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On a height he stood that looked towards
greater heights.
Our early approaches to the Infinite
Are sunrise splendours on a marvellous verge
While lingers yet unseen the glorious sun.
What now we see is a shadow of what must
come.

Sri Aurobindo, Savitri 1.4

How I wish I could show you the world
through my eyes.

Vivekananda



Preface

22 December 2012 marks the 125th birth anniversary of the Indian mathematician
Srinivasa Ramanujan. Being largely self-taught, he emerged from extreme poverty
to become one of 20th century’s most influential mathematicians. His story is a
phenomenal “rags to mathematical riches” story. In his short life, he had a wealth
of ideas that have transformed and reshaped 20th century mathematics. These ideas
continue to shape mathematics of the 21st century.

This book is meant to be a panoramic view of his essential mathematical con-
tributions. It is not an encyclopedic account of Ramanujan’s work. Rather, it is an
informal account of some of the major developments that emanated from his work
in the 20th and 21st centuries. The twelve essays focus on a subset of his significant
papers and show how these papers shaped the course of modern mathematics.

These essays are based on lectures given by the authors over the years at
the Chennai Mathematical Institute, Harish-Chandra Research Institute, IISER
(Kolkata), IISER (Bhopal), IIT (Powai), IIT (Chennai), Institute for Mathematical
Sciences (Chennai), and the Tata Institute for Fundamental Research (Mumbai) as
well as Queen’s University, the Fields Institute, and the University of Toronto. The
lectures were given so that the material is accessible to undergraduates and grad-
uate students. We have striven to not be too technical. At the same time, we tried
to convey some depth of the mathematical theories emerging from the work of Ra-
manujan. Surely, it is impossible to be comprehensive in such a mammoth task. Still,
we hope that the reader will see how the vast landscape of Ramanujan’s garden has
blossomed over the past century.

M. Ram Murty
V. Kumar Murty

Toronto, Canada
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Chapter 1
The Legacy of Srinivasa Ramanujan

Mathematics enjoys the freedom of art and the precision of science. There is free-
dom of combination of ideas and concepts, but there is also the precision of logic and
the ring of truth. It is like a master symphony. The Soviet mathematician, I.R. Sha-
farevich [186] once remarked that “a superficial glance at mathematics may give an
impression that it is a result of separate individual efforts of many scientists scattered
about in continents and in ages. However, the inner logic of its development reminds
one much more of the work of a single intellect, developing its thought systemat-
ically and consistently using the variety of human individualities only as a means.
It resembles an orchestra performing a symphony composed by someone. A theme
passes from one instrument to another, it is taken up by another and performed with
irreproachable precision.”

This is no doubt true and yet, the music reaches a crescendo in the hands of
certain luminaries. One such luminary was Srinivasa Ramanujan. What is fascinat-
ing about Ramanujan is that he was largely self-taught and emerged from extreme
poverty to become one of the 20th century’s influential mathematicians. His story is
a “rags to mathematical riches” story. In the cosmic symphony of mathematics, he
played a major role.

The music of Ramanujan emanates both from his life and his work. Born on
22 December 1887 in humble and poor surroundings in the town of Erode situated
in present day Tamil Nadu, India, Ramanujan cultivated his love for mathematics
singlehandedly and in total isolation. As a child, he was quiet and often to himself.
Those that knew him were impressed by his shining large eyes which were his most
prominent features. He had a prodigious memory, and at school, he would entertain
his friends by reciting the various declensions of Sanskrit roots and by repeating the
value of the constant π to any number of decimal places.

At the age of 12, he borrowed a book on trigonometry from an older student and
completely mastered its contents. This book was Loney’s Plane Trigonometry pub-
lished by Cambridge in 1894 and contains a great deal of information on summation
of series, logarithms of complex numbers, calculation of π and Gregory’s series.
This certainly goes far beyond any modern curriculum of trigonometry taught in our
high schools today. But the book that influenced him the most was Carr’s A synopsis

M.R. Murty, V.K. Murty, The Mathematical Legacy of Srinivasa Ramanujan,
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2 1 The Legacy of Srinivasa Ramanujan

of elementary results in pure and applied mathematics. This book is a compilation
of some 6165 theorems, systematically arranged but with practically no proofs. It
is not a remarkable book and was used by students of Carr for their preparation for
the Mathematical Tripos, the entrance examination of Cambridge University. But
Ramanujan has made the book famous in that he set about demonstrating to himself
each of the assertions enunciated therein. To do this, he used a slate, jotting down
the formula to be proved, erasing it with his elbow, jotting down some more formu-
las that led to the proof, then erasing them again with his elbow and jotting down
some more formulas. People used to speak about his bruised elbow, and we know
how he got it. Thus he worked his way through the book. This experience influenced
him profoundly, and his contact with this book marks the beginning of his explo-
ration of the world of mathematics. Carr’s synopsis was therefore a great blessing.
But unfortunately, Ramanujan took this synopsis as his model for writing, and his
famous notebooks consisting of over 4000 formulas are written down in this style
without proofs. The intermediate results, the links of the chain, have been erased by
the elbow of Ramanujan, and his legacy is simply a set of discoveries, a melody of
formulas.

When we look through these formulas discovered by Ramanujan, it is like great
music echoing through our consciousness and the music lingers. Each is pregnant
with meaning and heralding further exploration. Perhaps it is not so unfortunate that
Ramanujan had taken Carr as his model for writing. We all now have work to do.
“When the kings are building, the carters have work to do.”

Another thing that we learn from the early mathematical development of Ra-
manujan, is the importance of problem solving in the primary grades. The math-
ematician and educator, George Pólya, was right when he stated that mathematics
cultivates logical and orderly thinking, and a precision for the expression of ideas.
So Ramanujan mastered a large tract of college level mathematics simply through
problem solving and working through Carr’s synopsis.

A year later, in 1903, he secured a seat in the Government College in Kum-
bakonam. However, his passionate absorption in mathematics led him to neglect his
other subjects, and the inevitable happened. He failed the exams at the end of his first
year. Four years later, he entered another college in Madras (now called Chennai)
but met with the same fate at the end of his first year.

In 1909, at the age of 22, he married Kumari Janaki, and with his new respon-
sibility, it was necessary for him to secure a job. This he succeeded in doing in
1912, when he became a clerk in the Madras Port Trust Office. There his duties
were light, and he found time to devote to his mathematical research. Moreover, as
luck would have it, the manager of the office, S.N. Aiyar, was a mathematician who
took kindly to him and his discoveries. With Aiyar’s encouragement, Ramanujan
communicated some of his results to several British mathematicians. (For a short
biography of S.N. Aiyar and the role he played in Ramanujan’s life, we refer the
reader to a recent article by Berndt [23].) His first three attempts produced little or
no response. But in 1913, he wrote to G.H. Hardy at Trinity College, Cambridge.
This was a turning point since Hardy was a renowned expert in analysis and number
theory.
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We should say here that number theory should not be confused with numerology.
There is no mysticism attached to number theory. The only mystifying element is
that there are beautiful formulas and there is a logical, mathematical order in the
apparent chaotic universe. Number theory is the study of hidden mathematical pat-
terns among numbers. It is called the queen of mathematics because the problems
of number theory have given birth to the diverse disciplines of mathematics. Prob-
lems are utilized as points of focus of concentration. In themselves, the problems
are unimportant. But in the finding of their solution, new concepts arise, and new
links and patterns are found with other concepts and disciplines of mathematics. It
is the final mosaic that is the end in view and not the esoteric problem, which is used
only as a means of motivation.

So when Hardy received the letter, he found himself a little confounded and could
not at first decide whether it was written by a crank or a genius. To the letter were
attached about 120 theorems of which a representative sample is given by the fol-
lowing 15:

1 − 3!
(1!2!)3 x

2 + 6!
(2!4!)3 x

4 − · · ·

=
(

1 + x

1!3 + x2

2!3 + · · ·
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√
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∫ a

0
e−x2

dx = 1

2

√
π − e

−a2

2a+
1

a+
2

2a+
3

a+
4

2a + · · · . (8)

4
∫ ∞

0

xe−x
√

5

coshx
dx = 1

1+
12

1+
12

1+
22

1+
22

1+
32

1+
32

1 + · · · . (9)

If u= x

1+
x5

1+
x10

1+
x15

1 + · · · , v = x1/5

1+
x

1+
x2

1+
x3

1 + · · · ,

then v5 = u1 − 2u+ 4u2 − 3u3 + u4

1 + 3u+ 4u2 + 2u3 + u4
. (10)

1

1+
e−2π

1+
e−4π

1 + · · · =
{√(

5 + √
5

2

)
−

√
5 + 1

2

}
e2π/5. (11)

1

1+
e−2π

√
5

1+
e−4π

√
5

1 + · · · =
[ √

5

1 + (53/4(
√

5−1
2 )5/2 − 1)1/5

−
√

5 + 1

2

]
e2π/

√
5 (12)
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The coefficient of xn in (1 − 2x + 2x4 − 2x9 + · · · )−1 is the integer nearest to

1

4n

(
coshπ

√
n− sinhπ

√
n

π
√
n

)
. (14)

The number of numbers between A and x which are either squares or sums
of two squares is

K

∫ x

A

dt√
log t

+ θ(x), (15)

whereK = 0.764 . . . , and θ(x) is very small compared with the previous integral.

These fifteen entries from Ramanujan’s letter to Hardy give a representative sam-
ple of the formulas contained there. The first four belong to the theory of infinite se-
ries. The next three are new definite integrals. Formulas (8) to (12) are in the theory
of continued fractions. Formula (13) belongs to the theory of complex multiplication
and singular moduli. Formula (14) is the first suggestion of Ramanujan’s knowledge
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of the circle method (about which we say more in a later chapter). Finally, (15) be-
longs to analytic number theory.

Hardy took over two hours to analyse the letter to ascertain whether the author
was a crank or a genius. Hardy’s reaction is expressed in his own words: “I should
like you to begin by trying to reconstruct the immediate reactions of an ordinary
professional mathematician who receives a letter like this from an unknown Indian
clerk.”

“The first question was whether I could recognise anything. I had proved things
rather like (7) myself and seemed vaguely familiar with (8). Actually (8) is classical;
it is a formula of Laplace first proved properly by Jacobi and (9) occurs in a paper
published by Rogers in 1907.”

So the conclusion was that Ramanujan had rediscovered all of these theorems
amidst the impoverished mathematical background of his rustic surroundings.

Hardy continues, “I thought, that as an expert in definite integrals, I could prob-
ably prove (5) and (6) and did so, though with a good deal more trouble than I had
expected. . . . The series formulas (1)–(4) I found much more intriguing and it soon
became obvious that Ramanujan must possess much more general theorems and
was keeping a great deal up his sleeve. . . . The formulas (10)–(13) are on a different
level and obviously both difficult and deep. An expert in elliptic functions can see
at once that (13) is derived somehow from the theory of complex multiplication, but
(10)–(12) defeated me completely; I had never seen anything in the least like them
before. . . . The last two formulas stand apart. . . . The function in (14) is a genuine
approximation to the coefficient, though not at all close as Ramanujan imagined
and Ramanujan’s false statement was one of the most fruitful he ever made, since it
ended by leading us to all our joint work on partitions.”

Indeed, (14) could only be derived by the circle method, a powerful technique
developed later by Hardy and Ramanujan in their work on the partition function.
The entry in the letter shows that Ramanujan had already thought about the circle
method in India, before he had met Hardy.

It seems that Hardy invited his colleague Littlewood and showed him the letter.
They sat with it for three hours, from 9pm to midnight and finally concluded that
this indeed was the work of a genius. Hardy [67] wrote later, “A single look at them
is enough to show that they could only be written down by a mathematician of the
highest class. They must be true, because if they were not true, no one would have
had the imagination to invent them.”

Soon thereafter, Hardy invited Ramanujan to come to Cambridge, which he felt
could provide a better environment in which his mathematical genius could flourish.
So Ramanujan sailed for England in March 1914.

Against the background of the first world war, from 1914 to 1917, Hardy and
Ramanujan spent time in wonderful mathematical collaboration. Hardy remarks that
every day Ramanujan would show him about half a dozen new theorems. These
three years saw prodigious mathematical activity by both Hardy and Ramanujan. In
that period, Ramanujan wrote over 30 papers, in which were laid the foundations of
three fundamental methods in number theory.

The first of them concerns the circle method which, as noted earlier, already
has its genesis in Eq. (14) of his first letter to Hardy. This method concerns an
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ingenious idea for computing the integral of a function by studying its behaviour at
rational points and sufficiently small neighborhoods. The method can be developed
further and enables one to attack classical unsolved problems such as Goldbach’s
conjecture, Waring’s problem and explicit formulas for the Fourier coefficients of
modular forms and modular functions. These problems have defied solution for a
long time. Due to Ramanujan’s early demise, this work was carried on by Hardy
and Littlewood, and today it is called the circle method, or the Hardy–Littlewood
method. In their paper on the partition function, Hardy and Ramanujan laid the
groundwork of the method. But it was clear that this was a viable technique for
attacking many age-old problems. Subsequently, this technique was developed and
improved by Hardy and Littlewood and I.M. Vinogradov.

The second major contribution was the normal order method which proved that
almost all natural numbers have log logn prime factors. These investigations were
later developed into the beautiful probabilistic theory of numbers, starting with the
work of Turán and culminating in the celebrated Erdös–Kac theorem. Afterwards, it
was taken up by Kubilius, who infused finer improvements into the theory. We feel
that there is a further direction for these investigations into the domain of Fourier
coefficients of modular forms, and we discuss this theme in this monograph. This
brings us to the third great contribution of Ramanujan.

In 1916, he wrote a classic paper entitled “On certain arithmetical functions” in
which he investigated the Fourier coefficients of various modular forms. There, he
noticed patterns of congruences and made three significant conjectures concerning
the behaviour of these Fourier coefficients. The most famous of these concerns the
Ramanujan τ -function. He conjectured that this function satisfies a multiplicative
law and that its growth is controlled by a simple polynomial function. At the time,
the conjecture did not have much meaning other than as an esoteric problem in
analytic number theory. Indeed, regarding the τ -function, Hardy [67] wrote, “We
may seem to be straying into one of the backwaters of mathematics, but the genesis
of τ(n) as a coefficient in so fundamental a function compels us to treat it with
respect.”

Putting respect aside, the fact is that the function occupies a central place in the
pantheon of coefficients of modular forms. So the legacy left by Ramanujan’s con-
jecture is vast and deep. For it slowly transpired that these conjectures had intimate
connection with profound aspects of number theory and algebraic geometry.

The first significant step towards the conjectures of Ramanujan was taken by
Mordell, who proved the multiplicative law, the first part of Ramanujan’s conjec-
tures. But Mordell only treated the case of τ and did not realize that it was pro-
totypical of a spectrum of functions, each in its own right of central importance.
This realization came twenty years later, in the work of the German mathematician
Erich Hecke (who incidently was also born in the same year as Ramanujan), and the
meaning of the multiplicative properties conjectured by Ramanujan was unravelled.
This work of Hecke is considered a masterpiece of mathematics.

But the connections to algebraic geometry were deeper still. Indeed, after the
pioneering work of Artin and Hasse, Weil formulated in 1949 general conjectures
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about solutions of systems of equations over finite fields. In the 1950s, it was sus-
pected that the τ -function of Ramanujan enumerates the number of these solutions
for a certain system of equations (called a variety). Several Japanese mathemati-
cians constructed the possible candidate, but there were technical problems related
to compactification. These problems were resolved in 1974 by a Belgian mathemati-
cian Pierre Deligne, who completely settled the conjectures of Ramanujan. In 1976,
Deligne was awarded the Fields medal (which is the mathematical analogue of the
Nobel prize) for this achievement. This is quite a legacy!

The connection between Ramanujan’s conjecture and Weil’s conjecture could not
be so easily foreseen. Both conjectures reflect elements of the master symphony that
Shafarevich spoke about. Indeed, in his retrospective essay on number theory, André
Weil wrote [201], “In 1947, in Chicago, I felt bored and depressed, and not knowing
what to do, I started reading Gauss’s two memoirs on biquadratic residues, which
I had never read before. The Gaussian integers occur in the second paper. The first
one deals essentially with the number of solutions of equations ax4 −by4 = 1 in the
prime field modulo p, and with the connection between these and certain Gaussian
sums. . . . then I noticed that similar principles can be applied to all equations of
the form axm + byn + czr + · · · = 0, and that this implies the truth of the so-called
“Riemann hypothesis” for all curves axn + byn + czn = 0 over finite fields, and
also a “generalized Riemann hypothesis” for varieties in projective space with a
“diagonal” equation

∑
aix

n
i ≡ 0. This led me in turn to conjectures about varieties

over finite fields.”
It was only a matter of time before several notable mathematicians realized that

Ramanujan’s conjecture was really a “Riemann hypothesis” for a certain zeta func-
tion of a variety over a finite field and that it would follow from Weil’s conjecture.
This was the achievement of Pierre Deligne in 1974.

No one could have foreseen such a cosmic connection. Yet, Weil is quite harsh
on Hardy and in the same essay [201] wrote “Hardy’s remarkable comment is: “We
seem to have drifted into one of the backwaters of mathematics.” To him it was just
another inequality; he found it curious that anyone could get deeply interested in
it. In fact, he becomes apologetic and explains that, in spite of the apparent lack of
interest of this problem it might still have some features which made it not unworthy
of Ramanujan’s attention.”

The problem with Weil’s assessment of Hardy is that it is inaccurate. Hardy’s
original quotation is that “We may seem to be straying into one of the backwaters
of mathematics, but the genesis of τ(n) as a coefficient in so fundamental a func-
tion compels us to treat it with respect.” The reader will note that Weil replaced
“We may seem” with “We seem” which gives quite a twist to the meaning. More-
over, Hardy does not say we will study it simply because Ramanujan had studied
it, but rather that it is the coefficient of a fundamental function, namely 
(z) in the
theory of modular forms. If Hardy thought that the τ -function was in the backwa-
ters of mathematics, then it would have been unreasonable to give it as a doctoral
thesis problem to one of his celebrated students, R.A. Rankin, who created what
is now called Rankin’s method (also called the Rankin–Selberg method) an ana-
logue of which was instrumental in the resolution of the Weil conjectures. So it is
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quite presumptuous to make absolute pronouncements on the significance of various
mathematical ideas since we never know how ideas are interconnected. And this is
part of the legacy.

But this legacy does not end here, and these investigations form just the tip of an
iceberg. The central problem of number theory revolves around what is called the
reciprocity law. The function of Ramanujan, and Fourier coefficients in general and
their congruence properties reflect some aspects of the non-abelian reciprocity law.
The theory of modular forms was further generalized by Jacquet and Langlands, and
higher-dimensional versions of Ramanujan’s conjectures were formulated as part
of the Langlands program. Some of these conjectures go beyond the Ramanujan
conjecture. Finer distribution conjectures concerning the τ -function inspired by the
work of Sato and Tate in the theory of elliptic curves and first enunciated by Serre
have now been proved. These results represent Himalayan peaks in the mathematical
landscape of the 21st century.

Returning to our narrative of Ramanujan, we find that at the end of his three
years work in England, he left behind a tremendous mathematical legacy. In the
summer of 1917, he fell ill with what was suspected to be tuberculosis. He never
recovered. Nevertheless, he continued to work unabated. Hardy relates an interesting
story during the time that Ramanujan was staying in the hospital in Putney. He went
to visit him in a taxicab, and as he entered Ramanujan’s room, remarked that he
had just ridden in a taxicab with number 1729 which seemed to be to him a rather
dull number and hoped that this was not the indication of a bad omen. Ramanujan
replied that on the contrary it is a very interesting number. It is the smallest number
which can be expressed as the sum of two cubes in exactly two different ways:

1729 = 13 + 123 = 103 + 93.

This is not without significance. Recently, a beautiful theorem in the theory of el-
liptic curves was proved involving this taxicab number. If for each k, there is a
squarefree natural number n that can be expressed in at least k different ways as the
sum of two cubes, then an outstanding problem in the theory of elliptic curves has
an affirmative solution, namely ranks of elliptic curves over Q tend to infinity.

Ramanujan had great intuition into what was important and central. His facile
mind revealed an artistic symbiosis between intellect and inspiration. We are re-
minded of a statement made by a great Indian sage, Swami Vivekananda, over a
century ago. He said: “Just as the intellect is the instrument of knowledge, so is
the heart the instrument of inspiration. In a lower state, the heart is a much weaker
instrument than the intellect. . . . Properly cultivated, the heart can be changed and
will go beyond intellect; it will function through inspiration. Man will have to go
beyond intellect in the end. The knowledge of man, his powers of perception, of
reasoning and intellect and heart, all are busy churning this milk of the world. Out
of long churning comes butter . . . Men of [cultivated] heart get the butter and the
buttermilk is left for the intellectual.”

We do not know how Ramanujan discovered his theorems. On this point, Hardy
[67] wrote, “It was his insight into algebraical formulas, transformations of infinite
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series and so forth, that was most amazing. On this side most certainly I have never
met his equal, and I can compare him only with Euler or Jacobi. He worked far
more than the majority of modern mathematicians, by induction from numerical ex-
amples; all his congruence properties of partitions, for example, were discovered in
this way. But with his memory, his patience, and his power of calculation he com-
bined a power of generalisation, a feeling for form, a capacity for rapid modification
of his hypothesis, that were often really startling, and made him, in his own peculiar
field, without a rival in his day.”

These comments were made by Hardy in 1936 when he delivered his famous
Harvard lectures on the work of Ramanujan. He began them with a rather sentimen-
tal tone. “I have to help you,” he said, “to form some sort of reasoned estimate of
the most romantic figure in the recent history of mathematics . . . Ramanujan was,
in a way, my discovery. I did not invent him—like other great men, he invented
himself—but I was the first really competent person who had a chance to see some
of his work, and I can still remember with satisfaction that I could recognize at once
what a treasure I had found . . . And my association with him is the one romantic
incident in my life.” These are powerful feelings indeed describing one of the great
collaborations of mathematics!

We conclude this introduction by reflecting upon what we call the cultural legacy
left behind by Ramanujan. We can do this no better than to relate the feelings ex-
pressed by the Nobel laureate, Subramanian Chandrasekhar, at the Ramanujan Cen-
tennial Conference in Urbana in 1987. He wrote [31]: “It must have been a day in
April 1920, when I was not quite ten years old, when my mother told me of an
item in the newspaper of the day that a famous Indian mathematician, Ramanujan
by name, had died the preceding day; and she told me further that Ramanujan had
gone to England some years earlier, had collaborated with some famous English
mathematicians and that he had returned only very recently, and was well known
internationally for what he had achieved. Though I had no idea at that time of what
kind of a mathematician Ramanujan was, or indeed what scientific achievement
meant, I can still recall the gladness I felt at the assurance that one brought up un-
der circumstances similar to my own, could have achieved what I could not grasp.
I am sure that others were equally gladdened. I hope that it is not hard for you to
imagine what the example of Ramanujan could have provided for young men and
women of those times, beginning to look at the world with increasingly different
perceptions.

“The fact that Ramanujan’s early years were spent in a scientifically sterile at-
mosphere, that his life in India was not without hardships, that under circumstances
that appeared to most Indians as nothing short of miraculous, he had gone to Cam-
bridge, supported by eminent mathematicians and had returned to India with every
assurance that he would be considered, in time, as one of the most original math-
ematicians of the century—these facts were enough—more than enough—for as-
piring young Indian students to break their bonds of intellectual confinement and
perhaps soar the way that Ramanujan did.

“It may be argued, perhaps with some justice, that this was a sentimental atti-
tude: Ramanujan represents so extreme a fluctuation from the norm that his being
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born an Indian must be considered to a large extent as accidental. But to the In-
dians of the time, Ramanujan was not unique in the way we think of him today.
He was one of others who had, during that same period, achieved, in their judge-
ment, comparably in science and in other areas of human activity. Gandhi, Nehru,
Rabindranath Tagore, J.C. Bose, C.V. Raman, M.N. Saha, S.N. Bose and a host of
others, were in the forefront of the then fermenting scene.”

In these words of Chandrasekhar, we see the legacy of Ramanujan. For the life
of Chandrasekhar was equally full of hardships. Born in the same village surround-
ings as Ramanujan, he went to study at Cambridge and there as a graduate student
discovered the mathematical implications of the theory of relativity in the collapse
of certain massive stars. These he predicted degenerate into black holes. The high
priests of physics of that time rejected his calculations as meaningless. He had to
wait for another thirty years before the theory came into the forefront of modern
physics and finally in 1983, he was awarded the Nobel prize in physics as recog-
nition of his work. The life of Subramanian Chandrasekhar itself reveals to some
extent the grandeur of the legacy of Ramanujan.

But a scientist belongs to no nation. Many of the mathematicians of distinction
that we have met and talked with have all told us that Ramanujan directly or indi-
rectly inspired their mathematical life. This is not surprising. For as we have seen,
Ramanujan embodies that marvelous miracle of the human mind to frame concepts
and to use formulas and symbols as tools of thought to probe deeper into the mys-
teries of one’s own being. As long as the spirit of science is alive, his legacy will
live, and the music will pass from one luminary to another. And all of us who think
and work with mathematical ideas are participants in that wonderful symphony.


