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Dedicated to Alessandro Figà-Talamanca on
the occasion of his retirement



Preface

This book collects some of the scientific contributions of the participants in the
Conference in Harmonic Analysis held at the Istituto Nazionale di Alta Matematica
from May 30th to June 4th, 2011. It illustrates the wide range of research subjects
developed by the Italian research group in harmonic analysis, originally started by
Alessandro Figà-Talamanca, to whom the Conference was dedicated on the occasion
of his retirement.

In 1978, the mathematicians in this newly formed research group started a cycle
of conferences to present and share their research progress. These conferences were
held in different places almost every year until this Conference, the thirty-first of the
series, and the first whose Proceedings are published.

This book outlines some of the impressive ramifications of the mathematical de-
velopments that began when Figà-Talamanca brought the study of harmonic anal-
ysis to Italy; the research group that he nurtured has now expanded to cover many
areas, and therefore this book is addressed not only to experts in harmonic analysis,
summability of Fourier series and singular integrals, but also to experts in potential
theory, symmetric spaces, analysis and partial differential equations on Riemannian
manifolds, analysis on graphs, trees, buildings and discrete groups, Lie groups and
Lie algebras, and even far-reaching applications such as cellular automata and signal
processing and connections with mathematical logic.

In the last decades, Alessandro Figà-Talamanca has worked on harmonic analysis
on trees, and his influence on ongoing research is also underlined by the fact that
several contributions to the present volume, even those dealing with completely
different subjects, are related to trees or similar discrete structures.

Massimo PicardelloRome, Italy
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The Shifted Wave Equation on Damek–Ricci
Spaces and on Homogeneous Trees

Jean-Philippe Anker, Pierre Martinot, Emmanuel Pedon, and Alberto G. Setti

Abstract We solve explicitly the shifted wave equation on Damek–Ricci spaces,
using the inverse dual Abel transform and Ásgeirsson’s theorem. As an application,
we investigate Huygens’ principle. A similar analysis is carried out in the discrete
setting of homogeneous trees.

Keywords Abel transform · Damek–Ricci space · Homogeneous tree · Huygens’
principle · Hyperbolic space · Wave equation · Wave propagation
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1 Introduction

In the book [17] Helgason uses Ásgeirsson’s mean value theorem (see Theorem
II.5.28) to solve the wave equation{

∂2
t u(x, t)=Δxu(x, t),

u(x,0)= f (x), ∂t |t=0 u(x, t)= g(x),
(1)

on Euclidean spaces Rd (see [17, Exercise II.F.1, p. 342] and its solution at pp. 574–
575) and the shifted wave equation{

∂2
t u(x, t)= {Δx + (d − 1)2/4}u(x, t),

u(x,0)= f (x), ∂t |t=0 u(x, t)= g(x),
(2)

on real hyperbolic spaces Hd(R) (see [17, Exercise II.F.2, p. 343] and its solution
at pp. 575–577). In this work we extend this approach both to Damek–Ricci spaces
and to homogeneous trees. Along the way we clarify the role of the inverse dual
Abel transform in solving the shifted wave equation.

Recall that Damek–Ricci spaces are Riemannian manifolds, which contain all hy-
perbolic spaces Hd(R), Hd(C), Hd(H), H 2(O) as a small subclass and share nev-
ertheless several features with these spaces. Before [17] the shifted wave equation
(2) on Hd(R) was solved explicitly in [24, Section 7]. Other hyperbolic spaces were
dealt with in [10, 19, 20] and Damek–Ricci spaces in [25]. All these approaches are
awkward in our opinion. On one hand, [10, 24] and [19, 20] rely on the method of
descent, i.e., on shift operators, which reduce the problem to checking formulae in
low dimensions. Moreover [10] involves classical compact dual symmetric spaces
and doesn’t cover the exceptional case. On the other hand, [25] involves compli-
cated computations and follows two different methods: Helgason’s approach for
hyperbolic spaces and heat kernel expressions [1] for general Damek–Ricci spaces.
In comparison we believe that our presentation is simpler and more conceptual.

Several other works deal with the shifted wave equation (2) without using explicit
solutions. Let us mention [7] (see also [18, Section V.5]) for Huygens’ principle
and the energy equipartition on Riemannian symmetric spaces of the noncompact
type. This work was extended to Damek–Ricci spaces in [4], to Chébli-Trimèche
hypergroups in [14] and to the trigonometric Dunkl setting in [5, 6]. The non-linear
shifted wave equation was studied in [2, 3, 28], first on real hyperbolic spaces and
next on Damek–Ricci spaces. These works involve sharp dispersive and Strichartz
estimates for the linear equation. Related Lp → Lp estimates were obtained in [21]
on hyperbolic spaces.

Our paper is organized as follows. In Sect. 2, we review Damek–Ricci spaces
and spherical analysis thereon. We give in particular explicit expressions for the
Abel transform, its dual and the inverse transforms. In Sect. 3 we extend Ásgeirs-
son’s mean value theorem to Damek–Ricci spaces, apply it to solutions to the shifted
wave equation and deduce explicit expressions, using the inverse dual Abel trans-
form. As an application, we investigate Huygens’ principle. Section 4 deals with the
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shifted wave equation on homogeneous trees, which are discrete analogs of hyper-
bolic spaces.

Most of this work was done several years ago. The results on Damek–Ricci
spaces were cited in [26] and we take this opportunity to thank François Rouvière
for mentioning them and for encouraging us to publish details. We are also grateful
to Nalini Anantharaman for pointing out to us the connection between our discrete
wave equation (16) on trees and recent works [8, 9] of Brooks and Lindenstrauss.

2 Spherical Analysis on Damek–Ricci Spaces

We shall be content with a brief review about Damek–Ricci spaces and we refer to
the lecture notes [26] for more information.

Damek–Ricci spaces are solvable Lie groups S = N �A, which are extensions
of Heisenberg type groups N by A∼=R and which are equipped with a left-invariant
Riemannian structure. At the Lie algebra level,

s≡R
m ⊕

z︷︸︸︷
R

k︸ ︷︷ ︸
n

⊕ R︸︷︷︸
a

,

with Lie bracket

[
(X,Y, z),

(
X′, Y ′, z′

)]= ( z

2
X′ − z′

2
X,zY ′ − z′Y + [X,X′],0

)

and inner product〈
(X,Y, z),

(
X′, Y ′, z′

)〉= 〈X,X′〉
Rm + 〈Y,Y ′〉

Rk + zz′.

At the Lie group level,

S ≡R
m ×

Z︷︸︸︷
R

k︸ ︷︷ ︸
N

× R︸︷︷︸
A

,

with multiplication

(X,Y, z) · (X′, Y ′, z′
)= (X+ ez/2X′, Y + ezY ′ + 1

2
ez/2[X,X′], z+ z′

)
.

So far N could be any simply connected nilpotent Lie group of step � 2. Heisenberg
type groups are characterized by conditions involving the Lie bracket and the inner
product on n, that we shall not need explicitly. In particular Z is the center of N and
m is even. One denotes by

n=m+ k+ 1
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the (manifold) dimension of S and by

Q= m

2
+ k

the homogeneous dimension of N .
Via the Iwasawa decomposition, all hyperbolic spaces Hd(R), Hd(C), Hd(H),

H 2(O) can be realized as Damek–Ricci spaces, real hyperbolic spaces correspond-
ing to the degenerate case where N is abelian. But most Damek–Ricci spaces are
not symmetric, although harmonic, and thus provide numerous counterexamples to
the Lichnerowicz conjecture [13]. Despite the lack of symmetry, radial analysis on
S is similar to the hyperbolic space case and fits into Jacobi function theory [22].

In polar coordinates, the Riemannian volume on S may be written as δ(r) dr dσ ,
where

δ(r)=

const︷ ︸︸ ︷
2m+1πn/2Γ

(
n

2

)−1(
sinh

r

2

)m

(sinh r)k

= 2nπn/2Γ

(
n

2

)−1

︸ ︷︷ ︸
const

(
cosh

r

2

)k(
sinh

r

2

)n−1

is the common surface measure of all spheres of radius r in S and dσ denotes
the normalized surface measure on the unit sphere in s. We shall not need the full
expression of the Laplace–Beltrami operator Δ on S but only its radial part

radΔ=
(

∂

∂r

)2

+
{
n− 1

2
coth

r

2
+ k

2
tanh

r

2

}
︸ ︷︷ ︸

δ′(r)
δ(r)

∂

∂r

on radial functions and its horocyclic part

Δf =
(

∂

∂z

)2

f −Q
∂

∂z
f (3)

on N -invariant functions, i.e., on functions f = f (X,Y, z) depending only on z. The
Laplacian Δ commutes both with left translations and with the averaging projector

f �(r)= 1

δ(r)

∫
S(e,r)

dx f (x),

hence with all spherical means

f �
x (r)=

1

δ(r)

∫
S(x,r)

dy f (y).
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Thus

(Δf )�x = (radΔ)f �
x . (4)

Finally Δ has a spectral gap. More precisely, its L2-spectrum is equal to the half-line
(−∞,−Q2/4].

Radial Fourier analysis on S may be summarized by the following commutative
diagram in the Schwartz space setting [1]:

S (R)even

H ↗≈ ≈↖F

S (S)�
≈−→
A

S (R)even

Here

H f (λ)=
∫
S

dx ϕλ(x)f (x)

denotes the spherical Fourier transform on S,

A f (z)= e−(Q/2)z
∫
Rm

dX

∫
Rk

dY f (X,Y, z)

the Abel transform,

Ff (λ)=
∫
R

dz eiλzf (z)

the classical Fourier transform on R and S (S)� the space of smooth radial functions
f (x)= f (|x|) on S such that

sup
r�0

(1+ r)Me(Q/2)r
∣∣∣∣
(

∂

∂r

)N

f (r)

∣∣∣∣<+∞

for every M,N ∈N. Recall that the Abel transform and its inverse can be expressed
explicitly in terms of Weyl fractional transforms, which are defined by

W τ
μ f (r)= 1

Γ (μ+M)

∫ +∞

r

d(cosh τs) (cosh τs − cosh τr)μ+M−1

×
(
− d

d(cosh τs)

)M

f (s)

for τ > 0 and for μ ∈C, M ∈N such that Reμ>−M . Specifically,

A = c1W
1/2
m/2 ◦W 1

k/2 and A −1 = 1

c1
W 1−k/2 ◦W

1/2
−m/2,
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where c1 = 2(3m+k)/2π(m+k)/2. More precisely,

A −1f (r)= 1

c1

(
− d

d(cosh r)

)k/2(
− d

d(cosh r/2)

)m/2

f (r)

if n is odd, i.e., k is even, and

A −1f (r)= 1

c1
√
π

∫ +∞

r

ds√
cosh s − cosh r

×
(
− d

ds

)(
− d

d(cosh s)

)(k−1)/2(
− d

d(cosh s/2)

)m/2

f (s)

if n is even, i.e., k is odd. Similarly, the dual Abel transform

A �f (r)= (f̃ )�(r), where f̃ (X,Y, z)= e(Q/2)zf (z), (5)

and its inverse can be expressed explicitly in terms of Riemann-Liouville fractional
transforms Rτ

μ, which are defined by

Rτ
μf (r)= 1

Γ (μ+M)

∫ r

0
d(cosh τs) (cosh τr − cosh τs)μ+M−1

×
(

d

d(cosh τs)

)M

f (s)

for τ > 0 and for μ ∈C, M ∈N such that Reμ>−M .

Theorem 2.1 The dual Abel transform (5) is a topological isomorphism between
C∞(R)even and C∞(S)� ≡ C∞(R)even. Explicitly,

A �f (r)= c2

2

(
sinh

r

2

)−m

(sinh r)1−kR1
k/2

{(
cosh

.

2

)−1

R
1/2
m/2

[(
sinh

.

2

)−1

f

]}
(r)

and

(
A �

)−1
f (r)= 1

c2

d

dr

(
R

1/2
−m/2 ◦R1

1−k/2

){(
sinh

.

2

)m

(sinh ·)k−1f

}
(r)

where c2 = 2n/2−1/2π−1/2Γ (n2 )= 21/2−n/2(n− 1)!Γ (n+1
2 )−1. More precisely,

(
A �

)−1
f (r)= 1

c2

d

dr

(
d

d(cosh r/2)

)m/2(
d

d(cosh r)

)k/2−1

×
{(

sinh
r

2

)m

(sinh r)k−1f (r)

}
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if n is odd, i.e., k is even, and

(
A �

)−1
f (r)= 1

c2
√
π

d

dr

(
d

d(cosh r/2)

)m/2(
d

d(cosh r)

)(k−1)/2

×
∫ r

0

ds√
cosh r − cosh s

(
sinh

s

2

)m

(sinh s)kf (s)

if n is even, i.e., k is odd.

Proof Everything follows from the duality formulae∫
R

dr A f (r)g(r)=
∫
S

dx f (x)A �g(x),

∫ +∞

0
d(cosh τr)W τ

μ f (r)g(r)=
∫ +∞

0
d(cosh τr)f (r)Rτ

μg(r),

and from the properties of the Riemann-Liouville transforms, in particular

Rτ
1/2 : rC∞(R)even

≈−→ r+1C∞(R)even

for every integer �−1. �

Remark 2.2 In the degenerate case m= 0, we recover the classical expressions for
real hyperbolic spaces Hn(R) :

A f (r)= (2π)(n−1)/2

Γ (n−1
2 )

∫ +∞

r

d(cosh s) (cosh s − cosh r)(n−3)/2f (s),

A �f (r)= c3(sinh r)−(n−2)
∫ r

0
ds (cosh r − cosh s)(n−3)/2f (s),

where c3 = 2(n−1)/2Γ ( n2 )√
πΓ ( n−1

2 )
= (n−2)!

2(n−3)/2Γ ( n−1
2 )2 ,

A −1f (r)= (2π)−(n−1)/2
(
− d

d(cosh r)

)(n−1)/2

f (r),

(
A �

)−1
f (r)= 2(n−1)/2 ( n−1

2 )!
(n− 1)!

d

dr

(
d

d(cosh r)

)(n−3)/2{
(sinh r)n−2f (r)

}
if n is odd and

A −1f (r)= 1

2(n−1)/2πn/2

×
∫ +∞

r

ds√
cosh s − cosh r

(
− d

ds

)(
− d

d(cosh s)

)n/2−1

f (s),
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(
A �

)−1
f (r)= 1

2(n−1)/2( n2 − 1)!
d

dr

(
d

d(cosh r)

)n/2−1

×
∫ r

0

ds√
cosh r − cosh s

(sinh s)n−1f (s)

if n is even.

3 Ásgeirsson’s Mean Value Theorem and the Shifted Wave
Equation on Damek–Ricci Spaces

Theorem 3.1 Assume that U ∈ C∞(S × S) satisfies

ΔxU(x, y)=ΔyU(x, y). (6)

Then ∫
S(x,r)

dx′
∫
S(y,s)

dy′U
(
x′, y′

)= ∫
S(x,s)

dx′
∫
S(y,r)

dy′U
(
x′, y′

)
(7)

for every x, y ∈ S and r, s > 0.

Proof The proof is similar to the real hyperbolic space case [17, Sect. II.5.6] once
one has introduced the double spherical means

U�,�
x,y (r, s)=

1

δ(r)

∫
S(x,r)

dx′ 1

δ(s)

∫
S(y,s)

dy′U
(
x′, y′

)
and transformed (6) into

(radΔ)rU
�,�
x,y(r, s)= (radΔ)sU

�,�
x,y(r, s). �

Ásgeirsson’s Theorem is the following limit case of Theorem 3.1, which is ob-
tained by dividing (7) by δ(s) and by letting s → 0.

Corollary 3.2 Under the same assumptions,∫
S(x,r)

dx′U
(
x′, y

)= ∫
S(y,r)

dy′U
(
x, y′

)
.

Given a solution u ∈ C∞(S ×R) to the shifted wave equation

∂2
t u(x, t)=

(
Δx +Q2/4

)
u(x, t) (8)

on S with initial data u(x,0)= f (x) and ∂t |t=0 u(x, t)= 0, set

U(x,y)= e(Q/2)tu(x, t), (9)
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where t is the z coordinate of y. Then (9) satisfies (6), according to (3). By applying
Corollary 3.2 to (9) with y = e and r = |t |, we deduce that the dual Abel transform
of t �→ u(x, t), as defined in (5), is equal to the spherical mean f

�
x (|t |) of the initial

datum f . Hence

u(x, t)= (A �
)−1(

f �
x

)
(t).

By integrating with respect to time, we obtain the solutions

u(x, t)=
∫ t

0
ds
(
A �

)−1(
g�
x

)
(s)

to (8) with initial data u(x,0)= 0 and ∂t |t=0 u(x, t)= g(x). In conclusion, general
solutions to the shifted wave equation{

∂2
t u(x, t)= (Δx +Q2/4)u(x, t)

u(x,0)= f (x), ∂t |t=0 u(x, t)= g(x)
(10)

on S are given by

u(x, t)= (A �
)−1(

f �
x

)
(t)+

∫ t

0
ds
(
A �

)−1(
g�
x

)
(s).

By using Theorem 2.1, we deduce the following explicit expressions.

Theorem 3.3

(i) When n is odd, the solution to (10) is given by

u(x, t)= c4
∂

∂t

(
∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)k/2−1{ 1

sinh t

∫
S(x,|t |)

dy f (y)

}

+ c4

(
∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)k/2−1{ 1

sinh t

∫
S(x,|t |)

dy g(y)

}
,

with c4 = 2−3m/2−k/2−1π−(n−1)/2.
(ii) When n is even, the solution to (10) is given by

u(x, t)= c5
∂

∂|t |
(

∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)(k−1)/2

×
∫
B(x,|t |)

dy
f (y)√

cosh t − cosh d(y, x)

+ c5 sign(t)

(
∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)(k−1)/2

×
∫
B(x,|t |)

dy
g(y)√

cosh t − cosh d(y, x)
,

with c5 = 2−3m/2−k/2−1π−n/2.
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Remark 3.4 These formulae extend to the degenerate case m = 0, which corre-
sponds to real hyperbolic spaces Hn(R):

(i) n odd:

u(t, x)= c6
∂

∂t

(
∂

∂(cosh t)

)(n−3)/2{ 1

sinh t

∫
S(x,|t |)

dy f (y)

}

+ c6

(
∂

∂(cosh t)

)(n−3)/2{ 1

sinh t

∫
S(x,|t |)

dy g(y)

}
,

with c6 = 2−(n+1)/2π−(n−1)/2.
(ii) n even:

u(t, x)= c7
∂

∂|t |
(

∂

∂(cosh t)

)n/2−1 ∫
B(x,|t |)

dy
f (y)√

cosh t − cosh d(y, x)

+ c7 sign(t)

(
∂

∂(cosh t)

) n
2−1 ∫

B(x,|t |)
dy

g(y)√
cosh t − cosh d(y, x)

,

with c7 = 2−(n+1)/2π−n/2.

As an application, let us investigate the propagation of solutions u to the shifted
wave equation (10) with initial data f,g supported in a ball B(x0,R). The following
two statements are immediate consequences of Theorem 3.3. Firstly, waves propa-
gate at unit speed.

Corollary 3.5 Under the above assumptions,

suppu⊂ {(x, t) ∈ S | d(x, x0)� |t | +R
}
.

Secondly, Huygens’ principle holds in odd dimension, as in the Euclidean setting.
This phenomenon was already observed in [25].

Corollary 3.6 Assume that n is odd. Then, under the above assumptions,

suppu⊂ {(x, t) ∈ S | |t | −R � d(x, x0)� |t | +R
}
.

In even dimension, u(x, t) may not vanish when d(x, x0) < |t | −R, but it tends
asymptotically to 0. This phenomenon was observed in several settings, for instance
on Euclidean spaces in [27], on Riemannian symmetric spaces of the noncompact
type [7], on Damek–Ricci spaces [4], for Chébli-Trimèche hypergroups [14], . . . .
Our next result differs from [4, 7, 14] in two ways. On one hand, we use explicit
expressions instead of the Fourier transform. On the other hand, we aim at energy
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estimates as in [27], which are arguably more appropriate than pointwise estimates.
Recall indeed that the total energy

E (t)=K (t)+P(t) (11)

is time independent, where

K (t)= 1

2

∫
S

dx
∣∣∂tu(x, t)∣∣2

is the kinetic energy and

P(t)= 1

2

∫
S

dx
(−Δx −Q2/4

)
u(x, t)u(x, t)

= 1

2

∫
S

dx
{∣∣∇xu(x, t)

∣∣2 −Q2/4
∣∣u(x, t)∣∣2}

the potential energy. By the way, let us mention that the equipartition of (11) into
kinetic and potential energies was investigated in [7] and in the subsequent works
[4, 5, 14] (see also [18, Sect. V.5.5] and the references cited therein).

Lemma 3.7 Let u be a solution to (10) with smooth initial data f , g supported in
a ball B(x0,R). Then

u(x, t), ∂tu(x, t), ∇xu(x, t) are O
(
e−(Q/2)|t |)

for every x ∈ S and t ∈R such that d(x, x0)� |t | −R − 1.

Proof Assume t > 0 and consider the second part

v(x, t)=
(

∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)(k−1)/2

×
∫
B(x,t)

dy
g(y)√

cosh t − cosh d(y, x)

(12)

of the solution u(x, t) in part (ii) of Theorem 3.3. The case t < 0 and the first part
are handled similarly. As B(x0,R)⊂ B(x, t), we have∫

B(x,t)

dy
g(y)√

cosh t − cosh d(y, x)
=
∫
B(x0,R)

dy
g(y)√

cosh t − cosh d(y, x)

and thus it remains to apply the differential operator

Dt =
(

∂

∂(cosh t/2)

)m/2(
∂

∂(cosh t)

)(k−1)/2
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to {cosh t − cosh d(y, x)}−1/2. Firstly

(
∂

∂(cosh t)

)(k−1)/2{
cosh t − cosh d(y, x)

}−1/2 = const
{
cosh t − cosh d(y, x)

}−k/2

and secondly

(
∂

∂(cosh t/2)

)m/2{
cosh t − cosh d(y, x)

}−k/2

=
∑

0�j�m
4

aj (cosh t/2)m/2−2j{cosh t − cosh d(y, x)
}−k/2−m/2+j

,

for some constants aj . As

cosh t − cosh d(y, x)= 2 sinh
t + d(y, x)

2
sinh

t − d(y, x)

2
� et ,

we conclude that Dt {cosh t − cosh d(y, x)}−1/2 and hence v(x, t) are O(e−
Q
2 t ). The

derivatives ∂tv(x, t) and ∇xv(x, t) are estimated similarly. As far as ∇xv(x, t) is
concerned, we use in addition that

sinh d(y, x)= O
(
et
)

and
∣∣∇x d(y, x)

∣∣� 1.

This concludes the proof of Lemma 3.7. �

Theorem 3.8 Let u be a solution to (10) with initial data f,g ∈ C∞
c (S) and let

R =R(t) be a positive function such that

{
R(t)→+∞
R(t)= o(|t |) as t →±∞.

Then ∫
d(x,e)<|t |−R(t)

dx
{∣∣u(x, t)∣∣2 + ∣∣∇xu(x, t)

∣∣2 + ∣∣∂tu(x, t)∣∣2}
tend to 0 as t →±∞. In other words, the energy of u concentrates asymptotically
inside the spherical shell

{
x ∈ S | |t | −R(t)� d(x, e)� |t | +R(t)

}
.

Proof By combining Lemma 3.7 with the volume estimate

volB
(
e, |t | −R(t)

)� eQ{|t |−R(t)} as t →±∞,
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we deduce that the three integrals∫
d(x,e)<|t |−R(t)

dx
∣∣u(x, t)∣∣2,

∫
d(x,e)<|t |−R(t)

dx
∣∣∇xu(x, t)

∣∣2,
∫

d(x,e)<|t |−R(t)

dx
∣∣∂tu(x, t)∣∣2

are O(e−QR(t)) and hence tend to 0 as t →±∞. �

4 The Shifted Wave Equation on Homogeneous Trees

This section is devoted to a discrete setting, which is similar to the continuous setting
considered so far. A homogeneous tree T= Tq of degree q + 1 > 2 is a connected
graph with no loops and with the same number q + 1 of edges at each vertex. We
shall be content with a brief review and we refer to the expository paper [12] for
more information (see also the monographs [15, 16]).

For the counting measure, the volume of any sphere S(x,n) in T is given by

δ(n)=
{

1 if n= 0,

(q + 1)qn−1 if n ∈N
�.

Once we have chosen an origin 0 ∈ T and a geodesic ω : Z→ T through 0, let us
denote by |x| ∈ N the distance of a vertex x ∈ T to the origin and by h(x) ∈ Z its
horocyclic height (see Fig. 1).

The combinatorial Laplacian is defined on Z by

L Zf (n)= f (n)− f (n+ 1)+ f (n− 1)

2
,

Fig. 1 Upper half space
picture of T3
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and similarly on T by

L Tf (x)= f (x)− 1

q + 1

∑
y∈S(x,1)

f (y). (13)

The L2-spectrum of L T is equal to the interval [1− γ,1+ γ ], where

γ = 2

q1/2 + q−1/2
∈ (0,1).

We have

L Tf (n)=
{
f (0)− f (1) if n= 0,

f (n)− 1
q+1f (n− 1)− q

q+1f (n+ 1) if n ∈N
�

(14)

on radial functions and

L Tf (h)= f (h)− q

q + 1
f (h− 1)− 1

q + 1
f (h+ 1)

= γ qh/2L Z

h

{
q−h/2f (h)

}+ (1− γ )f (h) (15)

on horocyclic functions.
Again, radial Fourier analysis on T may be summarized by the following com-

mutative diagram

C∞(R/τZ)even

H ↗ ≈ ≈ ↖ F

S (T)�
≈−→
A

S (Z)even

Here

H f (λ)=
∑
x∈T

ϕλ(x)f (x) for every λ ∈R

denotes the spherical Fourier transform on T,

A f (h)= qh/2
∑
x∈T

h(x)=h

f
(|x|) for every h ∈ Z

the Abel transform and

Ff (λ)=
∑
h∈Z

qiλhf (h) for every λ ∈R
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a variant of the classical Fourier transform on Z. Moreover τ = 2π
logq

, S (Z)even

denotes the space of even functions on Z such that

sup
n∈N�

nk
∣∣f (n)

∣∣<+∞ for every k ∈N,

and S (T)� the space of radial functions on T such that

sup
n∈N�

nkqn/2
∣∣f (n)

∣∣<+∞ for every k ∈N.

Consider finally the dual Abel transform

A �f (n)= 1

δ(n)

∑
x∈T
|x|=n

qh(x)/2f
(
h(x)

)
for every n ∈N.

The following expressions are obtained by elementary computations.

Lemma 4.1

(i) The Abel transform is given by

A f (h)= q |h|/2f
(|h|)+ q − 1

q

+∞∑
k=1

q |h|/2+kf
(|h| + 2k

)

=
+∞∑
k=0

q |h|/2+k
{
f
(|h| + 2k

)− f
(|h| + 2k + 2

)}
for every h ∈ Z

and the dual Abel transform by

A �f (n)= 2q

q + 1
q−|n|/2f (±n)+ q − 1

q + 1
q−|n|/2

∑
−|n|<k<|n|

k has same parity as n

f (±k)

if n ∈ Z
�, resp. A �f (0)= f (0).

(ii) The inverse Abel transform is given by

A −1f (n)=
+∞∑
k=0

q−n/2−k
{
f (n+ 2k)− f (n+ 2k + 2)

}

= q−n/2f (n)− (q − 1)
+∞∑
k=1

q−n/2−kf (n+ 2k) for every n ∈N
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and the inverse dual Abel transform by

(
A �

)−1
f (h)= 1

2
qh/2f (h)+ 1

2
q−h/2f (1)

+ 1

2

(h−1)/2∑
k=1

qh/2−2k+1{f (h− 2k+ 2)− f (h− 2k)
}

= q1/2 + q−1/2

2
q(h−1)/2f (h)− q − q−1

2
q−

h
2

∑
0<k odd<h

qkf (k)

if h ∈N is odd, respectively

(
A �

)−1
f (0)= f (0)

and

(
A �

)−1
f (h)= 1

2
qh/2f (h)+ 1

2
q−h/2f (0)

+ 1

2

h/2∑
k=1

qh/2−2k+1{f (h− 2k+ 2)− f (h− 2k)
}

= q1/2 + q−1/2

2
q(h−1)/2f (h)− q1/2 − q−1/2

2
q−(h−1)/2f (0)

− q − q−1

2
q−h/2

∑
0<k even<h

qkf (k)

if h ∈N
� is even.

We are interested in the following shifted wave equation on T:{
γL Z

n u(x,n)= (L T
x − 1+ γ )u(x,n),

u(x,0)= f (x), {u(x,1)− u(x,−1)}/2 = g(x).
(16)

As was pointed out to us by Nalini Anantharaman, this equation occurs in the recent
works [8, 9]. The unshifted wave equation with discrete time was studied in [11]
and the shifted wave equation with continuous time in [23].

We will solve (16) by applying the following discrete version of Ásgeirsson’s
mean value theorem and by using the explicit expression of the inverse dual Abel
transform.

Theorem 4.2 Let U be a function on T such that

L T

x U(x, y)=L T

y U(x, y) for every x, y ∈ T. (17)
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Then ∑
x′∈S(x,m)

∑
y′∈S(y,n)

U
(
x′, y′

)= ∑
x′∈S(x,n)

∑
y′∈S(y,m)

U
(
x′, y′

)

for every x, y ∈ T and m,n ∈N. In particular∑
x′∈S(x,n)

U
(
x′, y

)= ∑
y′∈S(y,n)

U
(
x, y′

)
. (18)

In order to prove Theorem 4.2, we need the following discrete analog of (4).

Lemma 4.3 Consider the spherical means

f �
x (n)=

1

δ(n)

∑
y∈S(x,n)

f (y) for every x ∈ T, n ∈N.

Then (
L Tf

)�
x
(n)= (radL )nf

�
x (n),

where radL denotes the radial part (14) of L T.

Proof We have

(
L Tf

)�
x
(n)=

{
f (x)− f

�
x (1) if n= 0,

f
�
x (n)− 1

q+1f
�
x (n− 1)− q

q+1f
�
x (n+ 1) if n ∈N

�. �

Proof of Theorem 4.2 Fix x, y ∈ T and consider the double spherical means

U�,�
x,y(m,n)= 1

δ(m)

∑
x′∈S(x,m)

1

δ(n)

∑
y′∈S(y,n)

U
(
x′, y′

)
,

that we shall denote by V (m,n) for simplicity. According to Lemma 4.3, our as-
sumption (17) may be rewritten as

(radL )mV (m,n)= (radL )nV (m,n). (19)

Let us prove the symmetry

V (m,n)= V (n,m) for every m,n ∈N (20)

by induction on =m+ n. First of all, (20) is trivial if = 0 and (20) with = 1 is
equivalent to (19) with m= n= 0. Assume next that � 1 and that (20) holds for
m+ n� . On one hand, let m> n> 0 with m+ n= + 1 and let 1 � k �m− n.
We deduce from (19) at the point (m− k,n+ k− 1) that
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V (m− k + 1, n+ k− 1)− V (m− k,n+ k)

= q
{
V (m− k,n+ k− 2)− V (m− k − 1, n+ k − 1)

}
. (21)

By adding up (21) over k, we obtain

V (m,n)− V (n,m)= q
{
V (m− 1, n− 1)− V (n− 1,m− 1)

}
, (22)

which vanishes by induction. On the other hand, we deduce from (19) at the points
(,0) and (0, ) that{

V (+ 1,0)= (q + 1)V (,1)− qV (,0),

V (0, + 1)= (q + 1)V (1, )− qV (0, ).

Hence V ( + 1,0) = V (0,  + 1) by using (22) and by induction. This concludes
the proof of Theorem 4.2. �

Let us now solve explicitly the shifted wave equation (16) on T as we did in
Sect. 3 for the shifted wave equation (10) on Damek–Ricci spaces. Consider first a
solution u to (16) with initial data u(x,0)= f (x) and {u(x,1)− u(x,−1)}/2 = 0.
On one hand, as (x,n) �→ u(x,−n) satisfies the same Cauchy problem, we have
u(x,−n)= u(x,n) by uniqueness. On the other hand, according to (15), the func-
tion

U(x,y)= qh(y)/2u
(
x,h(y)

)
for every x, y ∈ T

satisfies (17). Thus, by applying (18) to U with y = 0, we deduce that the dual
Abel transform of n �→ u(x,n) is equal to the spherical mean f

�
x (n) of the initial

datum f . Hence

u(x,n)= (A �
)−1(

f �
x

)
(n) for every x ∈ T, n ∈N.

Consider next a solution u to (16) with initial data u(x,0) = 0 and {u(x,1) −
u(x,−1)}/2 = g(x). Then u(x,n) is an odd function of n and

v(x,n)= u(x,n+ 1)− u(x,n− 1)

2

is a solution to (16) with initial data v(x,0)= g(x) and {v(x,1)− v(x,−1)}/2 = 0.
Hence

u(x,n)=
{

2
∑

0<k odd<n v(x, k) if n ∈N
� is even,

g(x)+ 2
∑

0<k even<n v(x, k) if n ∈N
� is odd,

with v(x,n) = (A �)−1(g
�
x)(n). Using part (ii) of Lemma 4.1, we deduce the fol-

lowing explicit expressions.
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Theorem 4.4 The solution to (16) is given by

u(x,n)= 1

2
q−|n|/2

∑
d(y,x)=|n|

f (y)− q − 1

2
q−|n|/2

∑
d(y,x)<|n|

|n|−d(y,x) even

f (y)

+ sign(n)q1/2−|n|/2
∑

d(y,x)<|n|
|n|−d(y,x) odd

g(y) for every x ∈ T, n ∈ Z
�.

In other words,

u(x,n)=
Cn︷ ︸︸ ︷

M|n| −M|n|−2

2
f (x)+

Sn︷ ︸︸ ︷
sign(n)M|n|−1 g(x), (23)

where

Mnf (x)= q−n/2
∑

d(y,x)�n
n−d(y,x) even

f (y) (24)

if n� 0 and M−1 = 0.

Remark 4.5 Notice that the radial convolution operators Cn and Sn above corre-
spond, via the Fourier transform, to the multipliers

cosq nλ and
sinq nλ

sinq λ
,

where cosq λ= (qiλ + q−iλ)/2 and sinq λ= (qiλ − q−iλ)/2i.

As we did in Sect. 3, let us next deduce propagation properties of solutions u to
the shifted wave equation (16) with initial data f,g supported in a ball B(x0,N).

Corollary 4.6 Under the above assumptions,

1. u(x,n)= O(q−|n|/2) for every x ∈ T, n ∈ Z;
2. suppu⊂ {(x,n) ∈ T×Z | d(x, x0)� |n| +N}.

Obviously Huygens’ principle doesn’t hold for (16), strictly speaking. Let us
show that it holds asymptotically, as for even dimensional Damek–Ricci spaces. For
this purpose, define as follows the kinetic energy

K (n)= 1

2

∑
x∈T

∣∣∣∣u(x,n+ 1)− u(x,n− 1)

2

∣∣∣∣
2
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and the potential energy

P(n)= 1

4q

∑
x,y∈T

d(x,y)=2

∣∣∣∣u(x,n)− u(y,n)

2

∣∣∣∣
2

− (q − 1)2

8q

∑
x∈T

∣∣u(x,n)∣∣2

= q + 1

8

∑
x∈T

(L̃x − γ̃ )u(x,n)u(x,n) (25)

for solutions u to (16). Here

L̃ f (x)= f (x)− 1

q(q + 1)

∑
y∈S(x,2)

f (y)

is the 2-step Laplacian on T and

γ̃ = (q − 1)2

q(q + 1)
∈ (0,1).

Lemma 4.7

(i) The L2-spectrum of L̃ is equal to the interval [γ̃ , (q+1)/q]. Thus the potential
energy (25) is nonnegative.

(ii) The total energy

E (n)=K (n)+P(n)

is independent of n ∈ Z.

Proof (i) Follows for instance from the relation

L̃ = q + 1

q
L T

(
2−L T

)
and from the fact that the L2-spectrum of L T is equal to the interval [1−γ,1+γ ].

(ii) Notice that the shifted wave equation

γL Z

n u(x,n)= (L T

x − 1+ γ
)
u(x,n)

amounts to

u(x,n+ 1)+ u(x,n− 1)= 1√
q

∑
y∈S(x,1)

u(y,n).

As∑
x∈T

∑
y,z∈S(x,1)

u(y,n)u(z,n)= (q + 1)
∑
x∈T

∣∣u(x,n)∣∣2 + ∑
y,z∈T

d(y,z)=2

u(y,n)u(z,n),



The Shifted Wave Equation on Damek–Ricci Spaces and on Homogeneous Trees 21

we have on one hand

K (n)= q + 1

8q

∑
x∈T

∣∣u(x,n)∣∣2 + 1

2

∑
x∈T

∣∣u(x,n± 1)
∣∣2

+ 1

8q

∑
x,y∈T

d(x,y)=2

u(x,n)u(y,n)− 1

2
√
q

∑
x,y∈T

d(x,y)=1

Re
{
u(x,n)u(y,n± 1)

}
.

(26)

On the other hand,

P(n)= 3q − 1

8q

∑
x∈T

∣∣u(x,n)∣∣2 − 1

8q

∑
x,y∈T

d(x,y)=2

u(x,n)u(y,n). (27)

By adding up (26) and (27), we obtain

E (n)= 1

2

∑
x∈T

∣∣u(x,n)∣∣2 + 1

2

∑
x∈T

∣∣u(x,n± 1)
∣∣2

− 1

2
√
q

∑
x,y∈T

d(x,y)=1

Re
{
u(x,n)u(y,n± 1)

}

and we deduce from this expression that

E (n)= E (n± 1).

This concludes the proof of Lemma 4.7. �

Remark 4.8 Alternatively, part (ii) of Lemma 4.7 can be proved by expressing the
energies K (n), P(n), E (n) in terms of the initial data f , g and by using spectral
calculus. Specifically,

K (n)= 1

8

∑
x∈T

(Cn+1 −Cn−1)
2f (x)f (x)

+ 1

8

∑
x∈T

(Sn+1 − Sn−1)
2g(x)g(x)

+ 1

4
Re
∑
x∈T

(Cn+1 −Cn−1)(Sn+1 − Sn−1)f (x)g(x)


