K. Subramanya Sastry

Plant Virus and Viroid Diseases in the Tropics

Volume 1: Introduction of Plant Viruses and Sub-Viral Agents, Classification, Assessment of Loss, Transmission and Diagnosis

Plant Virus and Viroid Diseases in the Tropics

K. Subramanya Sastry

Plant Virus and Viroid Diseases in the Tropics

Volume 1: Introduction of Plant Viruses and Sub-Viral Agents, Classification, Assessment of Loss, Transmission and Diagnosis

K. Subramanya Sastry Department of Virology SV University Tirupathi, Andhra Pradesh India

ISBN 978-94-007-6523-8 ISBN 978-94-007-6524-5 (eBook) DOI 10.1007/978-94-007-6524-5 Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2013933113

© Springer Science+Business Media B.V. 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The detection of a *contagium vivum fluidum* associated with a *mosaic* disease of tobacco in Europe at the close of the nineteenth century, was the beginning of a century of major achievements in the advancement of biological sciences. The demonstration in 1937 that *Tobacco mosaic virus* (TMV), was a nucleoprotein, and that its nucleic acid (RNA), contained the genetic information necessary to induce disease in tobacco, set the stage for the advent of genetics, molecular biology, transgenic technology, and the use of viruses as molecular tools. The physicochemical characterization of TMV also lead to the diffusion of modern technologies, such as virus purification (centrifugation), immunology, electrophoresis, electron microscopy, protein and nucleic acid sequencing, and atomic structure of nucleoproteins (X-ray analysis). These developments would eventually make a major contribution to the understanding of the structure of DNA by Watson and Crick in 1953. Finally, these breakthroughs then paved the way to the advent of Molecular Biology, bringing about the greatest revolution in the multiple fields of biological sciences.

However, TMV had a humble origin in the lowlands of tropical South America, where tobacco had been cultivated by the native societies, until the Spanish conquistadores turned it into a commercial export commodity during colonial times. In the nineteenth century, tobacco was being widely grown in Europe as a medicinal plant and, consequently, the stage was set for the emergence of one of the first global epiphytotics of a highly contagious plant virus. In 1887, Dmitri Ivanovsky was sent from the University of Saint Petersburg, the imperial capital of Russia, to investigate a disease affecting tobacco plantations in Ukraine. In 1892, Ivanovsky demonstrated that the causal agent was not excluded by a porcelain filter capable of retaining bacteria, the only known microbial pathogen at that time. In 1898, Martinus Beijerinck confirmed Ivanovsky's observations in The Netherlands and, thus, the science of Plant Virology was born.

Despite the significant progress made in plant virology in the twentieth century, the detection and characterization of many plant viruses of economic importance remained elusive until the 1980s, particularly in the Tropics, where plant virology facilities were non-existent or very poorly equipped due to the difficult nature of plant viruses (non-culturable) and lack of the expensive equipments needed to characterize these pathogens up to that decade. Consequently, the early plant virologist had to be thoroughly trained in the various fields of the agricultural sciences: agronomy, genetics, plant breeding, plant physiology, epidemiology, entomology, and plant pathology, in order to manage the viral diseases of crops, often without knowing the causal agent. The advent of molecular biology and the application of molecular techniques, such as the Polymerase Chain Reaction (PCR), to the detection and characterization of plant viruses possessing RNA or DNA genomes, completely changed the field of Plant Virology in the 1980s. All of the sudden, plant virologists only needed partial nucleic acid sequences and a relatively inexpensive PCR machine to detect and identify plant viruses, without the need to visualize, purify, conduct serological assays, or undertake lengthy and complex physicochemical assays to characterize plant viruses. All that was needed to identify viruses was a suitable pair of primers (a strand of nucleic acid that serves as a starting point for DNA synthesis) to obtain partial or total viral genome sequence data to compare to reported viral sequences freely available in databases such as GenBank.

The adoption of molecular techniques not only facilitated research on plant viruses, but it also changed agricultural education and research in areas of critical importance to the science of Plant Virology. Advances in tissue culture techniques, molecular markers, and the genetic manipulation of plant genomes rapidly shifted the attention from traditional plant breeding and traditional virus screening techniques to the promise of selection of virus resistant plant genotypes in molecular biology laboratories using molecular markers. More important, acquiring a basic knowledge in agricultural sciences was no longer required. Instead, a new generation of molecular biologists was formed to deal with any phytopathological problem regardless of the causal organism, be it a fungus, bacterium, or virus. Thus, the new virologist is usually a molecular biologist who chose to work with plant viruses, without former training in agricultural sciences.

Whereas the science of Plant Virology has immensely benefited from the adoption of the new molecular techniques; and conducting plant virus research without a basic working knowledge of molecular biology is no longer possible or desirable in this new millennium, the new generation of molecular virologists need to know the foundations of Plant Virology. Basically, the science of plant pathology, the agronomy of the plant species affected, and the genetic interaction of plant viruses with their plant hosts and vectors. Finally, any virologist must understand how plant viruses are disseminated in nature, and the various control measures available to manage the viral diseases of economically important food and industrial crops. Hence, the importance of a comprehensive book like this one written by Dr. K. Subramanya Sastry, presented in different volumes which describe the nature of plant viruses and viroids, their classification and identification, and the main viral and viroids pathogens that affect food production in the most challenging and dynamic agricultural system in the world: the Tropics.

The virus detection techniques described are completely up-to-date, including the latest molecular techniques developed in the world for the detection and characterization of viruses and viroids in general. The interested readers, professors, and students of agricultural sciences, and specially plant pathologists, will find this publication a complete source of information on the science of Plant Virology in the Tropics.

Francisco J. Morales Former Head Plant Virology Laboratory Emeritus Scientist International Centre for Tropical Agriculture Palmira, Valle, Columbia

Preface

Virus and viroid diseases have become increasingly important constraints to sustainable crop production in the tropical countries. The climatic changes that are occurring throughout the world have impact on plants, vectors, and viruses causing increasing instability within virus–host ecosystems. Some of the threatening and economically important virus diseases in tropical zone which affect the food production are tungro, yellow mottle, and hoja blanca in rice; mosaic in sugarcane, mosaic in cassava; tristeza in citrus; swollen shoot in cacao; sterility mosaic in pigeonpea; rosette, clump, and bud necrosis in peanut; necrosis in sunflower and legumes, vegetables, and ornamental crops; yellow mosaic in legumes; leaf curl in cotton and tomato; and ring spot in papaya. Key factors for emergence of new plant virus and virus-like diseases include the intensification of agricultural trade (globalization), changes in cropping systems (crop diversification), and climate change.

Largest group of plant viruses exist in the family *Potyviridae* followed by *Geminiviridae* and *Bunyaviridae*. In tropical countries, whitefly transmitted begomoviruses are responsible for heavy crop losses in cassava, cotton, tobacco, tomato, potato, pepper, squash, okra. etc. The tospo- and ilarviruses are wide spread in tropics and affect several important field, horticultural and ornamental crops resulting in serious economic damage in crops like groundnut, sunflower, onion, watermelon, and vegetables like tomato, chillies, and potatoes. Divergence exists in the type of vectors and their population from country to country, for example Hemipterans (aphids, whiteflys, leafhoppers, mealybugs, and others) are the major vectors of plant virus and virus like diseases, comprising more than 80 % of insect-transmitted viruses which represents close to 400 virus species within 39 different genera.

The primary aim of this book is to provide to readers with latest information on different virus and viroid diseases of crops in tropical countries. This volume comprises of five chapters that give an overview of the progress made on virus and viroid diseases of crops of tropics. The first chapter deals with general information on tropics and climate, tropical countries and tropical agriculture; second chapter provides information on viruses, viroids, phytoplasma, and other subviral agents; third chapter on impact of virus and viroid disease on tropical crops; the fourth chapter on various modes of transmission of virus and virus-like agents. Various methods for detection and diagnosis of viruses and viroid disease of tropical crops are extensively reviewed in the fifth chapter.

Since the inception of plant virology, phytoplasma is dealt along with plant viruses, hence a few pages were devoted in this book for providing background information about phytoplasma for traditional scientists/researchers. Even though the attempt is only to include the examples from tropical zone but it was not possible to confine to tropical examples as successful research outcomes are there from temperate zone; hence, some examples from temperate zone were also referred. If any omissions have occurred inadvertently in seeking permissions for figures and tables, it may please be condoned.

It is hoped that the information provided in this volume on various aspects of virus and viroid diseases of tropical crops would be useful to research scientists, seed companies, quarantine personnel, and institutions of both research and teaching.

K. Subramanya Sastry

Acknowledgments

To bringout the two volumes on "Plant Virus and Viroid Diseases in the Tropics", a large number of plant virologists of both National and International have immensely helped. I have been benefited by the critical suggestions and comments made by Dr. G. P. Rao, Dr. M. Hema, Dr. C. I. Chacko, Prof. Jawaid Khan, Prof. P. Anandakumar, Dr. P. Lavakumar, D. D. R. Reddy, Dr. B. Viswanath, Dr. K. Vemana, Dr. SK Raj, Dr. K Bikas Mandal, Prof. H. R. Pappu, Dr. R. A. Naidu, Dr. A. M. Anthony Johnson, Dr. D. C. Sastri, Prof. S. M. H. Khurana, Dr. S. E. Albrechtsen, Dr. R. Selvarajan, Dr. G. Nagaraja and others. The single person who has taken all the brunt and hardship in finalizing the manuscript is Prof. P. Sreenivasulu, Former Head of the Department of Plant Virology, SV University, Tirupathi (India) and I record appreciation for his sincere hard work and devotion to the plant virology subject. I am highly indepted to late Prof. M. V. Nayudu, my mentor, who has introduced me to plant virology subject. I profusely thank my friend Dr. D. V. R. Saigopal, Head of the Department of Plant Virology, SV University, Tirupathi, for providing me space in the department, timely guidance, and critically going through all the chapters. I am highly grateful to Prof. T. A. Zitter and Prof. F. J. Morales for providing suitable suggestions and modifications for the improvement of the text. I thank Elsevier, CABI, Springer, and other publishers for providing permission for using the illustrations and photographs from their earlier publications. Throughout preparation of the volume 1, Mr. C. Nagaraja has devoted maximum time in computerizing the book for which the author is highly indebted. My wife B. N. K. Kumari and my family members K. Sreedhar, M. Padmavathi, and M. Muralidhar for their ever-lasting love, for their ceaseless support, and were my constant companions during the course of preparation of the books. The meticulous care taken by staff of Springer publishers in bringing out this publication at an early date with nice getup of the book is gratefully appreciated and acknowledged.

I dedicate this book to the memory of my parents late K. Panduranga Sastry and Smt. K. Subadramma who have sacrificed everything to give me the best education possible and for their eternal blessings.

K. Subramanya Sastry

Acronyms

A1MV	Alstroemeria mosaic virus
ABMV	Azuki bean mosaic virus
AbMV	Abaca mosaic potyvirus
AbMV	Abutilon mosaic virus
ACLSV	Apple chlorotic leaf spot
ACMV	African cassava mosaic virus
AGVd	Australian grapevine viroid
AMV	Alfalfa mosaic virus
APLV	Andean potato latent virus
ApMV	Apple mosaic virus
ArMV	Arabis mosaic virus
ARSV	Apple ring spot virus
ASBVd	Avocado Sunblotch viroid
ASGV	Apple stem grooving virus
ASPV	Apple stem pitting virus
ASSVd	Apple scar skin viroid
AYRSV	Artichoke yellow ring spot virus
BaMMV	Barley mild mosaic virus
BaMV	Bamboo mosaic virus
BaYMV	Barley yellow mosaic virus
BBMV	Broad bean mottle virus
BBrMV	Banana bract mosaic virus
BBSV	Broad bean stain virus
BBTMV	Broad bean true mosaic virus
BBTV	Banana bunchy top virus
BBWV	Broad bean wilt virus
BCaMV	Bean calico mosaic virus
BCMNV	Bean common mosaic necrotic virus
BCMV	Bean common mosaic virus
BCTV	Beet curly top virus
BDBV	Banana dieback virus
BDMV	Bean dwarf mosaic virus
BGMV	Bean golden mosaic virus

Bean	golden	yellov	v mo
Black	eye co	wpea	mosa

BGYMV	Bean golden yellow mosaic virus
BICMV	Black eye cowpea mosaic virus
BLMV	Blue berry leaf mottle virus
BLRV	Bean leaf roll virus
BlShV	Blueberry Shock Ilarvirus
BMCTV	Beet mild curly top virus
BMoV	Blackgram mottle virus
BMV	Brome mosaic virus
BMYV	Beet mild yellowing virus
BNYV	Broccoli necrotic yellows virus
BNYVV	Beet necrotic yellow vein virus
BPMV	Bean pod mottle virus
BRSV	Beet ringspot virus
BSGFV	Banana streak GF virus
BSMV	Barley stripe mosaic virus
BSMV	Beet stripe mosaic virus
BSMyV	Banana streak Mysore virus
BSOLV	Banana streak OL virus
BSUgIV	Banana streak Uganda I virus
BSUgLV	Banana streak Uganda L virus
BSUgMV	Banana streak Uganda M virus
BSV	Banana streak virus
BtMV	Beet mosaic virus
BWYV	Beet western yellows virus
BYDV	Barley yellow dwarf virus
BYMV	Bean yellow mosaic virus
BYSV	Bean yellow stipple virus
BYSV	Beet yellows stunt virus
BYV	Beet yellows virus
BYVMV	Bhendi yellow vein mosaic virus
CABMV	Cowpea aphid borne mosaic virus
CaCV	Capsicum chlorosis virus
CaMV	Cauliflower mosaic virus
CarMV	Carnation mottle virus
CBDV	Colocasia bobone disease virus
CBMV	Common bean mosaic virus
CbMV	Calibrachoa mottle virus
CBRV	Cabbage black ring virus
CBSV	Cassava brown streak virus
CBSUV	Cassava brown streak Uganda virus
CbVd-1	Coleus blumei viroid 1
CbVd-2	Coleus blumei viroid 2

Acronyms

CCCVd	Coconut cadang-cadang viroid
CChMVd	Chrysanthemum chlorotic mottle viroid
CCMV	Cowpea chlorotic mottle virus
CCSV	Cucumber chlorotic spot virus
CCSV	Calla lily chlorotic spot virus
CCSV	Cassava Colombian symptomless virus
CdMV	Cardamom mosaic virus
CeMV	Celery mosaic virus
CEVd	Citrus exocortis viroid
CFDV	Coconut foliar decay virus
CFMMV	Cucumber fruit mottle mosaic virus
CFSV	Cassava frogskin virus
CGMMV	Cucumber green mottle mosaic virus
CGMV	Cassava green mottle virus
ChiLCV	Chilli leaf curl virus
CIBV	Cassava ivorian bacilliform virus
CiLV	Citrus leprosis virus
CiMV	Citrus mosaic virus
CiTLV	Citrus tatter leaf virus
CIVV	Citrus infectious variegation virus
CLCrV	Cotton leaf crumple virus
CLCuAV	Cotton leaf curl Allahabad virus
CLCuBV	Cotton leaf curl Bangalore virus
CLCuBuV	Cotton leaf curl Burewala virus
CLCuKV	Cotton leaf curl Kokhran virus
CLCuMV	Cotton leaf curl Multan virus
CLCuRV	Cotton leaf curl Rajasthan virus
CLCuV	Cotton leaf curl virus
CLRV	Cherry leaf roll virus
CLVd	Columnea latent viroid
CIYMV	Clover yellow mosaic virus
ClYVV	Clover yellow vein virus
CMBV	Citrus mosaic badnavirus
CMDV	Carrot mottley dwarf virus
CMV	Cucumber mosaic virus
CNV	Cocao necrosis virus
CoYMV	Commelina yellow mottle virus
CpBMV	Cowpea banding mosaic virus
CpCDV	Chickpea chlorotic dwarf virus
CpCSV	Chickpea chlorotic stunt virus
CPFVd	Cucumber pale fruit viroid
CpGMV	Cowpea golden mosaic virus
CpMMV	Cowpea mild mottle virus
CPMoV	Cowpea mottle virus
CpMV	Cowpea mosaic virus

CPSMV	Cowpea severe mosaic virus
CPsV	Citrus psorosis virus
CRSV	Citrus ring spot virus
CsALV	Cassava American latent virus
CsCMV	Cassava common mosaic virus
CSNV	Chrysanthemum stem necrosis virus
CSSV	Cocoa swollen shoot virus
CSVd	Chrysanthemum stunt viroid
CsVX	Cassava virus X
CTLV	Carrot thin leaf virus
CTV	Citrus tristeza virus
CuNV	Cucumber necrosis virus
CVMV	Cassava vein mosaic virus
CVMV	Chilli veinal mottle virus (Syn. Pepper vein banding mosaic
	virus)
CVV	Citrus variegation virus
CVYV	Cucumber vein yellowing virus
CymMV	Cymbidium mosaic virus
CymRSV	Cymbidium ringspot virus
CYMV	Chicory yellow mottle virus
CYMV	Citrus yellow mosaic virus
CYSDV	Cucurbit yellow stunt disorder virus
DAV	Dapple apple virus
DBV	Dioscorea bacilliform virus
DoYMV	Dolichos yellow mosaic virus
DsMV	Dasheen mosaic virus
EACMCV	East African cassava mosaic Cameroon virus
EACMV	East African cassava mosaic virus
ELCV	Enation leaf curl virus
EMDV	Eggplant mottled dwarf virus
EMV	Eggplant mosaic virus
FBNYV	Faba bean necrotic yellows virus
FLNV	Freesia leaf necrosis virus
GBLV	Grapevine Bulgarian latent virus
GBNV/PBNV	Groundnut bud necrosis virus
GFkV	Grapevine fleck virus
GFLV	Grapevine fan leaf virus
GLRaV-1	Grapevine leafroll-associated virus-1
GLRaV-2	Grapevine leafroll-associated virus-2
GLRaV-3	Grapevine leafroll-associated virus-3
GLRV	Grapevine leafroll virus
GMMV	Gayfeather mild mottle virus
GRSPaV	Grapevine rupestris stem pitting-associated virus
GRSV	Groundnut ringspot virus
GRV	Groundnut rosette virus

GSLV	Guar symptomless virus
GVA	Grapevine Virus-A
GVB	Grapevine virus B
GYSV	Grapevine Yellow Speckle Viroid
HgYMV	Horsegram yellow mosaic virus
HPV	High plains virus
HSVd	Hop stunt viroid
ICMV	Indian cassava mosaic virus
INSV	Impatiens necrotic spot virus
IPCV	Indian peanut clump virus
IYSV	Iris yellow spot virus
JMV	Jatropha mosaic virus
JYMV	Japanese yam mosaic virus
KGMMV	Kyuri green mottle mosaic virus
KMV	Konjac mosaic virus
LALV	Lucerne Australian latent virus
LBGMV	Lima bean golden mosaic virus
LBVV	Lettuce big vein virus
LCV	Lettuce chlorosis virus
LiYV	Lettuce infectious yellows virus
LMV	Lettuce mosaic virus
LNYV	Lettuce necrotic yellows virus
LTSV	Lucerne transient streak virus
LYSV	Leek yellow stripe virus
MCDV	Maize chlorotic dwarf virus
MCLCuV	Melon chlorotic leaf curl virus
MCMV	Maize chlorotic mottle virus
MDMV	Maize dwarf mosaic virus
MeCMV	Melon chlorotic mosaic virus
MLRV	Myrobalan latent ringspot virus
MMV	Maize mosaic virus
MNSV	Melon necrotic spot virus
MPVd	Mexican papita viroid
MRDV	Maize rough dwarf virus
MRFV	Maize rayado fino virus
MRMV	Melon rugose mosaic virus
MRSV	Mulberry ring spot virus
MSMV	Melon severe mosaic virus
MSpV	Maize stripe virus
MSV	Maize streak virus
MYMV	Mungbean yellow mosaic virus
MYSV	Melon yellow spot virus
NVMV	Nicotiana velutina mosaic virus
OGSV	Oat golden stripe virus
OkMV	Okra mosaic virus

OLCV	Okra leaf curl virus
OLV-1	Olive latent virus-1
OLV-2	Olive latent virus-2
ORSV	Odontoglossum ringspot virus
OYDV	Onion yellow dwarf virus
OYVMV	Okra yellow vein mosaic virus
PaLCuV	Papaya leaf curl virus
PAMV	Potato aucuba mosaic virus
PapMV	Papaya mosaic virus
PBCVd	Pear blister canker viroid
PBNV	Peanut bud necrosis virus
PCFV	Peanut chlorotic fanspot virus
PCFVd	Pepper chat fruit viroid
PCV	Peanut clump virus
PDV	Prune dwarf virus
PEBV	Pea early browning virus
PEMV	Pea enation mosaic virus
PepGMV	Pepper golden mosaic virus
PepLCBV	Pepper leaf curl Bangladesh virus
PepLCV	Pepper leaf curl virus
PepMoV	Pepper mottle virus
PepMV	Pepino mosaic virus
PeSV	Pea streak virus
PLMVd	Peach latent mosaic viroid
PLRV	Potato leafroll virus
PLRV	Pea leaf roll virus
PMiMV	Pea mild mosaic virus
PMMoV	Pepper mild mottle virus
PMTV	Pepper mild tigre virus
PMTV	Potato mop top virus
PMV	Panicum mosaic virus
PMV	Pea mosaic virus
PMV	Peanut mottle virus
PMWaV-1	Pineapple mealybug wilt associated virus-1
PMWaV-3	Pineapple mealybug wilt associated virus-3
PNRSV	Prunus necrotic ringspot virus
PopMV	Poplar mosaic virus
PoRSV	Polygonum rings pot virus
PPSMV	Pigeon pea sterility mosaic virus
PPV	Plum pox potyvirus
PRMV	Peach rosette mosaic virus
PRSV	Papaya ring spot virus
PSbMV	Pea seed-borne mosaic virus
PSMV	Physalis silver mottle virus
PStV	Peanut stripe virus

PSTVd	Potato spindle tuber viroid
PSV	Peanut stunt virus
PVA	Potato virus A
PVC	Potato virus C
PVS	Potato virus S
PVT	Potato virus T
PVX	Potato virus X
PVY	Potato virus Y
PYDV	Potato yellow dwarf virus
PYMoV	Piper yellow mottle virus
PYMV	Pepper yellow mottle virus
PYMV	Potato yellow mosaic virus
PYSV	Peanut yellow spot virus
PYVHV	Pepper yellow vein huasteco virus
PYVV	Potato yellow vein virus
PZSV	Pelargonium zonate spot virus
RBDV	Raspberry bushy dwarf virus
RDV	Rice dwarf virus
RGMV	Rye grass mosaic virus
RGSV	Rice grassy stunt virus
RHBV	Rice hoja blanca virus
RMV	Rice mosaic virus
RpRSV	Raspberry ring spot virus
RRSV	Rice ragged stunt virus
RSV	Rice stripe virus
RTBV	Rice tungro bacilliform virus
RTSV	Rice tungro spherical virus
RTV	Rice tungro virus
RTYV	Rice transitory yellowing virus
RWSV	Rice wilted stunt virus
RYEV	Radish yellow edge virus
RYMV	Rice yellow mottle virus
SACMV	South African cassava mosaic virus
SALCV	Solanum apical leaf curling virus
SbBMV	Soybean blistering mosaic virus
SBMV	Southern bean mosaic virus
SBWMV	Soil-borne wheat mosaic virus
SBYV	Sugarbeet yellows virus
SCBV	Sugarcane bacilliform virus
SCLV	Soybean crinkle leaf virus
SCMoV	Subterranean clover mottle virus
SCMV	Sugarcane mosaic virus
SCRLV	Subterranean clover red leaf virus
SCSV	Subterranean clover stunt virus
SCYLV	Sugarcane yellow leaf virus

SCFDV	Sugarcane Fiji disease virus
SgCSV	Sorghum chlorotic spot virus
SLCMV	Sri Lankan cassava mosaic virus
SLCV	Squash leaf curl virus
SLRSV	Strawberry latent ring spot virus
SLV	Shallot latent virus
SMMV	Soybean mild mosaic virus
SMV	Soybean mosaic virus
SMoV	Strawberry mottle virus
SMYEPV	Strawberry mild yellow edge potexvirus
SMYEV	Strawberry mild yellow edges virus
SNMoV	Solanum nodiflorum mottle virus
SoMV	Sowbane mosaic virus
SPCFV	Sweet potato chlorotic fleck virus
SPCSV	Sweet potato chlorotic stunt crinivirus
SPFMV	Sweet potato feathery mottle potyvirus
SPLCV	Sweet potato leafcurl virus
SPLL	Sweet potato little leaf
SpLV	Spinach latent virus
SPLV	Sweet potato latent virus
SPMMV	Sweet potato mild mottle virus
SPMSV	Sweet potato mild speckling virus
SPSVV	Sweet potato sunken vein virus
SPVD	Sweet potato virus disease
SPVMV	Sweet potato vein mosaic virus
SPYDV	Sweet potato yellow dwarf virus
SqMV	Squash mosaic virus
SRMV	Sunflower rugose mosaic virus
SrMV	Sorghum mosaic virus
SCSMV	Sugarcane streak mosaic virus
SuCMoV	Sunflower chlorotic mottle virus
SVBV	Strawberry vein banding virus
SYMMoV	Squash yellow mild mottle virus
SYNV	Sonchus yellow net virus
SYVV	Sowthistle yellow vein virus
TaBV	Taro bacilliform virus
TASVd	Tomato apical stunt viroid
TAV	Tomato aspermy virus
TBRV	Tomato black ring virus
TBSV	Tomato bushy stunt virus
TBV	Tulip breaking virus
TCSV	Tomato chlorotic spot virus
TCV	Turnip crinkle virus
TDLCV	Tomato dwarf leafcurl virus
TEV	Tobacco etch virus

TFMV	Taro feathery mosaic virus
TICV	Tomato infectious chlorosis virus
TLCPuV	Tomato leaf curl Pune virus
TLCrV	Tomato leaf crumple virus
TLCV	Tobacco leaf curl virus
TLCV	Tomato leaf curl virus
TMV	Tobacco mosaic virus
TNV	Tobacco necrosis virus
ToCMoV	Tomato chlorotic mottle virus
ToCV	Tomato chlorosis virus
ToLCD	Tomato leaf curl disease
ToLCGV	Tomato leaf curl Gujarat virus
ToLCKV	Tomato leaf curl Karnataka virus
ToLCNDV	Tomato leaf curl New Delhi virus
ToMoV	Tomato mottle virus
ToMV	Tomato mosaic virus
ToRSV	Tomato ringspot virus
ToSLCV	Tomato severe leaf curl virus
ToTV	Tomato torrado virus
ToYMV	Tomato yellow mosaic virus
TPCTV	Tomato pseudo-curly top virus
TPMVd	Tomato planta macho viroid
TriMV	Triticum mosaic virus
TRSV	Tobacco ring spot virus
TRV	Tobacco rattle virus
TStV	Tobacco stunt virus
TSV	Tobacco streak virus
TSWV	Tomato spotted wilt virus
TuMV	Turnip mosaic virus
TVMV	Tobacco vein mottling virus
TYFRV	Tomato yellow fruit ring virus
TYLCV	Tomato yellow leaf curl virus
TYMV	Turnip yellow mosaic virus
TYRV	Tomato yellow ring virus
TYVSV	Tomato yellow vein streak virus
TZSV	Tomato zonate spot virus
ULCV	Urd bean leaf crinkle virus
VTMoV	Velvet tobacco mottle virus
WBNV	Watermelon bud necrosis virus
WCMV	White clover mosaic virus
WCSV	Watermelon chlorotic stunt virus
WMV	Watermelon mosaic virus
WMV-1	Watermelon mosaic virus-1
WMV-2	Watermelon mosaic virus-2
WSBMV	Wheat soil borne mosaic virus

WSMoV	Watermelon silver mottle virus
WSMV	Wheat streak mosaic virus
WSSMV	Wheat spindle streak mosaic virus
YMMV	Yam mild mosaic virus
YMV	Yam mosaic virus
YVMV	Yellow vein mosaic virus
ZGMMV	Zucchini green mottle mosaic virus
ZLCV	Zucchini lethal chlorosis virus
ZYMV	Zucchini yellow mosaic virus

Contents

1	Intro	duction to Plant Virus and Viroid Diseases in the Tropics 1
	1.1	Introduction
	1.2	Tropics and Climate 1
	1.3	Tropical Countries
	1.4	Tropical Crops. 5
	1.5	Plant Virus Diseases in the Tropics
	1.6	Conclusions
	Refe	rences
2	Viru	ses and Sub-Viral Agents
	2.1	Introduction
	2.2	Viruses
		2.2.1 Virus Classification
	2.3	Sub-Viral Agents
		2.3.1 Viroids
	2.4	Phytoplasma
	2.5	Spiroplasma
	2.6	Other Sub-Viral Agents
		2.6.1 Satellite Viruses 89
		2.6.2 Defective Interfering Particles (DI Particles)
	2.7	Conclusions
	Refe	rences
3	Impa	nct of Virus and Viroid Diseases on Crop Yields
	3.1	Crop Losses Due to Virus and Viroid Diseases
	3.2	Yield Losses in Different Crops 104
		3.2.1 Cereals and Millets
		3.2.2 Food Legumes
		3.2.3 Vegetables 115
		3.2.4 Tuber Crops
		3.2.5 Fruit Crops 125
		3.2.6 Industrial Crops 131
		3.2.7 Edible Oil Seed Crops 136

		3.2.8	Spice Crops	139
		3.2.9	Bio Fuel Crops	140
	3.3	Concl	usions	14
	Refe	rences .		14
4	Trar	ismissio	on of Plant Viruses and Viroids	16
	4.1	Introd	luction	16
		4.1.1	Transmission Through Vegetative Propagules	16
		4.1.2	Transmission Through Seed	16
		4.1.3	Transmission Through Pollen	19
		4.1.4	Transmission Through Contact and Mechanical.	19
		4.1.5	Transmission Through Water	19
		4.1.6	Transmission Through Vectors	19
	4.2	Arthro	opod vectors	19
		4.2.1	Aphids	19
		4.2.2	Leaf, Plant and Tree Hoppers	19
		4.2.3	Whiteflies	19
		4.2.4	Thrips	20
		4.2.5	Beetles	20
		4.2.6	Mealybugs	20
		4.2.7	Mirids	20
		4.2.8	Mites	20
	4.3	Non-I	nsect Vectors	20
		4.3.1	Nematodes	20
		4.3.2	Fungi	20
	4.4	Concl	usions	20
	Refe	rences .		20
5	Diag	nosis ai	nd Detection of Plant Virus and Viroid Diseases	23
	5.1	Introd	luction	23
		5.1.1	Need and Progress in Plant Virus Diagnostics	23
		5.1.2	Detection Specificity and Sensitivity	23
	5.2	Appro	baches Used for Identification of Plant Virus	
		and V	viroid Diseases	23
		5.2.1	Biological Approaches	23
		5.2.2	Physical Tests	23
	5.3	Antib	ody-Based Tests	23
		5.3.1	Precipitation Tests	24
		5.3.2	Agglutination Tests	24
		5.3.3	Immuno Diffusion Tests	24
		5.3.4	Immunochromatography	24
		5.3.5	Immuno Electron Microscopy (IEM)	24
		5.3.6	Labeled Antibody Based Assays	24

5.4	Viral Nucleic Acid-Based Tests	263	
	5.4.1 Molecular Hybridization	263	
	5.4.2 Polymerase Chain Reaction (PCR)	268	
	5.4.3 PCR Variants	273	
	5.4.4 Real Time Quantitative PCR	281	
	5.4.5 PCR-RFLP for Detection of Plant Virus Diseases	284	
	5.4.6 PCR Application for the Detection of Viruses		
	in the Vectors	285	
5.5	Recombinant DNA Technology		
	5.5.1 Production of Recombinant Antibodies		
	by Phage Display Technology	295	
	5.5.2 Single Chain Variable Fragment Antibody (scFv)	296	
	5.5.3 Plantibodies	297	
	5.5.4 Induction of Polyclonal Antibodies (PAbs)		
	by rDNA Based Immunization	299	
5.6	Array Technologies	299	
	5.6.1 Macroarray	300	
	5.6.2 Microarray	300	
5.7	Rolling Circle Amplification (RCA) in Plant		
	Virus Diagnosis	304	
5.8	Metagenomics in Plant Viral Diagnosis 3		
5.9	Biosensors		
5.10	DNA Barcodes Use as Genetic Markers for Identifying		
	Pathogens	309	
5.11	Conclusions	310	
Refer	ences	312	
Index		355	

Chapter 1 Introduction to Plant Virus and Viroid Diseases in the Tropics

1.1 Introduction

There are more than 840 million under-nourished people worldwide who would benefit from substantial food production increases in the Tropics. Protecting the crops from pests and diseases would significantly reduce food deficits (FAO 2003). There are numerous ways by which agricultural productivity may be increased in a sustainable way, but farmers usually lack technical assistance other than that provided by agro-chemical companies. Unfortunately, fungal and bacterial diseases, and most arthropod pests can be chemically controlled, but plant viruses cannot, although some of their vectors can be chemically controlled. In this book the major virus and virus-like diseases of tropical plants are described in relation to their socio-economic importance, and the disease management practices shown to control crop yield losses caused by these pathogens.

Table 1.1 lists 169 countries that have part of their land mass between the Tropics of Cancer and Capricorn. Countries which are in brackets have less than half of their land in the tropics, while the rest, i.e., (Algeria), (Australia), (Bahamas), (Bangladesh), (Chile), (China), (Egypt), (Lybia), (Paraguay), (Saudi Arabia), (Taiwan), (United Arab Emirates), and (Western Sahara) have < 50% land area in the tropics (Table 1.1).

1.2 Tropics and Climate

Despite the position of the tropics with respect to the sun, some tropical regions can experience marked differences in temperature, particularly diurnal and nocturnal, during certain months of the year, both in the lowlands and highlands. These climate variations are usually related to the occurrence of 'dry' and 'rainy' seasons. These dry and wet seasons may present a uni-modal or bi-modal distribution during the year. Dry seasons are often associated with low diurnal or nocturnal temperatures, depending on their proximity to the equator and altitude.

Table 1.1 L	ist of Tropical (Countries					
North	Central	South	Caribbean	Central Africa	East Africa	West Africa	South
America	America	America					East Asia
Mexico	Belize	Bolivia	Anguilla	Angola	Burundi	Benin	Brunei
	Costa Rica	Brazil	Antigua and Barbuda	Cameroon	Comoros	Burkina Faso	Burma
	El Salvador	Colombia	Aruba	Central African	Djibouti	Côte d'Ivoire	(Myanmar)
	Guatemala	Ecuador	Bahamas	Republic	Eritrea	(Ivory Coast)	Cambodia
	Honduras	French	Barbados	Chad	Ethiopia	The Gambia	East Timor
	Nicaragua	Guiana	British Virgin Islands	Congo	Kenya	Ghana	Indonesia
	Panama	Guyana	Cayman Islands	Democratic	Madagascar	Guinea	India
		Paraguay	Cuba	Republic of Congo	Malawi	Guinea-Bissau	Laos
		Peru	Dominica	(Zaire)	Mauritius	Liberia	Malaysia
		Suriname	Dominican Republic	Equatorial Guinea	Mayotte	Mali	Maldives
		Venezuela	Grenada	Gabon	Mozambique	Mauritania	Philippines
			Guadeloupe	Sudan	Reunion	Niger	Singapore
			Haiti	Zambia	Rwanda	Nigeria	Sri Lanka
			Jamaica		Seychelles	Saint Helena	Thailand
			Martinique		Somalia	Sao tomé and	Vietnam
			Montserrat		Tanzania	Principe	
			Netherlands Antilles		Uganda	Senegal	
			Puerto Rico			Sierra Leone	
			Saint Barthelme			Togo	
			Saint Kits and Nevis				
			Saint Lucia				
			Saint Martin (France)				
			Saint Vincent and the				
			Grenadines				
			Trinidad and Tobago				
			Turks and Cacaos Islands				
			U.S. Virgin Islands				

These phenomena create a large number of different eco-systems and a diverse biodiversity of plant and animal life in the tropics, which has allowed some plant pathogens and pests from Temperate countries to adapt to tropical and sub-tropical environments. The sub-tropics include regions adjacent to the Tropics of Cancer and Capricorn, which may suffer a 'spill-over' invasion of tropical pathogens and pests, or which may act as an entry point for temperate pathogens and their vectors into the tropics.

An additional problem encountered in the tropics is the extreme and highly variable environmental conditions found, particularly the high temperature and high humidity conditions, which cause accelerated degradation of tropical soils, making them highly acidic (pH < 5), toxic (high aluminum content), and deficient in critical nutrients, such as phosphorus. In the humid tropics, the relative importance of acid soils is greatest in Latin America (81 %), but also significant in Africa (56 %) and Asia (38 %). In rainforests and mountain slopes, the rapid degradation of tropical soils is noticed when there is total crop failure or when mountain soils lose their protective vegetation. In some tropical regions, the dry season may last for six months on average, impeding the cultivation of plants, unless irrigation is available in some wet-and dry tropical regions. This season is also associated with a significant increase in the increase of arthropod pests, many of which can act as virus vectors. However, irrigation tends to aggravate salinity problems and also favours the population increase of insect vectors of plant viruses. On the contrary, the wet season may be so intense that flooding occurs and crops are totally lost.

Based on the quantity of rainfall, tropical zones are defined as (1) arid: less than 400mm rainfall/year; (2) semi-arid: 400mm to 599mm rainfall/year; (3) subhumid: 600mm to 1200mm rainfall/year; (4) humid: over 1200mm rainfall/year.

Besides the abiotic stresses, the dry weather, adequate humidity and temperature are quite favourable for insects like aphids, leafhoppers, whiteflies and thrips which are active vectors of some plant viruses and can cause severe direct damage to crops.

In West Africa, Atiri et al., (2000) have extensively studied some climatic factors in relation to the epidemiology of economically important virus diseases. Case studies of the *Maize streak mastre virus, Okra mosaic tymovirus* and *African cassava mosaic begomovirus* demonstrate that the most important factor that influences the incidence and spread of virus diseases is climate. In these cases, climate influences: (1) virus disease outbreaks; (2) the rate of development and activity of virus vectors and their migration; and (3) the phenology of crops, weeds and wild hosts that harbour plant viruses. Rainfall, temperature and wind are identified as key weather components in virus patho-systems involving maize (cereal), okra (vegetable) and cassava (root crop), and are therefore important factors determining the most suitable period in which to undertake crop protection measures. Loebenstein and Thottappilly (2003); Anderson and Morales (2005); Thresh (2006) and Sastry and Zitter (2013, II Volume) have also provided more details about virus and viroid disease situation, epidemiology and management aspects in tropical and sub-tropical countries.

1.3 Tropical Countries

The names of the tropical countries in Mesoamerica, Central America, South America, the Caribbean, Central Africa, East Africa, West Africa and South East Asia are listed Table 1.1 and in Fig. 1.1.

In the Western Hemisphere, tropical countries include part of Mexico; all of Central America; the Caribbean islands; and in South America; Colombia, Ecuador, Peru, Bolivia, Colombia, Venezuela, Guyana, Suriname, French Guiana, Brazil, northern Paraguay and the northern-most portions of Chile and Argentina.

In Africa, the only nations that cannot be called tropical countries are Morocco and Tunisia in the north and Lesotho and Swaziland in the south. All the rest lie either entirely, or at least partly, in the tropics. The Middle East has four tropical countries: Yemen, which is entirely in the tropics, and parts of Saudi Arabia, Oman, and United Arab Emirates. India, in southern Asia, lies mostly in the tropics, and all countries of Southeast Asia are tropical countries. Parts of Australia, Micronesia, the Marshall Islands, Kiribati, and most of the other island nations of Oceania in the South Pacific are tropical countries, as well.

The strongest link in explaining the wealth and poverty of nations is the relationship between ecological zones and per capita income, according to National Bureau of Economic Research (NBER). Yet, most recent cross-country analyses of economic growth have neglected the importance of physical geography.

Despite their varied economic, political, and social histories, almost all of the tropical countries remain underdeveloped at the start of the twenty-first century. Only two tropical-zone countries, Hong Kong and Singapore, rank among the 30 countries classified as high-income by the World Bank. All of the high-income regions (North America, Western Europe, Northeast Asia, the Southern Cone of

Fig. 1.1 World map with the tropical zone

Latin America, and Oceania) are outside of the tropics. Sea navigable regions are generally richer than land-locked nations. Those that are both tropical and land-locked-including Bolivia, Chad, Niger, Mali, Burkina Faso, Uganda, Rwanda, Burundi, Central African Republic, Zimbabwe, Zambia, Lesotho and Laos are among the very poorest in the world (Sachs 1999).

At the core of this long-term growth was the continued development of technology, a process that has benefitted the temperate-zone countries much more than the tropics. Production technology in the tropics has lagged behind temperate-zone technology in the two critical areas of agriculture and health. The difficulty of mobilizing energy resources in tropical economies has also contributed to widening the income gap between climate zones. The problems of applying temperatezone technological advances to the tropical setting have amplified these factors. Agricultural, health, and some manufacturing-related technologies that could diffuse within ecological zones could not diffuse across them.

In the Temperate-zone the productivity of the major crops like rice, maize and wheat is considerably higher than in the tropics. Sachs (1995) estimated that the productivity per hectare of grain produced was approximately 50 % higher in temperate-zone countries. The explanation lies in soil formation and erosion, pests, water availability, environmental, technological and economic factors. Poor nutrition, resulting from low agricultural productivity, then leads to poor health. Sachs argues that economic development in tropical eco-zones requires a concerted international effort: agricultural technologies must be specific to the needs of tropical agriculture (Sachs 1999). For instance, between 1961 and 1991 the socalled 'Green Revolution', exponentially increased the yield of maize, wheat and rice in developing countries, demonstrating that it is possible to increase food production in the tropics with technological know-how. Unfortunately, the intensive agricultural practices implemented in the past century, were not always environmentally friendly. Nevertheless, it is possible to increase food production in the tropics in a sustainable manner. Food production also varies in the tropics. For instance, in Africa, the annual increase (1.3%) in yield per hectare of maize, wheat and rice is less than a one third of that achieved (4.5%) in Asia (Persley 2002).

1.4 Tropical Crops

The tropics are either the center of origin or of domestication of many of the most important food crops currently cultivated in the world: maize, rice, potato, sweet potato, cassava, cocoa, sorghum, millet, tomato, peppers, many cucurbits, peanut, rubber, tobacco, cotton, lima bean, common beans, oil palm, coconut, sugarcane, coffee, cocoa, and many fruit crops, such as banana, pineapple, mango, sweet pepino, passion fruit, guava, avocado and papaya. However, a myriad of other food crops were also domesticated and consumed by the early civilizations that developed in the tropics, particularly in Latin America.

1.5 Plant Virus Diseases in the Tropics

Plant viruses greatly affect food production in the tropics. Virus genera such as the *Begomovirus*, *Potyvirus*, *Tospovirus*, and *Cucumovirus* affect crops that feed the greatest number of people in tropical countries, often causing 100% yield losses and widespread famine, as is the case with several *Begomoviruses* transmitted by whiteflies in Africa, Asia and Latin America and the Caribbean. The third chapter of this book will cover the extent of yield losses in different crops grown in the tropics.

Central/East Africa	North/Central/South America	South East Asia
African cassava mosaic virus	Abutilon infectious variegation	Alfalfa mosaic virus
African cereal streak virus	virus	Banana bract mosaic virus
Alfalfa mosaic virus	Andean potato latent virus	Banana bunchy top virus
Banana bunchy top virus	Arracacha virus A	Banana streak Mysore virus
Banana dieback virus	Banana streak virus	Banana streak OL virus
Banana streak virus	Barley yellow dwarf virus	Barley stripe mosaic virus
Barley stripe mosaic virus	Bean calico mosaic virus	Barley yellow dwarf virus
Barley yellow dwarf virus	Bean common mosaic necrosis	Bean common mosaic virus
Bean calico mosaic virus	virus	Bhendi yellow vein mosaic virus
Bean common mosaic virus	Bean dwarf mosaic virus	Bittergourd yellow mosaic virus
Bean yellow dwarf virus	Bean golden mosaic virus	Cacao swollen shoot virus
Brome mosaic virus	Bean golden yellow mosaic virus	Capsicum chlorosis virus
Cassava brown streak virus	Bean leaf crumple virus	Cassava Colombian symptomless
Cassava common mosaic virus	Bean rugose mosaic virus	virus
Cassava Ivorian bacilliform virus	Bean yellow stipple virus	Cassava common mosaic virus
Cassava kumi virus	Bidens mosaic virus	Cassava green mottle virus
Cassava 'Q' virus	Cacao swollen shoot virus	Chick pea chlorotic dwarf virus
Cereal chlorotic mottle virus	Cassava American latent virus	Chilli leafcurl virus
Chick pea chlorotic dwarf virus	Cassava Caribbean mosaic virus	Chrysanthemum stem necrosis
Citrus tristeza virus	Cassava Colombian symptomless	virus
Cocoa swollen shoot virus	virus	Citrus infectious variegation virus
Cotton leafcurl virus	Cassava common mosaic virus	Citrus mosaic virus
Cotton leaf mottle virus	Cassava frogskin virus	Citrus psorosis virus
Cowpea aphid borne mosaic virus	Cassava Ivorian bacilliform virus	Citrus tristeza virus
Cowpea golden mosaic virus	Cassava latent rhabdo virus	Cotton leaf crumple virus
Cowpea mild mottle virus	Cassava vein mosaic virus	Cotton leafcurl virus
Cucumber mosaic virus	Cassava virus X	Cowpea golden mosaic virus
East African cassava mosaic virus	Chinodel tomato virus	Cowpea mild mottle virus
Groundnut ringspot virus	Chrysanthemum stem necrosis	Cucumber chlorotic spot virus
Groundnut rosette virus	virus	Cucumber green mottle mosaic
Impatiens necrotic spot virus	Citrus tristeza virus	virus
Iris yellow spot virus	Clitoria falcate mosaic virus	Cucumber mosaic virus
Limabean golden mosaic virus	Corn lethal necrosis virus	Dolichos yellow mosaic virus
Macroptilium yellow mosaic virus	Cotton antho cyanosis virus	Eastern wheat striate virus
Maize dwarf mosaic virus	Cotton leafcrumple virus	Groundnut eye spot virus
Maize line virus	Cowpea aphid borne mosaic virus	Groundnut ringspot virus
Maize mottle/chlorotic stunt virus	Cowpea mild mottle virus	Hibiscus chlorotic ring spot virus
Maize mottle virus	Cowpea mosaic virus	Horsegram yellow mosaic virus
Maize pellucid ringspot virus	Cowpea severe mosaic virus	Impatiens necrotic spot virus
Maize rayado virus	Cucumber mosaic virus	Indian cassava mosaic virus
Maize rough dwarf virus	Dasheen mosaic virus	Indonesian soybean dwarf virus

Table 1.2 Virus diseases of Tropical Countries

(continued)

Table 1.2 (continued)

Central/East Africa	North/Central/South America	South East Asia
Maize streak virus	Eggplant mosaic virus	Iris yellow spot virus
Maize stripe virus	Elephant grass mosaic virus	Kokke kondu carla virus
Moroccan Watermelon mosaic	Groundnut ringspot virus	Limabean golden mosaic virus
virus	Impatiens necrotic spot virus	Maize dwarf mosaic virus
Okra leafcurl virus	Iris yellow spot virus	Maize streak virus
Okra mosaic virus	Lettuce mosaic virus	Melon yellow spot virus
Papaya leafcurl virus	Lima bean golden mosaic virus	Mungbean yellow mosaic virus
Papaya mosaic virus	Macroptilium yellow mosaic virus	Mungbean yellow mosaic
Papaya ringspot virus	Maize chlorotic mottle virus	India virus
Pea leaf roll virus	Maize dwarf mosaic virus	Okra leafcurl virus
Peanut clump virus	Maize rayado finovirus	Pangola stunt virus
Peanut mottle virus	Maize streak virus	Papaya leafcurl virus
Peanut stunt virus	Maize stripe virus	Papaya ringspot virus
Peanut yellow mottle virus	Mal de Rio cuarto virus	Peanut bud necrosis virus
Pepper leafcurl virus	Melon chlorotic leafcurl virus	Peanut chlorotic streak virus
Pepper mildmottle virus	Melon chlorotic mosaic virus	Peanut green mosaic virus
Pepper veinal mottle virus	Melon severe mosaic virus	Peanut mottle virus
Potato leafroll virus	Merremia mosaic virus	Peanut stripe virus
Potato virus S	Mirafiori varicosavirus	Peanut yellow spot virus
Potato virus X	Pangola stunt virus	Physalis silver mottle virus
Potato virus Y	Papaya mosaic virus	Pigeonpea sterility mosaic virus
Rice stripe necrosis virus	Papaya ringspot virus	Plum pox virus
Rice yellow mottle virus	Peanut chlorotic fanspot virus	Potato apical leafcurl virus
Rhynchosia golden mosaic virus	Peanut mottle virus	Potato leafroll virus
Soil-borne wheat mosaic virus	Pepper golden mosaic virus	Potato virus S
Sorghum mosaic virus	Pepper Hausteco yellow vein virus	Potato virus X
South African cassava mosaic virus	Pepper mild tigre virus	Potato virus Y
Soybean golden yellow mosaic	Pepper yellow vein huasteco virus	Rice black streaked dwarf virus
virus	Plum pox virus	Rice chlorotic streak virus
Sugarcane bacilliform virus	Potato black ringspot virus	Rice grassy stunt virus
Sugarcane chlorotic streak virus	Potato leafroll virus	Rice mosaic virus
Sugarcane mosaic virus	Potato virus T	Rice ragged stunt virus
Sugarcane yellow leaf virus	Potato virus Y	Rice stripe virus
Sunflower yellow blotch virus	Potato yellow mosaic virus	Rice transitory yellowing virus
Sunflower yellow ringspot virus	Potato yellow vein virus	Rice tungro virus
Sweet potato chlorotic fleck virus	Rice hoja blanca virus	Sorghum mosaic virus
Sweet potato chlorotic stunt virus	Rice stripe necrosis virus	Soybean crinkle leaf virus
Sweet potato leaf curl virus	Rhynchosia golden mosaic virus	Soybean mosaic virus
Sweetpotato feathery mottle virus	Solanum apical leafcurling virus	Squash leafcurl china virus
Tobacco bushy top virus	Sorghum mosaic virus	Srilankan cassava mosaic virus
Tobacco leaf curl virus	Sowbane mosaic virus	Sugarcane bacilliform virus
Tobacco mosaic virus	Soybean golden mosaic virus	Sugarcane fiji disease virus
Tobacco ringspot virus'	Soybean mosaic virus	Sugarcane mosaic virus
Tobacco vein mottle virus	Soybean yellow shoot virus	Sugarcane streak mosaic virus
Tomato dwarf leafcurl virus	Squash leafcurl virus	Sugarcane yellow leaf virus
Tomato mosaic virus	Squash yellow mild mottle virus	Sweet potato feathery mottle virus
Tomato spotted wilt virus	Sugarcane bacilliform virus	Sweet potato leafcurl virus
Tomato vein-yellowing virus	Sugarcane mosaic virus	Tea phloem necrosis virus
Tomato yellow leafcurl virus	Sugarcane yellow leaf virus	Tobacco leafcurl virus
Turnip mosaic virus	Sunflower chlorotic mottle virus	Tobacco mosaic virus
Watermelon chlorotic stunt virus	Sweet potato chlorotic stunt virus	Tobacco streak virus
Wheat dwarf virus	Sweet potato feathery mottle virus	Tobacco vein banding mosaic virus
Wheat spindle streak mosaic virus	Tobacco leaf curl virus	Tomato leafcurl New Delhi virus

(continued)