic of our times. Today we have a Handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic and its
relation to computer science and formal language and artificial intelligence. It shows
that the first edition is very close to the mark of what was needed. Two topics were
not included in the first edition, even though they were extensively discussed by all
authors in a 3-day Handbook meeting. These are:

• A chapter on non-monotonic logic
• A chapter on combinatory logic and λ -calculus

We felt at the time (1979) that non-monotonic logic was not ready for a chapter yet
and that combinatory logic and λ -calculus was too far removed.1 Non-monotonic
logic is now a very major area of philosophical logic, alongside default logics,
labelled deductive systems, fibring logics, and multi-dimensional, multimodal and
substructural logics. Intensive re-examinations of fragments of classical logic have
produced fresh insights, including at times decision procedures and equivalence
with non-classical systems.

Perhaps the most impressive achievement of philosophical logic as arising in the
past decade has been the effective negotiation of research partnerships with fallacy
theory, informal logic and argumentation theory, attested to by the Amsterdam
Conference in Logic and Argumentation in 1995, and the two Bonn Conferences
in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and intelligent
and reactive databases.

Finally, 15 years after the start of the Handbook project, I would like to
take this opportunity to put forward my current views about logic in computer
science, computational linguistics and artificial intelligence. In the early 1980s,
the perception of the role of logic in computer science was that of a specification
and reasoning tool and that of a basis for possibly neat computer languages. The
computer scientist was manipulating data structures and the use of logic was one of
his options.

My own view at the time was that there was an opportunity for logic to play a
key role in computer science and to exchange benefits with this rich and important
application area and thus enhance its own evolution. The relationship between
logic and computer science was perceived as very much like the relationship of
applied mathematics to physics and engineering. Applied mathematics evolves
through its use as an essential tool, and so we hoped for logic. Today my view
has changed. As computer science and artificial intelligence deal more and more

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter. I wonder
how the subject would have developed, if the AI research community had had a theoretical model,
in the form of a chapter, to look at. Perhaps the area would have developed in a more streamlined
way!
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with distributed and interactive systems, processes, concurrency, agents, causes,
transitions, communication and control (to name a few), the researcher in this area
is having more and more in common with the traditional philosopher who has
been analysing such questions for centuries (unrestricted by the capabilities of any
hardware).

The principles governing the interaction of several processes, for example,
are abstract and similar to principles governing the cooperation of two large
organisations. A detailed rule based effective but rigid bureaucracy is very much
similar to a complex computer program handling and manipulating data. My guess
is that the principles underlying one are very much the same as those underlying the
other.

I believe the day is not far away in the future when the computer scientist will
wake up one morning with the realisation that he is actually a kind of formal
philosopher!

The projected number of volumes for this Handbook is about 18. The subject has
evolved and its areas have become interrelated to such an extent that it no longer
makes sense to dedicate volumes to topics. However, the volumes do follow some
natural groupings of chapters.

I would like to thank our authors and readers for their contributions and their
commitment in making this Handbook a success. Thanks also to our publication
administrator Mrs J. Spurr for her usual dedication and excellence and to Kluwer
Academic Publishers for their continuing support for the Handbook.

King’s College London, and Dov M. Gabbay
Bar Ilan University, Israel, and
University of Luxembourg
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Chapter 1
Hybrid Logic

Torben Braüner

The starting point of this chapter1 is the remarkable fact that proof procedures for
wide classes of hybrid logics can be given in a uniform way, and moreover, this
encompasses proof procedures like natural deduction and tableau systems which
are suitable for actual2 reasoning. A focus of the chapter is such proof procedures.
Axiom systems, which are not meant for actual reasoning, are only mentioned in
passing. We present a relatively small selection of procedures rather than trying
to be encyclopedic. This allows us to give a reasonably detailed treatment of the
selected procedures. Another focus of the chapter is the origin of hybrid logic in
Arthur Prior’s philosophical work.

In the first section of the chapter, Sect. 1.1, we give the basics of hybrid logic.
In Sect. 1.2 we discuss the work of Arthur Prior and describe how hybrid logic has
its origin in his work. In Sect. 1.3 we outline the development of hybrid logic since
Prior. In Sect. 1.4 we introduce a natural deduction system for hybrid logic and in
Sect. 1.5 we introduce tableau systems and tableau-based decision procedures for
hybrid logic. In Sect. 1.6 we try to give an answer to the following question: Why
does the proof-theory of hybrid logic behave so well compared to the proof-theory
of ordinary modal logic?

1The chapter is composed of material adapted from the author’s book (Braüner 2011). The author
wishes to acknowledge the financial support received from The Danish Natural Science Research
Council as funding for the projects HyLoMOL (2004–2008) and HYLOCORE (2009–2013).
2The word “actual” has here a broad meaning, not restricted to actual human reasoning. The logic
does not care whether it is a human that carries out the reasoning, or the reasoning takes place in a
computer, or in some other medium.

T. Braüner (�)
Programming, Logic and Intelligent Systems Research Group, Roskilde University,
DK-4000 Roskilde, Denmark
e-mail: torben@ruc.dk

D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic: Volume 17,
Handbook of Philosophical Logic 17, DOI 10.1007/978-94-007-6600-6 1,
© Springer Science+Business Media Dordrecht 2014
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2 T. Braüner

1.1 The Basics of Hybrid Logic

In this section we give the basics of hybrid logic. We first give an informal
motivation of hybrid logic. We then give the formal syntax and semantics and we
give translations forwards and backwards between hybrid logic and first-order logic.

1.1.1 Informal Motivation

The term “hybrid logic” covers a number of logics obtained by adding further
expressive power to ordinary modal logic.3 The history of what now is known as
hybrid logic goes back to Arthur Prior’s work in the 1960s, which we shall come
back to in Sect. 1.2. The term “hybrid logic” was coined in Patrick Blackburn and
Jerry Seligman’s paper published in 1995. The most basic hybrid logic is obtained
by adding nominals, which are propositional symbols of a new sort interpreted in a
restricted way that enables reference to individual points in a Kripke model. In what
follows we shall give a more detailed explanation.

In the standard Kripke semantics for modal logic, the truth-value of a formula
is relative to points in a set, that is, a formula is evaluated “locally” at a point.
Usually, the points are taken to represent possible worlds, times, locations, epistemic
states, states in a computer, or something else. Thus, in the Kripke semantics,
a propositional symbol might have different truth-values at different points. This
allows us to formalize natural language statements whose truth-values are relative
to, for example times, like the statement

it is raining

which has clearly different truth-values at different times. Such statements can be
formalized in ordinary modal logic using ordinary propositional symbols. Now,
certain natural language statements are true at exactly one time, possible world,
or something else. An example is the statement

it is 5 o’clock 10 May 2007

which is true at the time 5 o’clock 10 May 2007, but false at all other times. While
the first kind of statement can be formalized in ordinary modal logic, the second
kind of statement cannot, the reason being that there is only one sort of propositional
symbol available, namely ordinary propositional symbols, which are not restricted
to being true at exactly one point in the Kripke semantics.

A major motivation for hybrid logic is to add further expressive power to ordinary
modal logic with the aim of being able to formalize the second kind of statement.
This is obtained by adding to ordinary modal logic a second sort of propositional

3This should not be confused with the term “hybrid systems” which in the computer science
community is used for systems that combine discrete and continuous features.



1 Hybrid Logic 3

symbol called a nominal such that in the Kripke semantics each nominal is true
at exactly one point. In other words, a nominal is interpreted with the restriction
that the set of points at which it is true is a singleton set, not an arbitrary set.
A natural language statement of the second kind (like the example statement with
the time 5 o’clock 10 May 2007) is then formalized using a nominal, not an ordinary
propositional symbol (which is used to formalize the example statement with rainy
weather). The fact that a nominal is true at exactly one point implies that a nominal
can be considered a term referring to a point, for example, if a is a nominal that
stands for “it is 5 o’clock 10 May 2007”, then the nominal a can be considered a
term referring to the time 5 o’clock 10 May 2007.4 Thus, in hybrid logic a term is
a specific sort of propositional symbol whereas in first-order logic it is an argument
to a predicate.

Most hybrid logics involve further additional machinery than nominals. There is
a number of options for adding further machinery; here we shall consider a kind
of operator called satisfaction operators. The motivation for adding satisfaction
operators is to be able to formalize a statement being true at a particular time,
possible world, or something else. For example, we want to be able to formalize
that the statement “it is raining” is true at the time 5 o’clock 10 May 2007,
that is, that

at 5 o’clock 10 May 2007, it is raining.

4Considering a nominal as a symbol that refers to something is not the only way to view nominals.
Two different views on nominals can be identified in the works of Arthur Prior, as is clear from
the quotation below where Prior discusses the addition of nominals to a temporal version of modal
logic called tense logic.

We might . . . equate the instant a with a conjunction of all those propositions which would
ordinarily be said to be true at that instant, or we might equate it with some proposition
which would ordinarily be said to be true at that instant only, and so could serve as an index
of it (Hasle et al. 2003, p. 124).

In the second half of the sentence, the nominal a is viewed as a proposition that can serve as an
index of an instant, which is clearly in line with considering a nominal as a symbol that refers to an
instant. On the other hand, in the first half of the sentence, the nominal a is viewed as a description
of the content of an instant. The alternative view on nominals expressed in the first half of the
sentence quoted above can also be found in a number of other places in Prior’s works, for example
the following.

The essential trick is to treat the instant variables as a special sort of propositional variables,
by identifying an ‘instant’ with the totality of what would ordinarily be said to be true at
that instant, . . . (Hasle et al. 2003, p. 141).

See the discussion of Prior’s work in Sect. 1.2 of the present handbook chapter, in particular
Footnote 8 of that section. Moreover, see the discussion in Patrick Blackburn’s paper (2006), the
last paragraph of page 353, including Footnote 7, and the first complete paragraph of page 362,
in particular Footnote 11. Incidentally, note that the description of the content of an instant as the
conjunction of all propositions true at that instant is similar to a maximal consistent set of formulas.
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This is formalized by the formula @a p where the nominal a stands for “it is
5 o’clock 10 May 2007” as above and where p is an ordinary propositional
symbol that stands for “it is raining”. It is the part @a of the formula @a p
that is called a satisfaction operator. In general, if a is a nominal and φ is
an arbitrary formula, then a new formula @aφ can be built (in some literature
the notation a : φ is used instead of @aφ ). A formula of the form @aφ is
called a satisfaction statement. The satisfaction statement @aφ expresses that the
formula φ is true at one particular point, namely the point to which the nominal
a refers.

To sum up, we have now added further expressive power to ordinary modal logic
in the form of nominals and satisfaction operators. Informally, the nominal a has the
truth-condition

a is true relative to a point w
if and only if
the reference of a is identical to w

and the satisfaction statement @aφ has the truth-condition

@aφ is true relative to a point w
if and only if
φ is true relative to the reference of a

Observe that actually the point w does not matter in the truth-condition for @aφ
since the satisfaction operator @a moves the point of evaluation to the reference
of a whatever the identity of w. Note that the addition of nominals and satisfaction
operators does not disturb the local character of the Kripke semantics: The truth-
value of a formula is still relative to points in a set and the added machinery only
involves reference to particular points, not all points in the set.

It is worth noting that nominals together with satisfaction operators allow us to
express that two points are identical: If the nominals a and b refer to the points u
and v, then the formula @ab expresses that u and v are identical. The following line
of reasoning shows why.

@ab is true relative to a point w
if and only if
b is true relative to the reference of a
if and only if
b is true relative to u
if and only if
the reference of b is identical to u
if and only if
v is identical to u

The identity relation on a set has the well-known properties reflexivity, symmetry,
and transitivity, which is reflected in the fact that the formulas

@aa
@ab→@ba
(@ab∧@bc)→@ac
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are valid formulas of hybrid logic. To see that these hybrid-logical formulas
correspond to the properties reflexivity, symmetry, and transitivity, read @ab as
a = b etc. Also the formula

(@ab∧@aφ)→@bφ

is valid. This hybrid-logical formula corresponds to the rule of replacement.
Beside nominals and satisfaction operators, in what follows we shall consider the

binders ∀ and ↓, which allow us to build formulas ∀aφ and ↓ aφ . The binders bind
nominals to points in two different ways: The ∀ binder quantifies over all points
analogous to the standard first-order universal quantifier, that is, ∀aφ is true relative
to w if and only if whatever point the nominal a refers to, φ is true relative to w. The
↓ binder binds a nominal to the point of evaluation, that is, ↓ aφ is true relative to w
if and only if φ is true relative to w when a refers to w. It turns out that the ↓ binder
is definable in terms of ∀.

Above we noted that nominals and satisfaction operators do not disturb the local
character of the Kripke semantics. Also the ↓ binder leaves the local character of
the semantics undisturbed since this binder just binds a nominal to the point of
evaluation. Things are more complicated with the ∀ binder. This binder has a non-
local character in the sense that it involves reference to all points in the Kripke
semantics. Moreover, together with nominals and satisfaction operators, the ∀ binder
gives rise to non-local expressivity in the form of full first-order expressive power
(which we shall show in Sect. 1.1.3). However, the ∀ binder does not give rise to full
first-order expressive power just together with nominals, that is, in the absence of
satisfaction operators (or some similar machinery). Thus, it is really the interaction
between the ∀ binder and satisfaction operators that gives rise to full first-order
expressive power, and hence, non-local expressivity.5

To conclude, extending ordinary modal logic with hybrid-logical machinery
(disregarding the extreme case involving both ∀ and satisfaction operators), gives
us a more expressive logic without sacrificing the local character of the Kripke
semantics.6

5In fact, the paper (Blackburn and Seligman 1995) gives a result (Proposition 4.5 on p. 264)
indicating that the ∀ binder has a surprisingly local character when it is not accompanied by
satisfaction operators or some similar machinery. Informally, this result says that the ∀ binder
is then insensitive to the information at points outside the submodel generated by the point of
evaluation, that is, it cannot detect the truth-values of formulas at such points.
6Further discussion of this point can be found in a number of places, notably the paper
Blackburn (2006). This paper also discusses hybrid-logical versions of bisimulations, which give
a mathematical way to illustrate the local character of the Kripke semantics. See also the paper
Simons (2006) which discusses a number of logics of location involving what we here call
satisfaction operators.
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1.1.2 Formal Syntax and Semantics

In what follows we give the formal syntax and semantics of hybrid logic. In many
cases we will adopt the terminology of Blackburn et al. (2001) and Areces et al.
(2001a). The hybrid logic we consider is obtained by adding a second sort of
propositional symbol, called nominals, to ordinary modal logic, that is, propositional
logic extended with a modal operator �.7 It is assumed that a set of ordinary
propositional symbols and a countably infinite set of nominals are given. The sets
are assumed to be disjoint. The metavariables p, q, r, . . . range over ordinary
propositional symbols and a, b, c, . . . range over nominals. Besides nominals, an
operator @a called a satisfaction operator is added for each nominal a. Sometimes
the operator @a is called an at operator. Moreover, we shall consider the binders ∀
and ↓. The formulas of hybrid modal logic are defined by the grammar

S ::= p | a | S∧S | S→ S | ⊥ | �S | @aS | ∀aS | ↓aS

where p ranges over ordinary propositional symbols and a ranges over nominals.
In what follows, the metavariables φ , ψ , θ , . . . range over formulas. Formulas
of the form @aφ are called satisfaction statements (cf. Blackburn 2000a). The
notions of free and bound occurrences of nominals are defined as in first-order
logic with the addition that the free nominal occurrences in @aφ are the free
nominal occurrences in φ together with the occurrence of a, and moreover, the
free nominal occurrences in ↓aφ are the free nominal occurrences in φ except for
occurrences of a. Also, if a is a list of pairwise distinct nominals and c is a list of
nominals of the same length as a, then ψ[c/a] is the formula ψ where the nominals
c have been simultaneously substituted for all free occurrences of the nominals
a. If a nominal ai in a occurs free in ψ within the scope of ∀ci or ↓ ci, then the
nominal ci in ψ is renamed as appropriate (this can be done since there are infinitely
many nominals). The connectives negation, nullary conjunction, disjunction, and bi-
implication are defined by the conventions that ¬φ is an abbreviation for φ →⊥, �
is an abbreviation for ¬⊥, φ ∨ψ is an abbreviation for ¬(¬φ ∧¬ψ), and φ ↔ ψ is
an abbreviation for (φ →ψ)∧(ψ→ φ). Similarly, ♦φ is an abbreviation for ¬�¬φ
and ∃aφ is an abbreviation for ¬∀a¬φ .

We now define models and frames.

Definition 1.1. A model for hybrid logic is a tuple (W,R,{Vw}w∈W ) where

1. W is a non-empty set;
2. R is a binary relation on W ; and
3. for each w, Vw is a function that to each ordinary propositional symbol assigns

an element of {0,1}.

7All results in the present handbook chapter can be generalized to cover an arbitrary, finite number
of modal operators, but in the interest of simplicity, we shall stick to one modal operator unless
otherwise is specified.
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The pair (W,R) is called a frame and the model is said to be based on this frame.
The elements of W are called worlds and the relation R is called the accessibility
relation. A propositional symbol p is said to be true at w if Vw(p) = 1 and it is said
to be false at w if Vw(p) = 0.

Note that a model for hybrid logic is the same as a model for ordinary modal
logic. To give an extremely simple example of a model, we let W = {w,v} and
R = {(w,v)}, and moreover, we let Vw(p) = 0 and Vv(p) = 1. All other propositional
symbols than p are ignored. This model can be depicted as

w v
p�

where circles represent worlds and an arrow indicates that two worlds are related by
the accessibility relation. A propositional symbol in a circle means that the symbol
is true and the absence of a propositional symbol means that it is false.

Given a model M= (W,R,{Vw}w∈W ), an assignment is a function g that to each
nominal assigns an element of W . Given assignments g′ and g, g′

a∼ g means that g′

agrees with g on all nominals save possibly a. The relation M,g,w |= φ is defined
by induction, where g is an assignment, w is an element of W , and φ is a formula.

M,g,w |= p iff Vw(p) = 1
M,g,w |= a iff w = g(a)

M,g,w |= φ ∧ψ iff M,g,w |= φ and M,g,w |= ψ
M,g,w |= φ → ψ iff M,g,w |= φ implies M,g,w |= ψ

M,g,w |=⊥ iff falsum
M,g,w |=�φ iff for any v ∈W such that wRv, M,g,v |= φ

M,g,w |= @aφ iff M,g,g(a) |= φ
M,g,w |= ∀aφ iff for any g′

a∼ g, M,g′,w |= φ
M,g,w |=↓aφ iff M,g′,w |= φ where g′

a∼ g and g′(a) = w

A formula φ is said to be true at w if M,g,w |= φ ; otherwise it is said to be false
at w. By convention M,g |= φ means M,g,w |= φ for every element w of W and
M |= φ means M,g |= φ for every assignment g. A formula φ is valid in a frame
if and only if M |= φ for any model M that is based on the frame. A formula φ is
valid in a class of frames if and only if φ is valid in any frame in the class of frames
in question. A formula φ is valid if and only if φ is valid in the class of all frames.

Now, letO⊆ {↓,∀}. In what followsH(O) denotes the fragment of hybrid logic
in which the only binders are the binders in the set O. If O = /0, then we simply
write H, and if O = {↓}, then we write H(↓), etc. It is assumed that the set O of
binders is fixed.

Note that ↓ is definable in terms of ∀ since the formula ↓ aφ ↔ ∀a(a → φ)
is valid. The fact that hybridizing ordinary modal logic actually does give more
expressive power can for example be seen by considering the formula ↓c�¬c. It is
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straightforward to check that this formula is valid in a frame if and only if the frame
is irreflexive. Thus, irreflexivity can be expressed by a hybrid-logical formula, but it
is well known that it cannot be expressed by any formula of ordinary modal logic.
Irreflexivity can actually be expressed just by adding nominals to ordinary modal
logic, namely by the formula c→ �¬c. It is clear that if a frame is irreflexive,
then c→ �¬c is valid in the frame. On the other hand, if c→ �¬c is valid in
a frame, then the frame is irreflexive: Let (W,R) be a frame in which c→ �¬c
is valid and let w be an element of W , then M,g,w |= c→ �¬c where M is an
arbitrarily chosen model based on (W,R) and g is an arbitrarily chosen assignment
such that g(c) = w, and from this it follows that wRw is false. Hence, the formula
c→�¬c expresses irreflexivity. Other examples of properties expressible in hybrid
logic, but not in ordinary modal logic, are asymmetry (expressed by c→ �¬♦c),
antisymmetry (expressed by c→�(♦c→ c)), and universality (expressed by ♦c).

1.1.3 Translation into First-Order Logic

Hybrid logic can be translated into first-order logic with equality and (a fragment
of) first-order logic with equality can be translated back into (a fragment of) hybrid
logic. The translation from hybrid logic into first-order logic we consider in this
subsection is an extension of the well-known standard translation from modal logic
into first-order logic (see Areces et al. 2001a and van Benthem 1983).

The first-order language under consideration has a 1-place predicate symbol
corresponding to each ordinary propositional symbol of modal logic, a 2-place
predicate symbol corresponding to the modality, and a 2-place predicate symbol
corresponding to equality. The language does not have constant or function symbols.
It is assumed that a countably infinite set of first-order variables is given. The
metavariables a, b, c, . . . range over first-order variables. There are no function
symbols or constants. So the formulas of the first-order language we consider are
defined by the grammar

S ::= p∗(a) | R(a,b) | a = b | S∧S | S→ S | ⊥ | ∀aS

where p ranges over ordinary propositional symbols of hybrid logic, and a and b
range over first-order variables. Note that according to the grammar above, for each
ordinary propositional symbol p of the modal language there is a corresponding
1-place predicate symbol p∗ in the first-order language. The predicate symbol p∗

will be interpreted such that it relativises the interpretation of the corresponding
modal propositional symbol p to worlds. In the grammar above, R is a designated
predicate symbol which will be interpreted using the accessibility relation (with the
same name). In what follows, we shall identify first-order variables with nominals
of hybrid logic. Note in this connection that the set of metavariables ranging over
first-order variables is identical to the set of metavariables ranging over nominals.
Free and bound occurrences of variables are defined as usual for first-order logic.
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Also, ψ[c/a] is the formula ψ where the variable c has been substituted for all free
occurrences of the variable a. As usual, if the variable a occurs free in ψ within the
scope of ∀c, then the variable c in ψ is renamed as appropriate. It is assumed that a
does not occur free in ψ within the scope of ∀c. The connectives ¬, �, ∨,↔, and ∃
are defined in one of the usual ways.

We first translate the hybrid logic H(↓,∀) into first-order logic with equality. It
is assumed that two nominals a and b are given which do not occur in the formulas
to be translated. The translations STa and STb are defined by mutual induction. We
just give the translation STa.

STa(p) = p∗(a)
STa(c) = a = c

STa(φ ∧ψ) = STa(φ)∧STa(ψ)

STa(φ → ψ) = STa(φ)→ STa(ψ)

STa(⊥) = ⊥
STa(�φ) = ∀b(R(a,b)→ STb(φ))

STa(@cφ) = STa(φ)[c/a]
STa(∀cφ) = ∀cSTa(φ)
STa(↓cφ) = STa(φ)[a/c]

The definition of STb is obtained by exchanging a and b. As an example, we
demonstrate step by step how the hybrid-logical formula ↓c�¬c is translated into a
first-order formula:

STa(↓c�¬c) = STa(�¬c)[a/c]
= ∀b(R(a,b)→ STb(¬c))[a/c]
= ∀b(R(a,b)→¬STb(c))[a/c]
= ∀b(R(a,b)→¬b = c)[a/c]
= ∀b(R(a,b)→¬b = a)

The resulting first-order formula is equivalent to ¬R(a,a) which shows that ↓
c�¬c indeed does correspond to the accessibility relation being irreflexive, cf.
above. What has been done in the translation is that the semantics of hybrid logic
has been formalised in terms of first-order logic; note how each clause in the
translation formalizes a clause in the definition of the semantics, that is, the relation
M,g,w |= φ .

The translation STa is truth-preserving. To state this formally, we make use of the
well-known observation that a model for hybrid logic can be considered as a model
for first-order logic and vice versa.

Definition 1.2. Given a model M = (W,R,{Vw}w∈W ) for hybrid logic, a model
M∗ = (W,V ∗) for first-order logic is defined by letting

• V ∗(p∗) = {w |Vw(p) = 1} and
• V ∗(R) = R.
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It is straightforward to see that the map (·)∗ which maps M to M∗ is bijective.
Moreover, an assignment in the sense of classical hybrid logic can be considered as
an assignment in the sense of classical first-order logic and vice versa.

Given a model M for first-order logic, the relation M,g |= φ is defined by
induction in the standard way, where g is an assignment and φ is a first-order
formula.

M,g |= p∗(a) iff g(a) ∈V (p∗)
M,g |= R(a,b) iff g(a)V (R)g(b)
M,g |= a = b iff g(a) = g(b)
M,g |= φ ∧ψ iff M,g |= φ and M,g |= ψ

M,g |= φ → ψ iff M,g |= φ implies M,g |= ψ
M,g |=⊥ iff falsum

M,g |= ∀aφ iff for any g′
a∼ g, M,g′ |= φ

The formula φ is said to be true if M,g |= φ ; otherwise it is said to be false. By
convention M |= φ means M,g |= φ for every assignment g. We shall later make
use of the first-order semantics in connection with the interpretation of geometric
theories.

It can now be stated formally that the translation is truth-preserving.

Proposition 1.3. Let M be a model for hybrid logic and let φ be a hybrid-logical
formula in which the nominals a and b do not occur. For any assignment g, it is the
case that M,g,g(a) |= φ if and only if M∗,g |= STa(φ) (and the same for STb).

Proof. Induction on the structure of φ . �
Thus, hybrid logic, considered as a language for talking about models, has the same
expressive power as the fragment of first-order logic obtained by taking the image
of hybrid logic under the translation STa.

First-order logic with equality can be translated into the hybrid logic H(∀) by
the translation HT given below.

HT(p∗(a)) = @a p
HT(R(a,c)) = @a♦c

HT(a = c) = @ac
HT(φ ∧ψ) = HT(φ)∧HT(ψ)

HT(φ → ψ) = HT(φ)→ HT(ψ)

HT(⊥) = ⊥
HT(∀aφ) = ∀aHT(φ)

The translation HT is truth-preserving.

Proposition 1.4. Let M be a model for hybrid logic. For any first-order formula φ
and any assignment g, it is the case that M∗,g |= φ if and only if M,g |= HT(φ).

Proof. Induction on the structure of φ . �
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Thus, in the sense above the hybrid logic H(∀) has the same expressive power as
first-order logic with equality. It is implicit in the proposition above that the first-
order formula φ is a formula of the first-order language defined by the grammar
given earlier in the previous subsection. The history of the above observations goes
back to the work of Arthur Prior, which we shall come back to in the next section.

In a way similar to the above translation, a fragment of first-order logic with
equality which is called the bounded fragment can be translated into the hybrid
logicH(↓). This was pointed out in Areces et al. (2001a). The bounded fragment is
obtained from the above grammar for first-order logic by replacing the clause ∀aS
by the new clause ∀c(R(a,c)→ S where it is required that the variables a and c are
distinct. In Areces et al. (2001a) a number of independent semantic characterizations
of the bounded fragment are given. A translation from the bounded fragment to the
hybrid logicH(↓) can be obtained by replacing the last clause in the translation HT
above by the following.

HT(∀c(R(a,c)→ φ)) = @a� ↓cHT(φ)

It is straightforward to check that Proposition 1.4 still holds, hence, the hybrid
logic H(↓) has the same expressive power as the bounded fragment of first-order
logic (note that for any formula φ of H(↓), the formula STa(φ) is in the bounded
fragment).

1.2 The Origin of Hybrid Logic in Prior’s Work

In this section we discuss the work of Arthur Prior, and we describe how hybrid logic
has its origin in his work. The precise origin of hybrid logic is Prior’s hybrid tense
logic, which is a hybridized version of ordinary tense logic. Arthur Prior (1914–
1969) is usually considered the founding father of modern temporal logic, his main
contribution being the formal logic of tenses. In his memorial paper on Prior (Kenny
1970), A.J.P. Kenny summed up Prior’s life and work as follows.

Prior’s greatest scholarly achievement was undoubtedly the creation and development of
tense-logic. But his research and reflection on this topic led him to elaborate, piece by
piece, a whole metaphysical system of an individual and characteristic stamp. He had many
different interests at different periods of his life, but from different angles he constantly
returned to the same central and unchanging themes. Throughout his life, for instance, he
worked away at the knot of problems surrounding determinism: first as a predestinarian
theologian, then as a moral philosopher, finally as a metaphysician and logician (Kenny
1970, p. 348).

Prior’s reflections on determinism and other issues related to the philosophy of
time were a major motivation for his formulation of tense logic. With the aim
of discussing tense logic and hybrid tense logic further, we shall give a formal
definition of hybrid tense logic: The language of hybrid tense logic is simply the
language of hybrid logic defined above except that there are two modal operators,
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namely G and H, instead of the single modal operator �. The two new modal
operators are called tense operators. The semantics of hybrid tense logic is the
semantics of hybrid logic, cf. earlier, with the clause for � replaced by clauses for
the tense operators G and H.

M,g,w |= Gφ iff for any v ∈W such that wRv, M,g,v |= φ
M,g,w |= Hφ iff for any v ∈W such that vRw, M,g,v |= φ

Thus, there are now two modal operators, namely one that “looks forwards” along
the accessibility relation R and one that “looks backwards”. In tense logic the
elements of the set W are called moments or instants and the accessibility relation R
is now also called the earlier-later relation.

It is straightforward to modify the translations STa and HT in the previous section
such that translations are obtained between a tense-logical version ofH(∀) and first-
order logic with equality. The first-order logic under consideration is what Prior
called first-order earlier-later logic. Given the translations, it follows that Prior’s
first-order earlier-later logic has the same expressive power as the tense-logical
version ofH(∀), that is, hybrid tense-logic.

Now, Prior introduced hybrid tense logic in connection with what he called four
grades of tense-logical involvement. The four grades were presented in the book
Prior (1968), Chapter XI (also Chapter XI in the new edition (Hasle et al. 2003)).
Moreover, see the book Prior (1967), Chapter V.6 and Appendix B.3–4. For a more
general discussion of the four grades, see the posthumously published book Fine
and Prior (1977). The stages progress from pure first-order earlier-later logic to what
can be regarded as a pure tense logic, where the second grade is a “neutral” logic
encompassing first-order earlier-later logic and tense logic on the same footing. The
motivation for Prior’s four grades of tense-logical involvement was philosophical.
Prior considered instants to be “artificial” entities which due to their abstractness
should not be taken as primitive concepts.

. . . my desire to sweep ‘instants’ under the metaphysical table is not prompted by any
worries about their punctual or dimensionless character but purely by their abstractness.
. . . ‘instants’ as literal objects, or as cross-sections of a literal object, go along with a picture
of ‘time’ as a literal object, a sort of snake which either eats its tail or doesn’t, either has
ends or doesn’t, either is made of separate segments or isn’t; and this picture I think we
must drop (Prior 1967, p. 189).

Given the explicit reference to instants in first-order earlier-later logic, Prior found
that first-order earlier-later logic gives rise to undesired ontological import. Instead
of first-order earlier-later logic, he preferred tense logic.

Some of us at least would prefer to see ‘instants’, and the ‘time-series’ which they are
supposed to constitute, as mere logical constructions out of tensed facts (Hasle et al. 2003,
p. 120).

This is why Prior’s goal was to extend tense logic such that it could be considered
as encompassing first-order earlier-later logic. Technically, the goal was to extend
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tense logic such that first-order earlier-later logic could be translated into it. It was
with this goal in mind Prior introduced what he called instant-propositions.

What I shall call the third grade of tense-logical involvement consists in treating the instant-
variables a, b, c, etc. as also representing propositions (Hasle et al. 2003, p. 124).

In the context of modal logic, Prior called such propositions possible-world-
propositions. Of course, this is what we here call nominals. Prior also introduced the
binder ∀ and what we here call satisfaction operators (he used the notation T(a,φ)
instead of @aφ for satisfaction operators). The extended tense-logic thus obtained
is the logic he called third grade tense logic, hence, the third grade tense logic is
identical to the tense-logical version of H(∀), hybrid tense logic, which has the
same expressive power as first-order earlier-later logic, as remarked above.

Prior gave an alternative, but equivalent, formulation of the third grade tense
logic in which the satisfaction operator is replaced by a modal operator A called
the universal modality (some authors call it the global modality). The universal
modality has a fixed interpretation: The truth-condition is that a formula Aφ is
true (at any world) if and only if the formula φ is true at all worlds. Thus, the
universal modality is interpreted using the universal binary relation. Formally, the
clause for the satisfaction operator in the semantics is replaced by a clause for the
modal operator A.

M,g,w |= Aφ iff for any v ∈W , M,g,v |= φ .

Thus, besides the tense operators G and H, the language under consideration
here also contains the modal operator A. The two formulations of the third
degree are equivalent since the satisfaction operator and the universal modality are
interdefinable in the presence of nominals and the ∀ binder, this being the case as
the formulas Aφ ↔∀a(@aφ) and @aφ ↔ A(a→ φ) are valid.

Prior’s fourth grade tense logic is obtained from the third grade tense logic
by replacing the satisfaction operator (or the universal modality in the alternative
formulation of the third grade) by a defined modal operator L such that

M,g,w |= Lφ iff for any v ∈W such that wR∗v, M,g,v |= φ

where the binary relation R∗ is the reflective, symmetric, and transitive closure of the
earlier-later relation R. Prior considered two ways to define the operator L in what
he took to be purely tense-logical terms. In the first case he allowed what amounts to
infinite conjunctions of formulas. If infinite conjunctions are allowed, the operator
L can be defined by the conventions that

Lφ = L0φ ∧L1φ ∧ . . .

and
L0φ = φ

Ln+1φ = GLnφ ∧HLnφ
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Note that for any given natural number k, Lkφ is a formula in the object language
(which does not involve natural numbers). For example, if k = 1 and φ = p, then
L1φ = Gp∧H p. In the second case Prior assumed time to have a structure making
Lφ equivalent to

L0φ ∧L1φ ∧ . . . ∧Lkφ

for some fixed natural number k whereby infinite conjunctions are avoided. If for
example time is linear, that is, transitive, backwards linear, and forwards linear, then
k = 1 will do. If time is branching, that is, transitive and backwards linear, then k = 2
will do. In whichever way the operator L is defined, the fourth grade tense logic has
the same expressive power as first-order earlier-later logic if it is assumed that the
time-series is unique, that is, if it is assumed that any two instants are connected
by some number of steps in either direction along the earlier-later relation R. For
Prior it was natural to assume that the time-series is unique, as is witnessed by the
following quotation.

For is not the question as to whether ‘our’ time-series (whatever its structure) is unique,
a genuine one? I would urge the following consideration against saying that it is, or at
all events against saying it too hurriedly: It is only if we have a more-or-less ‘Platonistic’
conception of what a time-series is, that we can raise this question. If, as I would contend, it
is only by tensed statements that we can give the cash-value of assertions which purport to
be about ‘time’, the question as to whether there are or could be unconnected time-series is
a senseless one. We think we can give it a sense because it is as easy to draw unconnected
lines and networks as it is to draw connected ones; but these diagrams cannot represent time,
as they cannot be translated into the basic non-figurative temporal language (Prior 1967, pp.
198–199).

The reason why the fourth grade tense logic has first-order expressive power when
the time-series is unique, is that the fourth-grade modality L then has the same effect
as the universal modality A which is used in (the alternative formulation of) the
third-grade logic, and the third-grade logic has first-order expressive power, as we
argued above. This is discussed in more detail in the paper Braüner (2002b).

To sum up, Prior obtained tense logics having the same expressive power as
first-order earlier-later logic, namely the third and fourth grade tense logics, by
adding to ordinary tense logic further expressive power in the form of hybrid-logical
machinery (and in the case of the fourth grade tense logic by making appropriate
assumptions about the structure of time, including an assumption that the time-
series is unique). So Prior clearly reached his technical goal. Prior also found that
he reached his philosophical goal, namely that of avoiding an ontology including
instants.

The ‘entities’ which we ‘countenance’ in our ‘ontology’ . . . depend on what variables we
take seriously as individual variables in a first-order theory, i.e. as subjects of predicates
rather than as assertibilia which may be qualified by modalities. If we prefer to handle
instant-variables, for example, or person-variables, as subjects of predicates, then we may
be taken to believe in the existence of instants, or of persons. If, on the other hand, we prefer
to treat either of these as propositional variables, i.e. as arguments of truth-functions and
of modal functions, then we may be taken as not believing in the existence of instants, etc.
(they don’t exist; rather, they are or are not the case) (Hasle et al. 2003, p. 220).
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However, it has been debated whether or not Prior managed to avoid an instant
ontology. We shall return to this later in Sect. 1.2.1 (where we also return to the
person-variables mentioned in the quotation above).

The discussion on Prior’s third grade tense logic and first-order earlier-later
logic is closely related to the discussion on two different conceptions of time,
namely the A-series and B-series conceptions, a terminology introduced in 1908
by the philosopher McTaggart (cf. McTaggart 1908). According to the A-series
conception, also called the dynamic view, the past, present, and future tenses are
primitive concepts from which other temporal concepts, in particular instants and
the earlier-later relation, are to be derived. On the other hand, according to the B-
series conception, also called the static view, instants and the earlier-later relation
are primitive. The A-series conception embodies the local way in which human
beings experience the flow of time whereas the B-series conception embodies a
Gods-eye-view of time, where time is a sequence of objectively and tenselessly
existing instants. It is notable that representations of both the A-series and B-series
conceptions can be found in natural language (the A-series conception of course in
the form of tense inflection of verbs and the B-series conception in particular in the
form of nominal constructions like “5 o’clock 10 May 2007”). Of course, first-order
earlier-later logic is associated with the B-series conception and Prior’s third grade
tense logic is associated with the A-series conception, which was Prior’s own view,
as succinctly expressed in the following quotation.

So far, then, as I have anything that you could call a philosophical creed, its first article is
this: I believe in the reality of the distinction between past, present, and future. I believe that
what we see as a progress of events is a progress of events, a coming to pass of one thing
after another, and not just a timeless tapestry with everything stuck there for good and all
(Prior 1996, p. 47).

The discussion of A-series and B-series is reflected in discussions of time in
Artificial Intelligence, see the paper Galton (2006). The paper by Patrick Blackburn
(2006) discusses all the above issues as well as a number of other issues in hybrid
logic and their origin in Prior’s work. The above issues are also discussed in many
papers of the collection (Copeland 1996), in particular in Richard Sylvan’s paper
(1996). See the paper Øhrstrøm and Hasle (1993), the book Øhrstrøm and Hasle
(1995), and the handbook chapters Øhrstrøm and Hasle (2005b) and Øhrstrøm and
Hasle (2005a) for general accounts of Prior’s work. See also the encyclopedia article
Copeland (2007). A recent assessment of Prior’s philosophical and logical views can
be found in Müller (2007).

1.2.1 Did Prior Reach His Philosophical Goal?

It has been debated whether Prior reached his philosophical goal with the third and
fourth grade logics, namely that of avoiding an ontology including instants.


