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Preface

Scientific discovery consists in the interpretation for our own convenience of a system of
existence which has been made with no eye to our convenience at all.

– Norbert Wiener, The Human Use of Human Beings

Science is triumphant with far-ranging success, but its triumph is somehow clouded by
growing difficulties in providing for the simple necessities of human life on earth.

– Barry Commoner, Science and Survival

This book introduces some applications of Computational Intelligence (CI) to
problems of Earth System Science (ESS). In my opinion, the meeting of CI and
ESSs is not a coincidence. There is an affinity between these two fields of science
at a very deep level. Both of them use a systems approach; they see their object
as a complex system of partly autonomous, evolving, and adaptive subsystems
intensively interacting with each other and with their environment, which also
changes due to the interaction between subsystems and due to changes of the
subsystems. This deep affinity between the two fields makes the approaches and
tools developed in CI well suited for solving many problems in ESSs; therefore, CI
can provide adequate models for modeling subsystems of the Earth System.

Such a system vision of objects of the study stimulates an understanding of
similarity of many ESS problems from the mathematical point of view. In this
book, I show that many subsystems of Earth System (ES) can be considered as
complex multidimensional nonlinear mappings. CI provides a number of tools to
approximate, emulate, or model such mappings; the particular tool considered in
this book is the neural network (NN) technique. This book demonstrates many
successful applications of NNs in ESSs. However, in addition to the use of the
NN technique, I also attempt to demonstrate the advantages of using in ESS the CI
vision of a subsystem (mapping) not as a static mapping but as an adaptive, evolving
mapping interacting with the environment and adapting to it. The tremendous
flexibility of the NN technique provides means for modeling such evolving adaptive
mappings that function in a changing environment.
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viii Preface

My goal in this book is to be tutorial in nature rather than to give a complete
description of ESS NN applications. Thus, I selected some particular interesting
applications and concentrated on a clear presentation of the methodological basis
of these applications. Because both the ESS and CI fields are relatively new, in
addition to presenting the NN background in Chap. 2, the book presents basic
ESS background for each application that is introduced. For example, in Chap. 3,
I include a detailed introduction into forward and inverse problems in remote
sensing before discussing NN applications to satellite remote sensing; Chap. 4,
which is devoted to NN applications in numerical climate and weather prediction,
includes a brief introduction into numerical climate and weather modeling. This
feature makes the book self-descriptive. The book presents a review of the field
with the purpose of bringing the reader up-to-date on the state of the art. It can also
serve as a convenient source book for researchers, teachers, and students who work
in related fields.

College Park, MD, USA Vladimir M. Krasnopolsky
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Chapter 1
Introduction

Life was simple before World War II. After that, we had systems.
– Grace Murray Hopper

There are no separate systems. The world is continuum. Where
to draw a boundary around a system depends on the purpose of
the discussion.

– Donella H. Meadows, Thinking in Systems: A Primer

Abstract In this chapter, a notion of Earth System (ES) as a complex dynamical
system of interacting components (subsystems) is presented and discussed. Weather
and climate systems are introduced as subsystems of the ES. It is shown that
any subsystem of ES can be considered as a multidimensional relationship or
mapping, which is usually complex and nonlinear. Evolution of approaches to
ES and its subsystems is discussed, and the neural network (NN) technique as a
powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple NN
applications, which have been developed in ES sciences, are categorized and briefly
reviewed. The chapter contains an extensive list of references giving extended
background and further detail to the interested reader on each examined topic.

We consider our planet as a complex, dynamical system of interacting components
(subsystems), which is often simply referred to as the ES. ES contains the main
components of planet Earth – the atmosphere, oceans, freshwater, soils, lithosphere,
biosphere, and cryosphere (Lawton 2001) as its subsystems. To understand the
major ES patterns and processes in their dynamics, we need to study not only the
processes that go on within each component or subsystem of ES (traditionally the
realms of atmospheric physics, oceanography, hydrology, geology, and ecology,
to name some) but also the interactions, relationships, and feedbacks between
them. The Earth, in fact, is only habitable because of these complex linkages and
feedbacks between the atmosphere, oceans, land, biosphere, and cryosphere.

V.M. Krasnopolsky, The Application of Neural Networks in the Earth System Sciences,
Atmospheric and Oceanographic Sciences Library 46, DOI 10.1007/978-94-007-6073-8 1,
© Springer ScienceCBusiness Media Dordrecht (outside the USA) 2013
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2 1 Introduction

The interactions between subsystems condition, change, and manage many pro-
cesses inside subsystems. It is the need to study the evolution of ES and understand
these inter-component interactions, relationships, and the changes they cause in
subsystem processes that defines ESS as a discipline in its own right. We still do not
understand all of these feedbacks and cannot, as yet, build a model that reproduces
all of the changes in ES, but these problems now hold center stage in ESS.

A large variety of highly nonlinear processes with tremendously wide spectrum
of spatial and temporal scales contributes to ES, which adds to its extreme complex-
ity. The temporal scales range from hundreds of millions of years (paleoclimatic
phenomena) to several minutes (microscale weather events), and the spatial scales
range from thousands of kilometers (global phenomena) to several millimeters (size
of water droplets in the clouds).

Considering subsystems of ES formally, we can say that each subsystem in ES
receives information (input) from other subsystems. This information comes as a
set or a vector of input signals or parameters, which inform the subsystem about
the status of the system as a whole and about the states of the related subsystems.
Air and ocean water temperature and pressure, concentration of CO2, radiation, and
heat fluxes are just several examples of such parameters. The subsystem, in turn,
communicates with the system and other subsystems, transmitting information to
them concerning its state as a part of ES. This output information is transmitted
as a set or vector of output parameters or signals. Thus, formally speaking, any
subsystem of ES can be considered as a relationship, usually complex and nonlinear,
between two vectors: a vector of input and a vector of output parameters. Such a
relationship is called mapping.

Various mathematical methods are applied to describe, model, and emulate
mappings that represent the subsystems of ES. Deterministic and statistical ap-
proaches are both employed. The deterministic approach is based on a more or less
complete understanding of first principles or basic processes in the subsystem. This
understanding is usually codified into a set of partial differential equations (PDE).
Statistical approaches are based on working with data and extracting information
directly from the data. They are also called statistical learning (a.k.a. machine
learning, learning from data, predictive learning, data-driven) techniques because,
in a sense, they learn relationships or mappings directly from the data. Such
approaches are used when the understanding of processes in the subsystems is poor
or incomplete or when deterministic approaches become too resource intensive (e.g.,
numerical solutions of PDE).

This book introduces a particular nonlinear CI or statistical learning technique
(SLT), namely, the NN approach, and demonstrates how to apply it for modeling
or emulation of important subsystems of ES. In this chapter in Sect. 1.1, a notion
of ES as a complex dynamical system of interacting components (subsystems) is
presented; the role of organization and structure of a system is discussed. Weather
and climate systems are introduced as subsystems of the ES. It is shown that any
subsystem of ES can be considered as a multidimensional relationship or mapping,
which is usually complex and nonlinear. In Sect. 1.2, evolution of approaches to ES
and its subsystems is discussed, and in Sect. 1.3 the neural network (NN) technique



1.1 Systems, Subsystems, Organization, and Structure 3

as a powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple
NN applications, which have been developed in ES sciences, are categorized and
briefly reviewed, and the structure of the book is outlined.

1.1 Systems, Subsystems, Organization, and Structure

Formally, a system can be defined as a set of elements or parts that is coherently
organized and interconnected in a pattern or structure that produces a characteristic
set of behaviors, often classified as its function or “purpose” (Meadows 2008). Thus,
any system is composed of components or parts. In aggregations parts are added; in
systems components or parts are arranged or organized; hence, each system has a
well-defined structure. Systems are significant because of organization-positional
values, because of their structure. If a system is properly structured or organized,
then it is more than the total sum of its parts and the whole system may demonstrate
behavior (quality) that cannot be predicted by the behavior of its parts. In such cases
we are talking about a synergy of the parts in the system.

In ES and in many other systems, the constituent parts of the system are systems
by themselves. For example, a complex climate and weather system (see Fig. 1.1) is
a constituent of ES. The atmospheric constituent of the climate system is a complex
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Fig. 1.1 Interdisciplinary complex climate and weather systems. Only several major interactions
(feedbacks) between major subsystems are shown with arrows


