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Preface

The mechanics of deformable solids brings its contribution both to the knowledge
of the phenomena of the surrounding physical reality, from a theoretical point of
view, and to the determination of the state of strain and stress in various elements
of construction, from practical considerations. The deformable solids have a
particularly complex character; a mathematical modelling of them is not simple
and often leads to inextricable difficulties of computation. One of the most simple
mathematical models and, at the same time, the most used one, is the model of the
elastic body—especially the linear elastic model; despite its simplicity, even this
model of real body may lead to great difficulties of calculation.

In general, the engineering constructions have been based, during the centuries,
on empirical methods; beginning with the seventeenth century, one has obtained a
lot of results, which form what now is called ‘‘Strength of Materials’’, where
simplifying supplementary hypotheses have been introduced. As a matter of fact,
this denomination is not a proper one, because it corresponds only to a mechanical
phenomenon modelled by the so-called ‘‘strength theory’’; we maintained this
denomination, being still currently used. The theory of elasticity, chapter of the
mechanics of deformable solids with a theoretical character, succeeds to express
better the physical phenomenon, giving results closer to the reality, in certain
limits; it became a science only at the middle of ninth century, being in continuous
development even today.

The practical importance of a book on the theory of elasticity, which is—at the
same time—an introduction to the mechanics of deformable solids, consists in
putting in evidence points of view and scientific methods of computation in a
domain in which simplified methods or with a non-accurate limit of validity are
still used. The actual technical progress and the necessity to use a minimum of
materials in various constructions ask for a better determination of the state of
strain and stress which takes place in a civil or mechanical construction; the
engineering design may be thus improved.

The first eight chapters deal with the construction of the mathematical model of
a deformable solid, giving special attention to the linear elastic bodies; the for-
mulation of the fundamental problems is followed by their solution in
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displacements end stresses. The importance of the concentrated loads is put into
evidence, as well in the case of Cosserat-type bodies. Another group of four
chapters contains static and dynamic spatial problems, treated systematically by
the same method of potential functions.

The following two chapters deal with some special problems: particular cases,
treated in the same systematical manner and the case of anisotropic and non-
homogeneous bodies.

The last two chapters contain introductions to thermoelasticity and linear vis-
coelasticity. Special accent is put on the solving methodology as well as on the
mathematical tool used: vectors, tensors and notions of the field theory. Contin-
uous and discontinuous phenomena and various mechanical quantities are pre-
sented in unitary form by means of the theory of distributions. Some appendices
give the book an autonomy with respect to other works, a special mathematical
knowledge being not necessary.

Concerning the first six chapters, I must mention the kind co-operation of
Professor Vasile Ille, Technical University of Cluj-Napoca, who unfortunately has
passed away. I am grateful to Mariana Gheorghit�ă for her valuable help in the
presentation of this book. The excellent cooperation of the team of Springer,
Dordrecht, is gratefully acknowledged.

The book covers a wide number of problems (classical or new ones) as one can
see from its contents. It used the known literature, as well as the original results of
the author and his more than 50 years’ experience as Professor of Mechanics and
Elasticity at the University of Bucharest. It is addressed to a large circle of readers:
mathematicians (especially those involved in applied mathematics), physicists
(particularly those interested in mechanics and its connections), engineers of
various specialities (civil, mechanical engineers, etc., who are scientific
researchers or designers), students in various domains etc.

Bucharest, Romania, January 2013 P. P. Teodorescu
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Chapter 1
Introduction

The mathematical model of mechanics of deformable bodies is shortly presented
in this chapter; stress is put on the notion of mechanical system. Using these
introductory notions, one can pass to a mathematical study of these mechanical
systems.

1.1 Aim of Mechanics of Deformable Solids

The scope of mechanics of deformable solids is to determine the state of strain and
stress of a solid body subjected to the action of external loads in static or dynamic
equilibrium.

In what follows we make some general considerations and put in evidence the
basic computational hypotheses, which specify the mathematical model of the
considered solids.

1.1.1 General Considerations

To specify the position of mechanics of deformable solids with respect to various
technical disciplines, especially strength of materials, one must discuss its math-
ematical model. To do this, it is necessary to put in evidence the state of strain and
stress of a solid body.
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1.1.1.1 State of Strain and Stress

Under the action of external loads (either concentrated or distributed forces,
concentrated or distributed moments, other concentrated loads (applied on the
external surface of the body or within it), volume forces or moments, inertial
forces, loads due to a thermal field, loads due to an electromagnetic field, loads due
to radioactive radiations, deformations induced by various means, imposed
displacements etc.), the particles (infinitesimal elements) constituting a solid body
change (eventually in time) the positions (with respect to a fixed frame of refer-
ence) they had before the action of these forces. If, by a translation and a rotation,
we can impose on the particles of the body undergoing the action of the external
forces to regain the positions they had before the application of these loads, then
we have to deal with a rigid body motion. Otherwise, the body is subjected to a
deformation. The totality of the deformations (which we shall define later)
undergone by a particle of the body constitutes the state of deformation at a point
(the centre of mass of the particle). The totality of the states of deformation
corresponding to all the points of the solid body constitutes the state of defor-
mation of the body.

At the same time, the notion of displacement may be emphasized. The totality
of the displacements corresponding to a point of the solid body constitutes the state
of displacement at a point. The totality of the states of displacement corresponding
to all the points of the solid body constitutes the state of displacement of the body.
Often, by the state of deformation of the body its state of displacement is equally
intended, the final scope being to determine the components of the displacement
vector. In general, we use the notion of state of deformation (state of strain).

The bodies undergoing only rigid body displacements are called rigid solids;
the other solid bodies are called deformable solids.

Owing to the deformations, the balance (static or dynamic) of the forces linking
the various particles of the body is broken and additional internal forces arise; the
totality of these internal forces (called efforts, if one deals with an arbitrary section
in the body, or stresses, in case of efforts which act upon a unit area), corre-
sponding to a particle, constitutes the state of stress at a point (the centre of mass
of the above considered particle). The totality of the states of stress corresponding
to all the points (particles) of the solid body constitutes the state of stress of the
body.

The state of deformation (or the state of displacement) and the state of stress of
a body form the state of strain and stress of it.

1.1.1.2 Mechanics of Deformable Solids and Strength of Materials

The purpose of mechanics of deformable solids is to determine the state of strain
and stress of a solid body subjected to the action of external loads that are in static
or dynamic equilibrium. One has to deal with a theoretical discipline, the results of
which are of great importance for many technical disciplines.
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In general, the strength of materials deals with the same problems as the
mechanics of deformable solids. But this discipline involves a technical solving
method that for each problem or group of problems formulates separate hypoth-
eses, reflecting more or less the physical reality in isolated cases. On the basis of
these working hypotheses, one obtains the equations which govern the phenome-
non and endeavour thus to simplify the computation as much as possible.

By contrast, the mechanics of deformable solids is a chapter of mechanics,
fundamental science of nature, which is based on a mathematical theory, built on
unitary hypotheses; it is applicable whatever the form of the body, the kind of the
material or the manner of action of the external loads may be. Each problem is
specified by its own limiting conditions (boundary conditions and initial condi-
tions (for the movable bodies)), since the fundamental hypotheses always remain
the same. The computational methods applied are general methods leading to an
accurate solution of the problem (more properly, as accurate as necessary and
possible).

In the strength of materials, the construction elements are simplified, by
reducing them to the medium fiber or to the middle surface, so as to diminish the
number of variables involved in the computation. On the other hand, additional
simplifying hypotheses concerning the distribution of the deformations on a cross
section of the body, e.g., the hypothesis of plane cross section [96], as it has been
given by Jacob Bernoulli [4] for the straight bars (equally applied later in the case
of curved bars). If to this hypothesis is added a linear relation between strain and
stress (Hooke’s law) and the mechanical equilibrium is written for a portion of the
bar, then we shall find the known formulae that give the so-called simple stresses
for a straight bar. Assuming that the strains are small with respect to unity and can
be thus disregarded, it follows that the principle of superposition of effects can be
applied, hence the results obtained can be extended to the case of combined
stresses. Thus, computation methods valid for ordinary beams are obtained.

Let us also consider the hypothesis of the straight line element, due to Kirchhoff
[38] for thin plates and to A.-E.-H. Love [43] for thin shells, which leads to the
usual computational methods for these construction elements.

In case in which the state of strain and stress is to be determined for wall beams,
thick (or moderately thick) plates, blocks or in case of stress concentrations etc.,
more accurate computational methods should be applied. In this case, it is no
longer permitted to consider the equilibrium of a finite element (section), but that
of an infinitesimal element cut out of the body. A local study in the neighbourhood
of every point of the body is completed by a global study, referring to the whole
body. The computational method (exact, approximate and even experimental) is
general and is only restricted by difficulties which are liable to arise in practical
applications.

The methods of the mechanics of deformable solids allow one to verify the
limits of applicability of the results obtained by the methods of the strength of
materials. Chiefly, it permits one to solve problems that cannot be tackled by more
elementary methods, such as all three-dimensional problems.

Hereafter, we shall apply the methods of the mechanics of deformable solids.
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1.1.2 Models in the Mechanics of Deformable Solids

To make a study of a deformable solid from the mechanical point of view, it is
necessary, firstly, to set up a mathematical model of it.

Usually, by model one means an object or a device artificially created by man,
resembling to a certain extent to another one, the latter one being an object of
scientific research or of practical interest. The scientific notion of model refers to a
certain technique to know the reality representing the phenomenon under study by
an artificially-built system. The most general property of a model is therefore its
capacity to reflect and to reproduce properties and phenomena of the objective
world, as well as their necessary order and their structure.

1.1.2.1 Technical Models

From the very start, the models can be divided into two large classes: technical (or
material) models and ideal (or imagined) models; this division is made according
to the manner of construction the models and according to the means by which the
objects under study may be reproduced.

The technical models are created by man, but they exist objectively, indepen-
dently of his awareness, being materialized in metal, wood, electromagnetic fields
etc. Their purpose is to reproduce for a cognitive goal the object under study, so as
to put in evidence its structure or some of its properties. The model can or cannot
retain the physical nature of the object under study or its geometrical likeness. If
the similitude is maintained, but the model differs in its physical nature, we have to
deal with analogic systems. For instance, electrical models can reproduce pro-
cesses analogue to those taking place in the mechanics of deformable solids, which
are qualitatively different, but are described by similar equations. These models, as
well as other of the same kind, are classed as mathematical models.

One can construct such models, e.g., to study the torsion of a cylindrical straight
bar of arbitrary simply or multiply connected cross section. If the bar is homo-
geneous, isotropic and linearly elastic (subjected to infinitesimal deformations),
then the phenomenon is governed by a Poisson type equation in B. de Saint-
Venant’s [12] theory. L. Prandtl showed that the same partial differential equation
is valid in the case of a membrane supported on a given contour and undergoing a
constant internal pressure; if the contour is similar to the frontier of the plane
domain corresponding to the cross section of the straight bar, then we have a
correspondence of the boundary conditions, hence the classical membrane analogy
(or of the soap-bubble film) is obtained. Other analogies for these problems are
used too, i.e.: electrical modelling, optical interference modelling, hydrodynamical
modelling etc.

It is interesting to remark that the above analogies can moreover be extended to
more complex phenomena. Thus, in case of a multiply connected domain (espe-
cially that of a tubular bar with intermediate thin walls), it is possible to use a
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membrane supported along internal contours. As well, in case of a perfect plastic
straight bar, the analogy with small sand heaps of A. Nadai is used. In the case of
elastic plastic bodies, the analogy to be used is obtained be combining the Prandtl
analogy with the Nadai one.

A slightly different mathematical analogy is that between the classical plane
problem of the theory of elasticity and the bending problem of a thin plate. In this
case, the model (a thin plate subjected to a bending in the absence of loads normal
to its middle plane) has the same physical nature as the object under study (thin
plate loaded in its middle plane, therefore undergoing a plane state of stress). By
bending the thin plate, which is thus undergoing certain displacements and slopes
of the middle surface, deformed along the contour, one obtains an image of the
G.-B. Airy stress function of the plane problem, for which the values as well as
those of its normal derivative along the boundary are given. This analogy, due to
K. Wieghardt [99], can be extended to multiply connected domains or to nonho-
mogeneous and anisotropic bodies. Let us also remark that the contour values of
the Airy function and of its normal derivative are obtained as the bending moment
and the axial force in a fictitious bar along the boundary of the considered plane
domain, subjected to the action of given external loads, the contour being travelled
through counterclockwise, from an arbitrarily chosen point; by so doing, an
interesting analogy appears, which is particularly useful in computation. Recently,
this analogy has been partially extended to the space problem. It is also to be
mentioned that, by a judicious choice of the similitude, the model can be made of a
material with more accentuated bending properties, which is very important from a
practical standpoint.

Another type of technical model, used in the mechanics of deformable solids, is
that which corresponds to the intuitive notion of model. Various construction
elements are performed partially or wholly at a reduced scale; this allows to obtain
results concerning the maximal deformations and stresses liable to occur. These
models can be built up of the same material as the object to be studied or of other
materials, which may raise rather difficult similitude problems.

Technical models of a slightly different type are used in photoelastic studies; in
this case, although the geometrical likeness is preserved, the physical nature of the
model is different from that of the object (a thin plate, made of an optically
sensible material, which acquires birefringence properties under the action of
external loads imposed in its middle plane). In this manner, an additional phe-
nomenon appears that enables one to specify the various properties related to the
object which is studied.

1.1.2.2 Character of the Ideal Models

Generally, the ideal models are not materialized and—sometimes—they neither
can be. From the viewpoint of their form, they can be of two types.

The models of first order are built up of intuitive elements having a certain
likeness to the corresponding elements of the real modelled phenomenon; we
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observe that this similitude must not be limited only to space relationships but can
be extended also to other aspects of the model and of the object (e.g., the character
of the motion). The intuitiveness of these models is put into evidence on one hand
by the fact that the models themselves, formed by elements sensorial perceptible
(planes, levers, tubes, fluids, vortices etc.) and on the other hand by the fact that
they are intuitive images of the objects themselves. Sometimes, these models are
fixed in the form of schemata.

The models of second order are systems of signs the elements of which are
special signs; the logical relations between them form—at the same time—a
system and are expressed by special signs. In this case, there is no likeness
between the elements of the models and the corresponding elements of the object.
These models have not intuitiveness with respect to geometrical likeness or
physical analogy; they have, by their physical nature, nothing in common with the
nature of the modelled objects. The models of second order reflect the reality on a
gnosiological plane, by virtue of their isomorphism with the reality; a one to one
correspondence is thus assumed between each element and each relation of the
model. These models reproduce the objects under study in a simplified form,
constituting thus (as, in fact, all models do) a certain idealization of the reality.

The types of ideal models mentioned above can be considered as limit cases.
Indeed, there are ideal models combining common features of both model types
which have been described; they contain systems of notions and axioms which
characterize quantitatively and qualitatively the phenomena of nature, for instance
representing mathematical models. Such models are particularly important and
their systematic use has permitted—among other things—the large development of
the mechanics of deformable solids in the last time.

The basic dialectic contradiction of modelling (the model serves to the
knowledge of the object just because it is not identical with the latter one) is
useful, e.g., to put into evidence the properties of continuous deformable solids. In
fact, a model contains the more information concerning the object, when it is more
like this one. Nevertheless, the physical reality is rather intricate; the contradiction
is solved by using a sequence of models which are more and more complete, where
each one brings new contributions to the knowledge of real deformable solids. We
shall endeavour to emphasize the very process of continuously improving methods
of the mechanics of deformable solids, a process constituting—as a matter of
fact—the main tenor of the development of this branch of mechanics.

In general, after a certain ideal model is adopted, it is absolutely necessary to
compare the results obtained by theoretical reasoning with physical reality. If these
results are not satisfactory (sometime this can occur between some limits, which
can be sufficiently narrow), then it is necessary to make corrections or to improve
the chosen model. In fact, this is the manner in which the mechanics of deformable
solids was developed, the word ‘‘model’’ being more and more used by researchers
dealing with this branch of mechanics.
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1.1.2.3 Ideal Models in General Mechanics

Both the general (classical) mechanics and the mechanics of deformable contin-
uous media (in particular, the mechanics of deformable solids and the mechanics of
fluids) are studying the objective laws of the simplest form of motion, namely the
mechanical motion.

First of all, for the study of the mechanical motion, a representation of space
and time is necessary; thus, in classical mechanics, the physical space is the three-
dimensional Euclidean space E3, while the time (considered as universal and
characterizing the duration, the succession and the simultaneity of the material
processes) is still assimilable to the one-dimensional Euclidean space E1. Thus, the
geometric models of space and time, as used in general mechanics, are reflecting
properties of the real space and time as forms of existence of the matter.

A real movable body is generally thought to be rigid and is often reduced to a
particle. In the same manner, the systems of particles studied can be deformable.
For various values of the time t in E1, we are able to find the position of the body
or of the system of particles in E3.

Another intervening element is the cause of the mechanical motion (which, for
the sake of simplicity, will be called ‘‘motion’’). The bodies interact mechanically
with one another and in many cases it is difficult to establish the physical nature of
this action; generically, it was called force. This idea, which originates in the
action of a human organism upon the external world, acquires a precise meaning in
classical mechanics. It is the abstract expression of the measure of the transmission
of motion. Without investigating the nature of the respective force, it was math-
ematically modelled with the help of vectors (sliding vectors in case of rigid solids
and bound vectors in case of deformable systems of particles). We must mention
that a mechanical motion could exist even in the absence of any force, namely the
inertial motion (rectilinear and uniform).

The notion of mass of the particle must be introduced; this is a fundamental
property of matter, exists objectively and is independent of the place where it is
measured. I. Newton [56] conceived the mass as the measure of a quantity of
matter. The notions of gravitational mass and inertial mass should be introduced;
numerically, they are equal to each other, as it has been proved by L. Eötvös. In
this manner, we dispose of various possibilities of measuring the mass.

In the classical Newtonian conception, space, time and mass are considered as
independent from one another.

After these elements were introduced, the Newtonian model was born, by
adopting the principles of Newton [56] (the principle of inertia, the principle of
action of forces, the principle of action and reaction, the principle of the paral-
lelogram of forces and the principle of initial conditions, in a modern view, to can
put in evidence its deterministic aspect). The model was verified by direct practice
in the case of bodies moving at relatively low velocities (negligible with respect to
the velocity of light in vacuum).

1.1 Aim of Mechanics of Deformable Solids 7



1.1.2.4 Introduction of the Ideal Models in Mechanics
or Deformable Solids

General mechanics endeavour in general to solve the problems of motion of solids
on the assumption that they are rigid, although certain established general results
are equally valid for deformable solids (particularly when applied to discrete
deformable systems of particles).

In the study of deformable continuous media, the Newtonian model has to be
completed; instead of a rigid solid, we introduce various models of deformable
media. By examining the historic process of the development of these models,
from a knowledge of the manner in which bodies undergoing certain actions are
deformed and begin to flow, we shall have implicitly the process of the appearance
of the theory of elasticity, of the theory of plasticity, of the perfect and viscous
fluids, of the rheology etc. Hereafter, we shall deal with deformable solids in the
frame of classical mechanics.

The most general problem which has arisen can be formulated as follows: Let
be a given solid of volume V and boundary S in E3. On S, the action of other
bodies is known; on the other hand, one assumes that the action of other external
loads (e.g., within the volume V) is known equally. Owing to these external loads,
the given solid is deformed, the boundary S becoming S�. We wish to find the new
boundary S� and to show how it varies in time; we look for the ratio between the
dimensions of the body and the intensity of the external loads as to avoid the
fracture of the body.

To this end, in view of a space-time representation, the same E3 þ E1 geo-
metric model is adopted. As new elements, a study is made of the geometry and
kinematics of deformations and of the mechanics of stresses.

1.2 Fundamental Computation Hypotheses.
Short Historical Account

As any other discipline, the mechanics of deformable solids (and especially the
theory of elasticity) has a few fundamental hypotheses which allow us to simplify
and generalize the phenomena, retaining the essential ones and rending them
accessible to the mathematical computation. It is very important to know these
hypotheses if we want to realize the possibility of practical application of the
results thus obtained.

After reviewing such hypotheses, we shall supply some general data concerning
the development of the mechanics of deformable solids and then insist on the
development of the theory of elasticity.
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1.2.1 Fundamental Computation Hypotheses

First of all, we present the bodies with which one deals in mechanics of
deformable solids, as well as the fundamental computation hypotheses in the
theory of elasticity. Then we specify the position of the theory of elasticity in the
field of the mechanics of deformable solids.

1.2.1.1 Bodies in the Mechanics of Deformable Solids

Hereafter, we shall give a classification of the solid bodies according to the ratio of
their dimensions.

Bodies with a much greater dimension (length) than the other two ones (cor-
responding to their cross section) shall be called bars. To make the notion clearer,
we shall give a constructive definition.

Let there be a curve C of finite length l, namely the bar axis. In the plane normal
to the curve C, at one of its points P, we shall consider a closed curve C bounding
a plane domain D (the bar cross section); the centre of gravity of this domain is
assumed to be on the curve at the point P. If the point P travels through the curve
C, the curve C, which can also be deformable, will generate a surface bounding a
three-dimensional domain which will be called bar (Fig. 1.1). According to the
form of the axis, the bars can be straight or curved. Moreover, the curved bars can
be classified as skew curved bars and plane curved bars.

Both the (average) dimensions a and b of the cross section shall be considered
as being of the same order, provided the condition a; b� l is fulfilled. If all three
dimensions are of different order (a� b� l), we shall have to consider thin wall
bars (Fig. 1.2a). Lastly, if the cross section dimensions are negligible with regard
to the bar length, so that the bar should be perfectly flexible (unable to retain a
bending), then we have a string (Fig. 1.2b).

Bodies having one dimension (the thickness) much smaller than the other two-
dimension (corresponding to the middle surface) shall be called plates.

Let be a surface S of finite area, the middle surface of the plate. On the normal
to the surface S at a point P of the latter one, we shall consider a segment of a line
of length h (the thickness), the middle of which is assumed to be on the surface S,
at the point P. If the point P travels through the surface S, the extremities of the
segment of a line, which can be of variable length, will generate two surfaces

b

PC

D
a

l

Fig. 1.1 Bar

1.2 Fundamental Computation Hypotheses. Short Historical Account 9



bounding a three-dimensional domain, which we shall call plate (Fig. 1.3).
According to the form of the middle surface, the plates may be plane or curved;
the plane plates are called simply plates.

According to the ratio between the (average) dimensions a and b of the plate,
contained in the middle surface, and its thickness h, we shall consider thin plates
(for h� a; b) (Fig. 1.4a), moderately thick plates (Fig. 1.4b) and thick plates (for
h\a; b) (Fig. 1.4c); the curved thin plates are called shells too. Let us remark that
accurate delimitations between these plate categories cannot be made; they depend
on the computation possibilities of the states of strain and stress and can vary from
one case to another. Finally, if the thickness h is quite negligible with regard to the
other two dimensions, so that the plate should be perfectly flexible, we shall obtain
a membrane (Fig. 1.4d).

Bodies with all three dimensions a; b; c of the same order of magnitude shall be
called blocks (Fig. 1.5).

Generally, the real bodies occupy finite three-dimensional domains. We shall,
however, consider also infinite domains, the study of which is of particular
interest; as a matter of fact, these domains idealize real cases, often occurring in
practice, or else they can be used as intermediate stages in solving problems
corresponding to other domains.

1.2.1.2 Fundamental Computation Hypotheses in the Theory
of Elasticity

The fundamental computation hypotheses that can be made and that—some-
times—particularize the body to be studied are the following:

b

a

l

(a) (b)Fig. 1.2 Thin wall bar (a).
String (b)
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Fig. 1.3 Plate
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(i) The solid body we are studying (considered to be at rest with respect to an
inertial (fixed) frame of reference) is subjected to the action of balanced
external loads. If the body is in motion, then we introduce moreover the inertial
forces; therefore, the external loads are in dynamic equilibrium. On the other
hand, each part of the body and each particle detached from it will be subjected
to loads statically or dynamically balanced (load system equivalent to zero),
This hypothesis allows to write the partial differential equations verified by the
stresses within the body and to express the boundary and initial conditions.

(ii) The solid body is considered as a continuous medium (without holes, internal
microscopic cracks etc.). This encourages us to assume that the body defor-
mation will be equally continuous and therefore the strains and the stresses
will be mathematically expressed by continuous functions.

For some points of the body (singular points), where the strains and the stresses
tend to infinity, an additional study must be made; it is important to use the
methods of the theory of distributions in this case. Likewise, the case of the bodies

h

b

a

b

a

h

b

h

a

(a) (b)
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Fig. 1.4 Plate: thin (a),
moderately thick (b), thick
(c), Membrane (d)
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c

Fig. 1.5 Block
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with internal holes (continuous bodies to which correspond multiply connected
domains) and the case of the bodies with internal cuts (particular cases of multiple
connection) must be considered separately. In the case of the disperse media (that
do not verify the continuity hypotheses) it is necessary to have recourse to aleatory
variables.

(iii) The solid body is isotropic, i.e. it has the same mechanical (and physical)
properties in all directions in the neighbourhood of each of its points. This
property is expressed by the relations between strains and stresses. When this
hypothesis is not observed, then we have to deal with anisotropic (aeolo-
tropic) bodies.

(iv) The solid body is homogeneous, i.e. it has the same mechanical (and physical)
properties at each of its points. On the basis of this property, the mechanical
coefficients of the material, occurring in the constitutive law, are constant
with respect to the space variables. When these coefficients are variable, the
body is non-homogeneous.

The properties of isotropy and homogeneity do not condition one another. A
solid body can be homogeneous and isotropic (as we shall generally admit it) or
homogeneous and anisotropic (i.e. having the same properties at each point for a
given direction) or isotropic and nonhomogeneous (i.e. having the same properties
for any direction, but different from a point to another one) or even non-homo-
geneous and anisotropic.

We mention that, by changing the system of co-ordinates in the case of an
anisotropic body, we can obtain, formally, a body with non-homogeneous prop-
erties. We shall admit, in this case, that an anisotropic body is non-homogeneous if
it remains non-homogeneous in any system of curvilinear coordinates (in other
cases, it can be homogeneous, with a curvilinear anisotropy).

We also mention that the composite bodies can be modelled as anisotropic ones.

(v) The body under study is perfectly elastic. Under the action of external loads,
the body is deformed, but when the action of these loads ceases to operate, it
resumes its initial position (in the case of static loads) and its initial form
(without any hysteresis phenomenon taking place); the deformation phe-
nomenon is reversible. Therefore, the deformed form of a solid body will only
be influenced by the external loads that act on it at that moment. A one-to-one
relationship exists between strains and stresses; as already mentioned, the state
of stress at a point of the solid body will only depend on the state of strain in
the neighbourhood of this point. In this manner, we happen to be within the
framework of the theory of elasticity.

In the case of many bodies currently used, if the stresses go beyond the elastic
limit, after unloading residual deformations remain. Beyond the elastic limit, the
body presents elastic plastic properties. When this is the case, whether the elastic
deformation can or cannot be neglected, the computation of the state of strain and
stress must be made with the help of the theory of plasticity.
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Generally, the one-to-one relation between strains and stresses is expressed
mathematically by a linear relation (Hooke’s law). This hypothesis corresponds—
often—well enough to the physical phenomenon and, on the other hand, leads to
considerable simplifications of the mathematical computation. Sometimes, a more
intricate mathematical relation is considered; this leads to a theory of elasticity,
non-linear from a physical standpoint.

Moreover, special relations can be considered, e.g., as in the case of the hypo-
elasticity theory, created by C. Truesdell, or in the case of hyperelastic bodies.

If, besides the stresses, we also take into consideration the couple-stresses
(micromoments), we shall find a theory of asymmetrical elasticity for bodies of
Cosserat type (after the name of the brothers E. and F. Cosserat [13] who were the
first to study, in 1907, such a problem), i.e. bodies with microstructure. In such a
case, a volume has six degrees of freedom and the volume moments can also act as
external loads; the constitutive law—even in the linear case—necessitates the
introduction of several mechanical constants of the material.

(vi) The deformations and displacements of the solid bodies, submitted to the
action of external loads, are very small with regard to the general dimensions
of the body; it follows that the strains are negligible with regard to unity. If
the rigid body local rotations are equally negligible with regard to unity, then
we have to discuss a linear theory from a geometrical standpoint (the terms of
second order are negligible with respect to the terms of first order), as well as
from a mechanical standpoint (the equations of static and dynamic equilib-
rium can be written for the undeformed form of the body). Therefore, con-
cerning the strains, we can apply the principle of superposition of effects.

There are, however, cases where it is necessary to apply non-linear methods
from a mechanical standpoint or a non-linear theory from both geometrical and
mechanical standpoint (the case of finite deformations). These considerations are
absolutely necessary in the case of stability problems (a solid body loses its
stability when, for a certain intensity of the external loads (critical values), at least
two distinct states of strain and stress result). Phenomena of bifurcation and chaos
can also occur.

Generally, the deformation of the bodies is concomitant with a change of volume
(the solid bodies are compressible). Particularly, the case of incompressible solids
and of bodies subjected to isochoric deformations are considered equally; this can
also constitute a first computing approximation.

Let us mention also that we shall not take into account the rate of deformation
of the body; thus, we shall not consider bodies with rheological properties
(for which one takes into account the influence of viscosity), therefore bodies of
Maxwell or Voigt type, mixed or of a more complex nature, for which the con-
stitutive law (generally, integro-differential) depends moreover on a time variable.
Consequently, we shall not consider creep and relaxation phenomena.
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(vii) When the deformations are propagated, within the solid body, at a very high
velocity (a case recently appeared in a unified theory of elementary parti-
cles), the phenomenon should be studied from the standpoint of the theory of
relativity.

(viii) The influence of the temperature variation is not taken into consideration
neither in the constitutive laws nor in the computation of the deformations.
But it will be introduced in the considerations concerning thermodynamical
principles.

(ix) The body under study does not have initial stresses, which could be due to
initial deformations of the material. They could result from machinery
operations (rolling, drawing etc.), from assembling operations or could be
due to phenomena occurring during the working, before the action of the
external loads, contraction phenomena of concrete etc.

Although these phenomena do exist and cannot be eliminated, to simplify the
computation, one assumes that the initial stresses are missing. Thus, to an
unloaded body (case of vanishing external loads) corresponds a null state of stress.
If the initial stresses cannot be neglected, then one makes a supplementary study to
take into account their influence.

We will assume—in general—that all these hypotheses are taken into account;
if, in particular cases, one of these hypotheses is not respected and if we are placed
in a more general situation (a less restrictive hypothesis), then we make a special
mention about it.

1.2.1.3 Position of the Theory of Elasticity in the Frame of Mechanics
of Deformable Solids

As we have seen, in the mechanics of deformable solids, the geometrical and
mechanical aspect of the considered problems must be completed with an aspect of
physical, experimental nature, which specifies the nature of the solid body. One
introduces a certain constitutive law of the deformable solid, a certain relation
between strains and stresses.

In general, one can establish (especially on an experimental way) relations
between strains and stresses in a one-dimensional case. The experiments in two- or
three-dimensional cases are much more difficult (e.g., in mechanics of earth, the
experiments with the three-axial apparatuses are of great interest); the most time—on
the basis of various hypotheses—one extends the results obtained in the linear case.

As well, the fundamental law of the deformable solids can be established on the
basis of various considerations and hypotheses of energetical and thermodynamical
nature. In particular, the relations which are obtained (and in which intervene—the
most time—the invariants of the strain and stress tensors) depend on certain
coefficients (constant or variable), which are determined on an experimental way.

We have seen that an elastic body is that one for which the deformation
phenomenon is reversible. As a chapter of the mechanics of deformable solids,
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the theory of elasticity has as object of study the determination of the state of strain
and stress of an elastic solid body subjected to the action of certain external loads
in static or dynamic equilibrium. To the fundamental equations of the mechanics
of deformable solids one must add a constitutive law, which characterizes the
respective elastic body.

We mention that, the most times, a solid body may be considered as being
elastic only till a certain intensity of the stresses or till a certain magnitude of the
strains (till the limit of elasticity); after this, it becomes elastic plastic properties.
Thus, our study will be valid for the so-called elastic zone of the respective body.

1.2.2 Short Historical Account. Development Trends

Certainly, since most ancient times, since men began to build, some problems of
mechanics arose—in general—and of strength of materials—in particular; various
problems about deformable solid bodies (although this property was not quite clear
in their minds) were imposed by daily practice.

We shall supply some general data concerning the development of the
mechanics of deformable solids and then we shall insist on the development of the
theory of elasticity. We shall mention also the researches made in Romania.

As well, we will put in evidence some development trends and the new
problems which are put.

1.2.2.1 Mechanics of Deformable Solids

Strength of materials problems occured and were solved—in a certain form—by
famous builders, such as Archytas of Tarentum (approx. 440–360 A.C.) or
architects such as Vitruvius (the second half of the first century A.C.). The
Egyptians had, probably, empirical rules that they took into account. The Greeks,
more advanced—it is sufficient to mention Archimedes (287–212 A.C.)—devel-
oped statics, that is the very basis of the study of real bodies. The Romans were
equally great builders, many of their structures being even now in use; we mention
thus the famous ‘‘Pont du Gard’’ in the south of France.

Much of the empirical knowledge acquired A.C. or at the beginning A.D. was
lost in the course of the feudal epoch, being rediscovered only during the
Renaissance. Leonardo da Vinci (1452–1519) was the first to make fracture tests
on a steel string. So, at the end of a suspended string, a vessel is hung into which a
quantity of sand is slowly flowing. The string extends until it breaks. Leonardo da
Vinci also mentioned that it is good practice to make a great many experiments
and to take the average of these results.

Later on, Galileo Galilei (1564–1642) showed moreover how tensile strength
experiments can be made on a bar; he was the first to admit a certain stress
distribution in a cantilever bar, the free end of which is subjected to a concentrated
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force. According to Galileo, in the built-in cross section should appear normal
stresses uniformly distributed on the whole cross section, which later on proved to
be only a rather vague approximation of the physical reality. Architect Fontana
(1543–1607) applied these results to hoist an obelisk at the Vatican.

Robert Hooke (1635–1703) [32], on the basis of various experiments, stated in
1678 his famous law ‘‘ut tensio sic vis’’ (such is the force, as the extension is).
Edmé Mariotte (1620–1684) verified this law on wood tensile test samples.
Valuable ideas about the notion of elasticity were set forth by Mikhail Vasilievich
Lomonosov (1711–1765).

In the seventeenth and eighteenth centuries, progress was realized, especially in
the field of the mechanics of structures and of the strength of materials. Many of
the acquired results have applications corresponding to the new problems met
within civil engineering and machine construction. We mention moreover some
theoretical results, obtained by Jacob (1654–1705) [4] and Jean (1667–1748)
Bernoulli brothers (to the former is due the hypothesis of the plane cross sections
in straight bars). The latter’s son Daniel Bernoulli (1700–1782), Daniel’s nephew
Jacques Bernoulli (1759–1789) and chiefly Leonhard Euler (1707–1783) and
Joseph-Louis Lagrange (1736–1813) dealt with problems of deformation of thin
elastic bars.

Other theoretical and experimental studies are due to Charles-Augustin de
Coulomb (1736–1806), Jean-Victor Poncelet (1788–1867) and Franz Grashof
(1826–1893). Jean le Rond d’Alembert (1717–1783) and Peter Gustav Lejeune-
Dirichlet (1803–1859) contributed by their studies in the field of mechanics to the
birth of the theory of elasticity.

The first studies about sliding lines were made in the soil mechanics by Ch.-A.
de Coulomb, William-John Macquorn Rankine (1820–1872) and Maurice Lévy
(1839–1910). Their importance was grasped by Henri-Édouard Tresca
(1814–1885) who, in 1864 and 1872, published several notes, concerning a con-
dition of plasticity in which the maximal shear stress is constant at each point of
the elastic-plastic zone, and by Christian Otto Mohr (1835–1918) who, on this
basis, formulated in 1882 a theory of the strength of materials. Adhémar-Jean-
Claude Barré de Saint-Venant (1797–1886) reviewed H.-É. Tresca’s works at the
Academy of Science (Paris) and, on this occasion, developed the fundamental
equations of the plasticity theory, by admitting that the cubical dilatation vanishes
during the plastic deformation (which is thus incompressible), that the principal
directions of the tensor of the rate of strain coincide with the principal directions of
the stress tensor and that the maximal shear stress is constant at each point of the
solid body; and we can assert that it is with this development that the theory of
plasticity was born in 1870.

And, still in the second half of the ninteenth century, the problem of the study of
the solid bodies for which the deformations rate has been taken into account began
to be formulated. Thus, James Clerk Maxwell (1831–1879), William Thomson
(Lord Kelvin) (1842–1907) and Woldemar Voigt (1850–1919) define particular
viscoelastic bodies (bodies of Maxwell or of Kelvin (or Voigt) type; the last two
arrived at analogous results by independent studies), corresponding to certain real
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bodies. Nevertheless, from a formal standpoint, the rheology was born only at an
international congress in 1929 (it is on this occasion that the name ‘‘rheology’’
(from ‘‘panta rei’’) was introduced); especially, the theory of viscoelasticity has
been developed.

Thus, the bases are set of a new branch of mechanics that deals with the study
of deformable solids.

1.2.2.2 Theory of Elasticity

The bases of the mathematical theory of elasticity were set forth, at the beginning
of nineteenth century, by the works of Louis-Marie-Henri Navier (1785–1836)
[54] and Mikhail Vasilievich Ostrogradsk�ı (1801–1861); but it was Augustin-
Louis Cauchy (1789–1857) who, making use of these results, established the
fundamental equations of elastic bodies (the equations of static and dynamic
equilibrium and the relations between displacements and strains, valid for any
deformable solid bodies) in the form still used today. Siméon-Denis Poisson
(1781–1841) contributed to elucidate these problems, by introducing also the
notion of transverse contraction, while Benoît-Paul-Émile Clapeyron (1799–1869)
establishes a theorem of equivalence between the internal work (of deformation)
and the external work. The formulation in displacements of the fundamental
problems of the theory of elasticity as well as an important treatise on the theory of
elasticity, where is equally formulated the famous problem of the elastic paral-
lelepipedon, which only in the last years obtained solution, are chiefly due to
Gabriel Lamé (1795–1870) [39]; on the other hand, starting from the studies of
Karl Friedrich Gauss (1777–1855), he introduced [40] the systematic use of cur-
vilinear co-ordinates in solving problems of the theory of elasticity.

During the nineteenth century and the beginning of twentieth century, many
researches in the domain of the theory of elasticity have been performed, results
which are very difficult to pass, even summarily, in review.

At the same time, the strength of materials acquires equally a large develop-
ment concerning the study of plates related to the design of railway bridges. As to
the problem of plates, we may recall, besides the name of J.-L. Lagrange, those of
Sophie Germain (1776–1831) and Gustav Robert Kirchhoff (1824–1887) [36],
who continued—theoretically—the experimental research begun by Ernst
Friederich Chladni (1756–1827).

A controvercy (which lasted several decades) about the elastic constants of the
material confronted the supporters of the conception according to which a single
elastic constant is sufficient to characterize the mechanical properties of the material
(L.-M.-H. Navier [54], A.-L. Cauchy and their pupils) against those who held that
two elastic constants are necessary to achieve this end. George Green (1793–1841),
starting from considerations of an energetic nature, showed that, in the general case
of anisotropy, 21 constants are necessary, which in case of isotropic bodies are
reduced to two distinct constants. Adolf Yakovlevich Kupffer (1799–1865), at the
Central Laboratory of Weights and Measures in Sankt Petersburg, Wilhelm
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Wertheim (1815–1861), in Paris, and—later—Franz Ernst Neumann (1798–1895)
[55] and his pupils (G. R. Kirchhoff and W. Voigt) made experimental research by
which they verified the theoretical considerations of G. Green. The two elastic
constants, usually used, are the modulus of longitudinal elasticity, named after
Thomas Young (1773–1829) but introduced by L. Euler, and the coefficient of
transverse contraction of S.-D. Poisson. Among the elastic constants characterizing
the anisotropic bodies, we mention the coefficients of N. G. Chentsov.

In England, George-Bidell Airy (1801–1892) established in 1862–1863 the
bases of the plane theory of elasticity, by introducing the stress function (the first
important stress potential function in the theory of elasticity), that bears his name
today. George Gabriel Stokes (1819–1900) found many important results, chiefly
in the field of vibrations of elastic bodies and introduced, moreover, in 1849, some
displacement potential functions.

In France, we must chiefly mention the studies of B. de Saint-Venant, whose
ideas—as it is interesting to mention—did not appear in a volume, but were
published as articles, papers, notes or appendices to the successive editions of
L.-M.-H. Navier’s [54] course and to the French translation of the treatise of
Rudolf Friederich Alfred Clebsch (1833–1872) [12]; even the equations of con-
tinuity, although bearing his name, cannot be found except in these works. Among
the many and various studies of B. de Saint-Venant, we mention especially those
referring to the problem of torsion of a straight bar of any cross section however,
which are at the basis of modern research in this field; here the semi-inverse
computation method was applied first.

The first formulation of the thermoelasticity problem, in the case of uncoupled
equations, was stated in the field of displacements by Jean-Marie-Constant Duha-
mel (1797–1872) and Fr. E. Neumann. A great many results of Neumann [55] are to
be found in his treatise on the problems of the theory of elasticity and optics; let us
mention his studies in the field of double refraction by which he continues and
specifies the results acquired by David Brewster (1781–1868) and Ludwig
Friederich Seebeck (1805–1849). These studies constitute the physical basis of
photoelasticity. The coupled equations of thermoelasticity and the formulation of
its problems in its most general form are due to other researchers who subsequently
completed the equation of heat propagation of François-Marie-Charles Fourier
(1772–1837) with the terms corresponding to the elastic deformation of the body.

G. R. Kirchhoff demonstrated, under certain conditions, the theorem of
uniqueness of the solution of the elasticity theory problem. In what concerns the
existence of the solution of the elasticity equations, the first studies were made by
Lord Kelvin; the study of the problem was resumed by Arthur Korn, using the
method of successive approximations, and by Erik Ivar Fredholm (1866–1927),
using the method of integral equations.

R. F. A. Clebsch brought important contributions to the plane problem of the
theory of elasticity (conditions on the boundary, representation of the displace-
ments etc.). On the other hand, he deals with the vibrations of the elastic sphere;
particularly, in the static case, he obtained results which later were thoroughly
discussed by Lord Kelvin. The latter brought many contributions in the theory of
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