Atmospheric and Oceanographic Sciences Library 46

Vladimir M. Krasnopolsky

The Application of Neural Networks in the Earth System Sciences

Neural Networks Emulations for Complex Multidimensional Mappings

The Application of Neural Networks in the Earth System Sciences

ATMOSPHERIC AND OCEANOGRAPHIC SCIENCES LIBRARY

VOLUME 46

Editors

Lawrence A. Mysak, Department of Atmospheric and Oceanographic Sciences, McGill University, Montreal, Canada

Editorial Advisory Board

Berger	Université Catholique, Louvain, Belgium
. Garratt (CSIRO, Aspendale, Victoria, Australia
Iansen I	MIT, Cambridge, MA, U.S.A.
Hantel	Universität Wien, Austria
Hsieh	University of British Columbia, Vancouver, Canada
Kelder J	KNMI (Royal Netherlands Meteorological Institute),
J	De Bilt, The Netherlands
. Krishnamurti	The Florida State University, Tallahassee, FL, U.S.A.
.emke /	Alfred Wegener Institute for Polar and Marine Research,
J	Bremerhaven, Germany
E. Swaters	University of Alberta, Edmonton, Canada
. Willmott	National Oceanography Centre, Liverpool, U.K.
. Wyngaard J	Pennsylvania State University, University Park, PA, U.S.A
Hsieh H Kelder I Krishnamurti emke I Swaters I Willmott I Wyngaard I	University of British Columbia, Vancouver, Canada KNMI (Royal Netherlands Meteorological Institute), De Bilt, The Netherlands The Florida State University, Tallahassee, FL, U.S.A. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany University of Alberta, Edmonton, Canada National Oceanography Centre, Liverpool, U.K. Pennsylvania State University, University Park, PA, U.S

For further volumes: http://www.springer.com/series/5669 Vladimir M. Krasnopolsky

The Application of Neural Networks in the Earth System Sciences

Neural Networks Emulations for Complex Multidimensional Mappings

Vladimir M. Krasnopolsky NOAA Center for Weather and Climate Prediction Camp Spring, MD, USA

ISSN 1383-8601 ISBN 978-94-007-6072-1 ISBN 978-94-007-6073-8 (eBook) DOI 10.1007/978-94-007-6073-8 Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2013941400

© Springer Science+Business Media Dordrecht (outside the USA) 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my daughter Katya and grandson Mark.

Preface

Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all.

- Norbert Wiener, The Human Use of Human Beings

Science is triumphant with far-ranging success, but its triumph is somehow clouded by growing difficulties in providing for the simple necessities of human life on earth.

- Barry Commoner, Science and Survival

This book introduces some applications of Computational Intelligence (CI) to problems of Earth System Science (ESS). In my opinion, the meeting of CI and ESSs is not a coincidence. There is an affinity between these two fields of science at a very deep level. Both of them use a systems approach; they see their object as a complex system of partly autonomous, evolving, and adaptive subsystems intensively interacting with each other and with their environment, which also changes due to the interaction between subsystems and due to changes of the subsystems. This deep affinity between the two fields makes the approaches and tools developed in CI well suited for solving many problems in ESSs; therefore, CI can provide adequate models for modeling subsystems of the Earth System.

Such a system vision of objects of the study stimulates an understanding of similarity of many ESS problems from the mathematical point of view. In this book, I show that many subsystems of Earth System (ES) can be considered as complex multidimensional nonlinear mappings. CI provides a number of tools to approximate, emulate, or model such mappings; the particular tool considered in this book is the neural network (NN) technique. This book demonstrates many successful applications of NNs in ESSs. However, in addition to the use of the NN technique, I also attempt to demonstrate the advantages of using in ESS the CI vision of a subsystem (mapping) not as a static mapping but as an adaptive, evolving mapping interacting with the environment and adapting to it. The tremendous flexibility of the NN technique provides means for modeling such evolving adaptive mappings that function in a changing environment.

My goal in this book is to be tutorial in nature rather than to give a complete description of ESS NN applications. Thus, I selected some particular interesting applications and concentrated on a clear presentation of the methodological basis of these applications. Because both the ESS and CI fields are relatively new, in addition to presenting the NN background in Chap. 2, the book presents basic ESS background for each application that is introduced. For example, in Chap. 3, I include a detailed introduction into forward and inverse problems in remote sensing before discussing NN applications to satellite remote sensing; Chap. 4, which is devoted to NN applications in numerical climate and weather prediction, includes a brief introduction into numerical climate and weather modeling. This feature makes the book self-descriptive. The book presents a review of the field with the purpose of bringing the reader up-to-date on the state of the art. It can also serve as a convenient source book for researchers, teachers, and students who work in related fields.

College Park, MD, USA

Vladimir M. Krasnopolsky

Acknowledgments

I would like to acknowledge the many people that have contributed to this book in different ways. I first became intrigued by NNs through discussions with Prof. S. Berkovich in 1989. Later, in 1992, my colleague and long-term collaborator, Dr. L.C. Breaker, suggested applying this technique to the problem of satellite retrievals. My long-term and fruitful collaboration with Drs. D. Chalikov, M. Fox-Rabinovitz, P. Rasch, and H. Tolman are gratefully acknowledged – they introduced me to fascinating world of climate, atmosphere, ocean, and wave physics and related numerical modeling. This, in turn, has led to many NN applications developed in collaboration with these researchers. I would also like to thank Dr. L.C. Breaker for his assistance in reading and commenting in the manuscript. My wife, Michelle Kray, edited and formatted the manuscript. I appreciate her help, patience, and support while I worked on the book. Finally, I am grateful for the continued support from the National Center for Environmental Prediction of National Weather Service at National Oceanic and Atmospheric Administration and of the Earth System Science Interdisciplinary Center at University of Maryland.

Contents

1	Intr	oductio	on	1
	1.1	System	ms, Subsystems, Organization, and Structure	3
	1.2	Evolu	tion of Approaches to Earth System	4
	1.3	Neura	I Networks in Earth System Sciences	5
	Refe	erences		8
2	Intr	oductio	on to Mapping and Neural Networks	13
	2.1	Mapp	ing Examples	14
		2.1.1	Prediction of Time Series	14
		2.1.2	Lookup Tables	14
		2.1.3	Satellite Remote Sensing	16
		2.1.4	Emulation of Subsystems of the Climate System	16
	2.2	Some	Generic Properties of Mappings	18
		2.2.1	Mapping Dimensionalities, Domain, and Range	18
		2.2.2	Mapping Complexity	19
		2.2.3	Mappings Corresponding to Ill-Posed Problems	21
		2.2.4	Stochastic Mappings	21
	2.3	MLP	NN: A Generic Tool for Modeling Nonlinear Mappings	22
		2.3.1	NNs in Terms of Approximation Theory	22
		2.3.2	NNs in Their Traditional Terms	24
		2.3.3	Training Set	25
		2.3.4	Selection of the NN Architecture	27
		2.3.5	Normalization of the NN Inputs and Outputs	28
		2.3.6	Constant Inputs and Outputs	30
		2.3.7	NN Training	30
	2.4	Adva	ntages and Limitations of the NN Technique	35
		2.4.1	Flexibility of the MLP NN	35
		2.4.2	NN Training, Nonlinear Optimization,	
			and Multi-collinearity of Inputs and Outputs	36
		2.4.3	NN Generalization: Interpolation and Extrapolation	37
		2.4.4	NN Jacobian	37

		2.4.5	Multiple NN Emulations for the Same Target	
			Mapping and NN Ensemble Approaches	39
		2.4.6	NN Ensemble as Emulation of Stochastic Mappings	40
		2.4.7	Estimates of NN Parameters' Uncertainty	41
		2.4.8	NNs Versus Physically Based Models: NN as a "Black Box"	41
	2.5	NN E	mulations	42
	2.6	Final	Remarks	43
	Refe	erences		43
3	Atn	iosphei	ric and Oceanic Remote Sensing Applications	47
	3.1	Deriv	ing Geophysical Parameters from Satellite	
		Measu	urements: Conventional Retrievals and Variational Retrievals	49
		3.1.1	Conventional P2P Retrievals	51
		3.1.2	Variational Retrievals Through the Direct	
			Assimilation of Satellite Measurements	55
	3.2	NNs f	For Emulating Forward Models	57
	3.3	NNs f	for Solving Inverse Problems: NNs Emulating	
		Retrie	eval Algorithms	58
	3.4	Contr	olling the NN Generalization and Quality Control of Retrievals	58
	3.5	Neura	I Network Emulations for SSM/I Data	60
		3.5.1	NN Emulations for the Empirical FM for the SSM/I	61
		3.5.2	NN Empirical SSM/I Retrieval Algorithms	63
		3.5.3	Controlling the NN Generalization for the SSM/I	67
	3.6	Using	NNs to Go Beyond the Standard Retrieval Paradigm	69
		3.6.1	Point-Wise Retrievals	69
		3.6.2	Problems with Point-Wise Retrievals	70
		3.6.3	Field-Wise Retrieval Paradigms	73
	3.7	Discu	ssion	76
	Refe	erences		77
4	Арр	olicatio	ns of NNs to Developing Hybrid Earth System	
	Nun	nerical	Models for Climate and Weather	81
	4.1	Nume	erical Modeling Background	83
		4.1.1	Climate- and Weather-Related Numerical Models	
			and Prediction Systems	84
		4.1.2	Representation of Physics in Global and Regional	
			Models: Parameterizations of Physics	87
		4.1.3	An Example: Parameterization of Long-Wave	
			Radiation Physics	88
		4.1.4	Methods Currently Used to Reduce Computational Burden	89
	4.2	Hybri	d Model Component and a Hybrid Model	89
		4.2.1	Hybrid Parameterizations of Physics	90
		4.2.2	Hybrid Numerical Models	92
	4.3	Atmo	spheric NN Applications	99
		4.3.1	NN Emulation of Model Physics Components	100
		4.3.2	Generating the Training Set	102

Contents

		4.3.3	NN Emulations for the Model Radiation	103
		4.3.4	Validation of NN Emulations in Parallel Decadal	
			Climate Simulations and Weather Forecasts	110
		4.3.5	Compound Parameterization for NCAR CAM	
			Short-Wave Radiation	119
		4.3.6	NN-Based Convection Parameterization for	
			NCAR CAM Derived from CRM-Simulated Data	123
	4.4	An Oo	cean Application of the Hybrid Model Approach:	
		Neura	l Network Emulation of Nonlinear Interactions	
		in Wir	nd Wave Models	132
		4.4.1	NN Emulation for <i>S</i> _{nl}	134
		4.4.2	Validation of NNIAE in the Model and Compound	
			Parameterization for S _{nl}	136
	4.5	Discu	ssion	139
		4.5.1	Summary and Advantages of the Hybrid Modeling Approach	139
		4.5.2	Limitations of the Current Hybrid Modeling	
			Framework and Possible Solutions	140
	Refe	rences		141
5	NINU	Encom	bles and Their Applications	145
3	5 1	Llaina	NN Emulations of Dependencies Potwarn Model	143
	5.1	Variah	NN Emulations of Dependencies Between Woder	146
			SSH Mapping and Ita NN Emulation	140
		5.1.1	NN Ensembles for Improving NN Observation	14/
		5.1.2	Operator Accuracies and Reducing NN Jacobian	
			Uncertainties	140
		512	Discussion	149
	5.2	J.1.3	Discussion model Engembles	150
	5.2	1 N I N 1 N	Calculation of the Ensemble Average	157
		5.2.1	Calculation of the Elisemble Average	150
		5.2.2	Disquesion	104
	5 2	J.2.J	black Discussion and Engembles with Desturbed Discussion	167
	5.5	Fertur	Encomble Approaches in NWD and Climate Simulations	109
		5.2.1	Ensemble Approaches III N w P and Chinate Simulations	170
		5.5.2	Comparisons of Different Encombles	1/4
		5.5.5	Comparisons of Different Ensembles	175
		524	With Perturbed NCAR CAM LWR	1/5
	Defe	5.5.4	Discussion	1/8
	Refe	rences	•••••••••••••••••••••••••••••••••••••••	179
6	Con	clusion	IS	181
	6.1	Comm	nents About NN Technique	182
	6.2	Comn	nents About Other Statistical Learning Techniques	184
	Refe	rences		185
-				10-
In	dex			187

Abbreviations

AC		Anomaly correlation
BT		Brightness temperatures
CAM		Community atmosphere model (NCAR)
CAMR	Т	CAM radiation package
CFS		Climate Forecast System (NCEP NOAA)
CGCM		Coupled general circulation (or climate) model
CI		Computational Intelligence
CLD		Cloudiness
CMC		Canadian Meteorological Center
CMCG	LB	Global Model from CMC
ConUS		Continental US
CP		Compound parameterization
CPC		Climate Prediction Center (NOAA)
CRM		Cloud-resolving model
CSRM		Cloud-system-resolving model
CTL		Control
DA		Dynamical adjustment
DAS		Data assimilation systems
DIA		Discrete interaction approximation
DJF		December-January-February
DWD		Deutscher Wetterdienst
ECMW	ΥF	European Centre for Medium-Range Weather Forecasts
ENM		Environmental numerical model
ENSO		El Niño-Southern Oscillation
EOF		Empirical orthogonal function
EPS		Ensemble prediction systems
ERS-2		European Remote Sensing scatterometer
ES		Earth System
ESS		Earth System Sciences
ETS		Equitable Threat Score
FM		Forward model

Field-to-field
Field-to-point
General circulation (or climate) model
Global cloud-resolving model

GCRM	Global cloud-resolving model
GFS	Global Forecast System (NCEP NOAA)
GS	Goodberlet and Swift
GSW	Goodberlet, Swift, and Wilkerson
GSWP	Goodberlet, Swift, Wilkerson, and Petty
HEM	Hybrid environmental model
HGCM	Hybrid general circulation (or climate) model
HP	Hybrid parameterization
HPC	Hydro-meteorological Prediction Center (NOAA)
HYCOM	Hybrid Coordinate Ocean Model
iNN	Inverse NN
JJA	June-July-August
JMA	Japan Meteorological Agency
LW	Long wave
LWR	Long-wave radiation
MLP	Multilayer perceptron
MME	Multi-model ensemble
MMF	Multiscale modeling framework
NAM	North American Mesoscale Forecast System (NCEP NOAA)
NASA	National Aeronautics and Space Administration
NCAR	National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NN	Neural network
NNEM	NN ensemble mean
NNIA	Neural network interaction approximation
NNIAE	Neural network interaction approximation that uses the EOF basis
NOAA	National Oceanic and Atmospheric Administration
NSIPP	Natural Seasonal-to-Interannual Predictability Program
1.0111	(NASA)
NWP	Numerical weather prediction
OLR	Outgoing Longwave Radiation
PB	Physically based
PDE	Partial differential equations
PICE	Perturbed initial condition ensemble
РК	Petty and Katsaros
PPE	Perturbed physics ensemble
PRMSE	Profile RMSE
PSL	Pressure at the surface level
P2P	Point-to-point
QC	Quality control
RMSE	Root mean square error

F2F F2P GCM

Rapid radiative transfer model
Remote sensing
Standard deviation
Statistical learning technique
Sea surface height
Special Sensor Microwave Imager
Sea surface temperature
Short-term perturbed physics ensemble
Short-wave radiation
Transfer function
Tropical Ocean Global Atmosphere Coupled Ocean- atmosphere Response Experiment
United Kingdom Meteorological Office
NCEP wind wave model (NCEP NOAA)
Weighted ensemble mean

Chapter 1 Introduction

Life was simple before World War II. After that, we had systems. – Grace Murray Hopper

There are no separate systems. The world is continuum. Where to draw a boundary around a system depends on the purpose of the discussion.

- Donella H. Meadows, Thinking in Systems: A Primer

Abstract In this chapter, a notion of Earth System (ES) as a complex dynamical system of interacting components (subsystems) is presented and discussed. Weather and climate systems are introduced as subsystems of the ES. It is shown that any subsystem of ES can be considered as a multidimensional relationship or mapping, which is usually complex and nonlinear. Evolution of approaches to ES and its subsystems is discussed, and the neural network (NN) technique as a powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple NN applications, which have been developed in ES sciences, are categorized and briefly reviewed. The chapter contains an extensive list of references giving extended background and further detail to the interested reader on each examined topic.

We consider our planet as a complex, dynamical system of interacting components (subsystems), which is often simply referred to as the ES. ES contains the main components of planet Earth – the atmosphere, oceans, freshwater, soils, lithosphere, biosphere, and cryosphere (Lawton 2001) as its subsystems. To understand the major ES patterns and processes in their dynamics, we need to study not only the processes that go on within each component or subsystem of ES (traditionally the realms of atmospheric physics, oceanography, hydrology, geology, and ecology, to name some) but also the *interactions, relationships*, and *feedbacks between* them. The Earth, in fact, is only habitable because of these complex linkages and feedbacks between the atmosphere, oceans, land, biosphere, and cryosphere.

The interactions between subsystems condition, change, and manage many processes inside subsystems. It is the need to study the evolution of ES and understand these inter-component interactions, relationships, and the changes they cause in subsystem processes that defines ESS as a discipline in its own right. We still do not understand all of these feedbacks and cannot, as yet, build a model that reproduces all of the changes in ES, but these problems now hold center stage in ESS.

A large variety of highly nonlinear processes with tremendously wide spectrum of spatial and temporal scales contributes to ES, which adds to its extreme complexity. The temporal scales range from hundreds of millions of years (paleoclimatic phenomena) to several minutes (microscale weather events), and the spatial scales range from thousands of kilometers (global phenomena) to several millimeters (size of water droplets in the clouds).

Considering subsystems of ES formally, we can say that each subsystem in ES receives information (input) from other subsystems. This information comes as a set or a vector of input signals or parameters, which inform the subsystem about the status of the system as a whole and about the states of the related subsystems. Air and ocean water temperature and pressure, concentration of CO_2 , radiation, and heat fluxes are just several examples of such parameters. The subsystem, in turn, communicates with the system and other subsystems, transmitting information to them concerning its state as a part of ES. This output information is transmitted as a set or vector of output parameters or signals. Thus, formally speaking, any subsystem of ES can be considered as a relationship, usually complex and nonlinear, between two vectors: a vector of input and a vector of output parameters. Such a relationship is called *mapping*.

Various mathematical methods are applied to describe, model, and emulate mappings that represent the subsystems of ES. Deterministic and statistical approaches are both employed. The deterministic approach is based on a more or less complete understanding of *first principles* or basic processes in the subsystem. This understanding is usually codified into a set of partial differential equations (PDE). Statistical approaches are based on working with data and extracting information directly from the data. They are also called statistical learning (a.k.a. machine learning, learning from data, predictive learning, data-driven) techniques because, in a sense, they learn relationships or mappings directly from the data. Such approaches are used when the understanding of processes in the subsystems is poor or incomplete or when deterministic approaches become too resource intensive (e.g., numerical solutions of PDE).

This book introduces a particular nonlinear CI or statistical learning technique (SLT), namely, the NN approach, and demonstrates how to apply it for modeling or emulation of important subsystems of ES. In this chapter in Sect. 1.1, a notion of ES as a complex dynamical system of interacting components (subsystems) is presented; the role of organization and structure of a system is discussed. Weather and climate systems are introduced as subsystems of the ES. It is shown that any subsystem of ES can be considered as a multidimensional relationship or mapping, which is usually complex and nonlinear. In Sect. 1.2, evolution of approaches to ES and its subsystems is discussed, and in Sect. 1.3 the neural network (NN) technique

as a powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple NN applications, which have been developed in ES sciences, are categorized and briefly reviewed, and the structure of the book is outlined.

1.1 Systems, Subsystems, Organization, and Structure

Formally, a system can be defined as a set of *elements* or *parts* that is *coherently organized* and interconnected in a *pattern* or *structure* that produces a characteristic set of behaviors, often classified as its *function* or "purpose" (Meadows 2008). Thus, any system is composed of components or parts. In aggregations parts are added; in systems components or parts are arranged or organized; hence, each system has a well-defined structure. Systems are significant because of organization-positional values, because of their structure. If a system is properly structured or organized, then it is more than the total sum of its parts and the whole system may demonstrate behavior (quality) that cannot be predicted by the behavior of its parts. In such cases we are talking about a *synergy* of the parts in the system.

In ES and in many other systems, the constituent parts of the system are systems by themselves. For example, a complex climate and weather system (see Fig. 1.1) is a constituent of ES. The atmospheric constituent of the climate system is a complex

Fig. 1.1 Interdisciplinary complex climate and weather systems. Only several major interactions (feedbacks) between major subsystems are shown with *arrows*