Shoichiro Fukao Kyosuke Hamazu Consulted by Richard J. Doviak

Radar for Meteorological and Atmospheric Observations

Radar for Meteorological and Atmospheric Observations

Shoichiro Fukao • Kyosuke Hamazu

Radar for Meteorological and Atmospheric Observations

Consulted by Richard J. Doviak

Shoichiro Fukao Professor Emeritus Kyoto University, Kyoto, Japan Kyosuke Hamazu Mitsubishi Electric Corporation and Mitsubishi Electric Tokki Systems Corporation Iga, Japan

Consulted By: Richard J. Doviak National Severe Storms Laboratory, NOAA Affiliated Professor The School of Meteorology and the Department of Electrical and Computer Engineering The University of Oklahoma

ISBN 978-4-431-54333-6 ISBN 978-4-431-54334-3 (eBook) DOI 10.1007/978-4-431-54334-3 Springer Tokyo Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013943813

© Springer Japan 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

During the past several decades an appreciable amount of research and development has been focused on the use of remote sensing techniques to better our understanding of weather and the atmosphere. Radar has the obvious advantage of providing observations with temporal and/or spatial continuity which is leading to improved forecasts of weather.

Observations and interpretation of Doppler and polarimetric weather radar data, combined with in situ observations, have led to giant leaps in our understanding of the dynamics and microphysics of weather systems. Complementary to weather radar observations are those obtained with typically longer wavelength radars (i.e., wavelengths from meters to centimeters versus centimeters to millimeters used to observe precipitation and clouds), observing the precipitation-free atmosphere. The echoing mechanism at these longer wavelengths is typically Bragg scatter from refractive index perturbations caused by turbulent mixing, or reflection from sharp gradients in refractive index. These long-wavelength and super-powerful radars, referred to as atmospheric radars, have mapped the vertical structure of reflectivity and radial winds in the clear atmosphere from below a kilometer to well above 100 km, whereas meteorological radars map the reflectivity and radial velocities of precipitation and cloud particles on horizontal surfaces at various heights in the troposphere. Weather and cloud radar research has attracted the attention of meteorologists whereas atmospheric radar research has primarily attracted the attention of atmospheric physicists.

The authors have done a remarkable job of combing the results of research in these two disciplines to provide readers with a comprehensive overview of the outstanding observations that have been made with radar used as a remote sensor of weather and atmospheric phenomena. This book has a generous amount of figures that display many of the remote sensing facilities to give the reader a quick appreciation for the variety of atmospheric and meteorological radar types around the world, many of which are unique and interesting. Furthermore, liberal reference to publications provides readers a vast reservoir for further pursuit of their preferred topics of interest. In addition this book presents the fundamentals of remote sensing so that students and professors, with a minimal background in physics and electromagnetic theory, and engineers in the field can better understand the potential and limitations of radar in observing weather and the atmosphere while learning about the various instruments and techniques used in remote sensing. The authors plan to maintain a Website where comments from readers can be addressed and where supplements to the book can be found; this will help to keep the book current and up-to-date.

Norman, OK

Richard J. Doviak

Preface

With the application of radar to observations of the atmosphere, various weather phenomena and winds in the clear atmosphere can be monitored and mapped in real time. Great progress in understanding weather and the dynamics of the atmosphere has been made using radar, which brings new observational discoveries and promotes further understanding of our environment.

Remote sensing with radar has been developed in the interdisciplinary domains of physical science and engineering. In the past, advances in weather and the atmospheric sciences have developed independently because the respective engineering efforts and scientific studies were conducted within relatively separate communities. However, the scientific and technical bases for atmospheric observations with radar can be treated in common. We worked in academia (Fukao) and industry (Hamazu) and have collaborated to develop various types of weather and atmospheric radars. Routine discussion with our colleagues convinced us that understanding of weather and atmospheric radars can be deepened if they are described comprehensively and systematically in one volume using common approaches whenever possible.

This book is written for scientists, engineers, students, and other interested meteorological and atmospheric personnel. In this book, we try to bridge the gap in our understanding of weather and atmospheric radar. The book consists of two parts. The first half, Chaps. 1–7, mainly discusses the theoretical bases of weather and atmospheric radar, and the last half, Chaps. 8–12, describes actual systems and observations with these radars. This interdisciplinary book was first published in Japanese by the Kyoto University Press in 2005. In the English version, all chapters including those dealing with recent developments contain more in-depth coverage than does the original.

Kyoto, Japan Iga, Japan Shoichiro Fukao Kyosuke Hamazu

Acknowledgements

We are indebted to many people in bringing this book to publication in this form. First and foremost, we wish to express our deepest gratitude to Dr. Richard J. Doviak of the National Severe Storms Laboratory of the National Oceanic and Atmospheric Administration (NOAA) and the University of Oklahoma who has long been a close friend of one of the authors (Fukao) and has been looked upon as mentor for the other (Hamazu). All chapters have been reviewed and edited by him. We were able to complete the work because of his continuous suggestions and stimulating encouragement.

We would like to express our deep gratitude to our colleagues, Drs. Toru Sato, Toshitaka Tsuda, Mamoru Yamamoto, and Hiroyuki Hashiguchi of Kyoto University; Dr. Takuji Nakamura of the National Institute of Polar Research, Japan; Dr. Manabu D. Yamanaka of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and Kobe University; and Drs. Hiroaki Miyasita, Atsushi Okamura, Toshio Wakayama, and Shoji Matsuda of Mitsubishi Electric Corporation for various suggestions through discussions. Many of them provided us with the original figures that are included in the book. It is a great pleasure for us to acknowledge the valuable advice and suggestions of Emeritus Professor Hisanao Ogura of Kyoto University; Dr. Hubert Luce of the Université de Toulon et du Var; Drs. Yasushi Fujiyoshi and Takeshi Horinouchi of Hokkaido University; Dr. Toshio Iguchi of the National Institute of Information and Communication Technology (NICT), Japan; Dr. Hiroshi Uyeda of Nagoya University; Dr. Masahiro Ishihara of Kyoto University; Dr. Masayuki Maki of Kagoshima University; Dr. Koyuru Iwanami of the National Research Institute for Earth Science and Disaster Prevision (NIED), Japan; and Drs. Ahoro Adachi and Hiroshi Yamauchi of the Meteorological Research Institute, Japan Meteorological Agency. We would like to express our special thanks to Dr. Yoshiaki Shibagaki of Osaka Electro-Communication University; Seiji Kawamura of the NICT; Drs. Masayuki Yamamoto, Tomohiko Mitani, Junichi Furumoto, and Tatsuhiro Yokoyama of Kyoto University; and Drs. Nobukyuki Kawano and Akihisa Uematsu of the Japan Aerospace Exploration Agency (JAXA). In writing this book, we received warm encouragement from emeritus professors Susumu Kato and Isamu Hirota of Kyoto University.

Finally, we are especially grateful for the support of our respective spouses, Keiko Fukao and Masuni Hamazu, during the writing of this book.

Kyoto, Japan Iga, Japan Shoichiro Fukao Kyosuke Hamazu

Contents

1	Intro	oduction		1	
	1.1	Princip	ble of Radar	1	
	1.2	Histor	y of Meteorological and Atmospheric Radars	2	
	1.3	Radar	Frequency Bands and Usage	3	
2	Elec	tromagn	etic Waves	7	
	2.1	Charac	cteristics of Electromagnetic Waves	7	
		2.1.1	Basic Equations	7	
		2.1.2	Polarization	12	
		2.1.3	Reflection and Refraction	14	
		2.1.4	Radiation	17	
	2.2	Electro	omagnetic Wave Propagation in the Atmosphere	23	
		2.2.1	Physical Property of the Atmosphere	23	
		2.2.2	Propagation of Electromagnetic Wave	26	
		2.2.3	Wave Path in the Spherically Stratified Atmosphere	27	
		2.2.4	The Profile of the Standard Atmosphere	30	
3	Rada	Radar Measurements and Scatterer Parameters			
	3.1	Basics	of Radar	33	
		3.1.1	System Parameters of Pulse Radars	33	
		3.1.2	Characteristics of Scatter and Scatterers	36	
	3.2	Radar	Observation of Isolated Scatterers	38	
		3.2.1	Radar Equation for an Isolated Scatterer	38	
		3.2.2	Characteristics of Scattering	40	
	3.3	Radar	Theory for Hard Scatterers	42	
		3.3.1	Scattering by Dielectric Spheres	42	
		3.3.2	Radar Equation for Distributed Hard Scatterers	46	
		3.3.3	Mie Scattering	49	
		3.3.4	The Rayleigh Approximation	52	
		3.3.5	Radar Reflectivity Factor	53	
	3.4	Radar	Theory for Soft Scatterers	57	
		3.4.1	Backscattering Mechanisms	57	
		3.4.2	Bragg Scatter due to Refractive Index Perturbations	59	
				xi	

		3.4.3	Partial Reflection from a Stratified Atmosphere	68
		3.4.4	Scattering by Linear Scatterers	72
4	Prin	ciple of]	Doppler Velocity Measurement	75
	4.1	Dopple	er Velocity Measurements	75
		4.1.1	Principles of Doppler Radar	75
		4.1.2	Measurable Limit of Doppler Velocity	79
		4.1.3	Expansion of Doppler Velocity Measurement Range	81
	4.2	Metho	ds of Applying Doppler Radar	81
		4.2.1	Volume Velocity Processing (VVP) Method	82
		4.2.2	Velocity Azimuth Display (VAD) Method	86
		4.2.3	Wind Observations with Bistatic Doppler Radar	89
	4.3	Multip	le Monostatic Doppler Radars	95
		4.3.1	Independent Scanning Method	96
		4.3.2	COPLAN	99
		4.3.3	Distance of Two Doppler Radars	101
		4.3.4	Wind Velocity Observations with Three or	
			More Radars	103
5	Rece	eption an	nd Processing of Signals	105
	5.1	Receiv	er Sensitivity	105
		5.1.1	Noise Power	105
		5.1.2	Receiver Noise	111
	5.2	Receiv	ver System	115
		5.2.1	Matched Filter	115
		5.2.2	Frequency Conversion and Phase Measurement	118
	5.3	Charac	cteristics of Received Signal	120
		5.3.1	Signals Received from Precipitation Particles	
			and the Atmosphere	120
		5.3.2	Probability Density Functions	122
	5.4	Funda	mentals of Radar Signal Processing	124
		5.4.1	Fourier Transform and Its Characteristics	125
		5.4.2	Signals in a Linear System	127
		5.4.3	Power Spectral Moments and Basic Radar Parameters	130
	5.5	Proces	sing of Sampled Signals	133
		5.5.1	Waveform of Transmitted Pulse and Series	
			of Signal Waves	133
		5.5.2	Sampling of a Received Signal	137
		5.5.3	Processing of Discrete Signal	139
		5.5.4	Estimation of Mean Doppler Frequency	143
		5.5.5	Estimation of Spectrum Width	145
		5.5.6	Estimation of Spectral Parameter by Fitting	146
		5.5.7	Estimation Based on Prediction Theory	149
	5.6	Correl	ation and Accuracy of Sampled Signal	150
		5.6.1	Correlation Function and Correlation Time	150
		5.6.2	Coherent Integration	154

Contents

		5.6.3	Incoherent Integration	155
		5.6.4	Standard Deviation of Radar Reflectivity Factor	159
		5.6.5	Standard Deviation of Mean Doppler Velocity	162
		5.6.6	Standard Deviation of Spectrum Width	164
6	Rada	ar Obsei	cvations of Precipitation	167
	6.1	Param	eters of Precipitation	168
		6.1.1	Parameters of Drop Size	168
		6.1.2	Relations Between Basic Radar Parameters	171
		612	Bhysical Overtities Concerned with Presimitation	171
		6.1.4	Pader Deflectivity Easter and Dainfall Date	175
	62	Estime	Adual Reflectivity Pactor and Raman Rate	170
	6.2	Attonu	ution of Padia Wayas in the Atmosphere	19
	0.5	631	Attenuation Rate	182
		632	Attenuation by the Atmosphere	187
		633	Attenuation by Water Particle	186
	64	Polari	metric Radar	180
	0.4	6 4 1	Generation of Dual Polarized Wave	190
		642	Characteristics of Polarization Parameter	195
		643	Shapes of Precipitation Particles and	175
		0.1.5	Polarization Parameters	200
		644	Attenuation Correction Using $K_{\rm DB}$	204
		6.4.5	Estimates and Variances of Polarization Parameters	207
		6.4.6	Radar Rainfall Estimation Using Polarization	216
		617	Estimation of Cloud Water Content	210
		648	Hydrometeor Classification with Polarization	210
		0.4.0	Parameters	219
7	Rada	ar Obsei	cvations of the Clear Atmosphere	223
	7.1	Detect	ability of Atmospheric Radar Signals	223
		7.1.1	Received Power and Radar Reflectivity	223
		7.1.2	Coherent Integration in Atmospheric Radar	224
		7.1.3	Detection of Signal in Noise Background	226
	7.2	Wind 1	Measurements	227
		7.2.1	DBS/VAD Methods	227
		7.2.2	Wind Velocity Measurements from Spaced	
			Antenna Methods	230
	7.3	Turbul	ence Observations	234
		7.3.1	Measurement of Momentum Flux	235
		7.3.2	Estimation of the Turbulence Contribution	
			to Spectrum Width	237
		7.3.3	Estimation of Turbulence Parameters	242
		7.3.4	Relation Between Refractive Index and	
			Structure Constant for Refractivity Turbulence	245

	7.4	Observ	vations of Temperature Profile	247
		7.4.1	Measurement of Atmospheric Temperature	
			with RASS	247
		7.4.2	Change of Refractive Index and Radar	
			Equation for RASS	249
		7.4.3	Bragg Condition and Background Wind	251
	7.5	Estima	tion of Water Vapor Profiles	255
	7.6	Radar	Interferometry Techniques	257
		7.6.1	SDI and FDI Techniques	257
		7.6.2	Radar Imaging Techniques	262
8	Over	view of	Radar	260
0	8 1	Rrief I	Discussion on Two Types of Radar	269
	0.1	811	FMCW Radar	269
		812	Pulse Radar	207
		813	Febo Power	272
		814	Scanning Methods	273
	82	Dadar	Antenna	274
	0.2	8 2 1	Radar Antenna Parameters	277
		0.2.1 8.2.2	Darabolic Antenna	277
		0.2.2 8 2 3	Padome	280
		0.2.3		205
		0.2.4	Massurement of Antenna Badiation Dattern	205
	83	0.2.J Transn	nitters and Pacaivers	295
	0.5	2 2 1	Transmitter	297
		0.J.1 8 2 2	Transmitter Used for Meteorological Doppler Pader	290
		0. <i>3</i> .2 8 3 3	Transmitter of Atmospheric Pader	299
		0.3.3	Pulse Compression	200
		0.3.4	Paggiver	217
	Q 1	0.3.3 Digital	Receiver	221
	0.4		Signal Processing System	221
		0.4.1	Demoval of Univerted Signal	224
		0.4.2 0.4.2	A nolog to Digital Conversion	220
		0.4. <i>3</i>	Analog to Digital Conversion	329
		8.4.4	Spectral Analysis	332
		8.4.5	Window Function	222
		8.4.0	Parameters for the DF1	338
9	Prac	tical Me	teorological Radars	341
	9.1	Meteo	rological Radars of Various Frequency Bands	341
	9.2	Precip	itation Observation Radar	344
		9.2.1	2.8-GHz Band Radars	344
		9.2.2	NEXRAD: WSR-88D	344
		9.2.3	5.6-GHz Band Radar: The Terminal Doppler	
			Weather Radar	347
		9.2.4	5.3-GHz Band Radar: The Doppler Radar for	
			Airport Weather in Japan	352

Contents

		9.2.5	5.3-GHz Band Meteorological Radars in Japan	. 353
		9.2.6	Radar Raingauge	. 356
		9.2.7	9.5-GHz Band Radars	. 357
	9.3	Cloud a	and Fog Observation Radar	. 361
		9.3.1	35-GHz Band Radar	. 361
		9.3.2	35/95-GHz Multiple Radar	. 364
	9.4	Satellit	e-Borne Radar	. 366
		9.4.1	Tropical Rainfall Measuring Satellite	. 366
		9.4.2	Global Precipitation Measurement Program	. 368
10	Pract	tical Atn	nospheric Radars	. 369
	10.1	Charac	teristics of Atmospheric Radar	. 369
	10.2	Large-S	Scale Atmospheric Radars	. 370
		10.2.1	General	. 370
		10.2.2	Radars with COCO Array Antenna	. 372
		10.2.3	The MU Radar	. 374
		10.2.4	Equatorial Atmospheric Radar	. 380
		10.2.5	The Antarctic Syowa MST/IS Radar: PANSY	. 384
	10.3	Wind P	Profiler	. 384
		10.3.1	The NOAA Profiler Network	. 384
		10.3.2	Wind Profiler Network in Europe	. 387
	10.4	Lower	Troposphere Radar	. 387
		10.4.1	Boundary Layer Radar (BLR)	. 388
		10.4.2	Turbulent Eddy Profiler (TEP)	. 389
		10.4.3	Lower Troposphere Radar (LTR)	. 391
		10.4.4	WINDAS of Japan	. 393
11	Obse	rvations	by Meteorological Radar	. 395
	11.1	Precipi	tation Observation by Meteorological Radar	. 395
	11.2	Mesos	cale Rain	. 397
		11.2.1	Structure of Extratropical Cyclone and Front	. 397
		11.2.2	Horizontal Structure of Precipitation	. 401
		11.2.3	Vertical Structure of Precipitation	. 402
	11.3	Typhoc	- 0 n	. 405
		11.3.1	Horizontal Structure	. 405
		11.3.2	Spatial Structure	. 408
	11.4	Cumul	us Convection	. 409
		11.4.1	Multicell Thunderstorms	. 409
		11.4.2	Ordinary Thunderstorms	. 410
		11.4.3	Tornado	. 411
		11.4.4	Downburst	. 413
	11.5	Polarin	netric Radar Observations	. 417
		11.5.1	Polarimetric Parameters	. 417
		11.5.2	Attenuation Correction	. 419
		11.5.3	Radar Rainfall Estimation	. 422
		11.5.4	Hydrometeor Classification	. 424

	11.6	Clear Air Observations	426
		11.6.1 High Power Large Radar Observation	426
		11.6.2 FMCW Radar Observation	427
	11.7	Cloud and Fog Observations	428
		11.7.1 Cloud	428
		11.7.2 Fog	429
	11.8	Retrieval of Heating Distribution in a Cloud	430
12	Obse	rvations by Atmospheric Radar	435
	12.1	Wind Measurements	435
	12.2	Mesoscale Convective System	437
		12.2.1 Cold Vortex	438
		12.2.2 Tropical Cyclone	441
		12.2.3 Convection	444
		12.2.4 Precipitating Cloud	446
		12.2.5 Orographic Rainfall	448
		12.2.6 Echoes from Precipitation	449
	12.3	Atmospheric Gravity Waves	451
		12.3.1 Wave Propagation	452
		12.3.2 Dispersion Equation	453
		12.3.3 Critical Layer	455
		12.3.4 Gravity Wave Spectra	456
		12.3.5 Momentum Flux	458
		12.3.6 Turbulence	460
		12.3.7 Wave Sources	461
	12.4	Boundary Layer and Equatorial Atmosphere	463
		12.4.1 Boundary Layer	463
		12.4.2 Equatorial Atmosphere	465
		12.4.3 Atmospheric Temperature and Water Vapor Content	467
	12.5	Beam Swinging and Radar Imaging Techniques	469
		12.5.1 Scattering Layer Observations	470
	12.6	Wind Profiler Network	482
		12.6.1 Quality Control and Actual Operation	482
		12.6.2 Application for Short-Term Forecasting	483
Erı	rata		E-1
A	Mie (Coefficients	487
P	Anto	novariance Analysis	402
D	R 1	Mean Doppler Frequency	473
	ו.u בים	Doppler Frequency Spectrum Width	493
	$\mathbf{D}.\mathbf{\Delta}$	Dopplet Frequency Spectrum width	494

C	The l	Fast Fourier Transform (FFT) Algorithm	497
	C .1	Decimation-in-Time (DIT) FFT Algorithm	497
	C .2	Decimation-in-Frequency (DIF) FFT Algorithm	499
D	Rada	r Equation for RASS Echo	503
Ref	erence	S	507
Ind	ex		529

List of Symbols

а	Attenuation rate $[m^{-1}]$, mean radius of the Earth (6370 km), semi-major
	axis diameter of spheroid rain drop
$a_{\rm e}$	Effective Earth radius
a_{T}	Temperature lapse rate
Α	Attenuation coefficient [dB km ⁻¹], physical antenna aperture
A	Vector potential
A _e	Effective antenna aperture
b	Semi-minor axis diameter of spheroid rain drop
В	Frequency bandwidth of the receiver
B	Magnetic flux density
B_{f}	Filter bandwidth
B _n	Noise bandwidth
с	Speed of light (in vacuum) $[m s^{-1}]$
ca	Sound velocity
c _a	Apparent sound velocity
c _s	True sound velocity
C_n^2	Refractive index structure constant $[m^{-2/3}]$
$C_{\rm p}$	Specific heat capacity at constant pressure ($\simeq 1004$) [J K ⁻¹ kg ⁻¹]
d	Distance between successive element antennas
D	Detectability of radar signal, diameter of raindrop, wind direction,
D	Electric flux density
D_0	Median volume diameter
D_{a}	Antenna diameter, distance of two separated antennas
D _m	Mass weighted mean drop diameter
$D_{\rm r}$	Dynamic range of A/D conversion
D _{rmax}	Maximum dynamic range
е	Partial pressure of water vapor [hPa]
Ε	Total energy of a receiver input signal, withstand voltage $[V \text{ mm}^{-1}]$
E	Electric field strength
E_0	Incident electric field
Г	A sure Constant

 $E_{\rm a}$ Array factor

$\boldsymbol{E}_{\mathrm{s}}$	Scattered electric field
f	Radar frequency (transmitted frequency) [Hz]
f_0	Carrier frequency [Hz]
$f_{\rm c}$	Frequency of coherent oscillator (COHO)
$f_{\rm d}$	Doppler frequency (Doppler shift)
fdmax	Maximum measurable Doppler frequency
$f_{\rm i}$	Inertial frequency
f _N	Nyquist frequency
$f_{\rm p}$	Pulse repetition frequency
$f_{\rm s}$	Frequency of stabilized local oscillator (STALO), sampling frequency
F	Noise figure
F_r	Froude Number
g	Antenna gain at the direction of the maximum radiation pattern (main lobe)
	in linear unit, radiation pattern of the element antenna (or element pattern),
	gravitational acceleration
$g_{\rm at}$	Transmission gain of the RASS
$g_{\rm D}$	Directivity of antenna
G	Antenna gain in decibel
h	Altitude (height from sea level), beam height, mountain height
H	Magnetic field strength
H_1	Scale height (7.3 km)
i _{<i>i</i>}	Unit vector along the radar beam direction
Ι	Electric current, in-phase component of the complex signal
Ia	Acoustic intensity $[W m^{-2}]$
j	Imaginary unit $(j^2 = -1)$
J	Electric current density
k	Boltzmann constant (= 1.38×10^{-23} J K ⁻¹), radar wave number
	$(=\omega\sqrt{arepsilon\mu}=2\pi/\lambda)$
<i>k</i> a	Imaginary part of the complex refractive index, wave number of acoustic
	wave
k _s	Scattering vector wave number
K	Thermodynamic temperature measured in kelvins, vertical eddy diffusivity
K _{DP}	Specific differential phase [deg km ⁻¹]
l	Autocorrelation time lag, length of short dipole (differential antenna), loss
	value in a true number
l	Separation of the scatterer from the volume center
l_0	Inner scale of turbulence
$l_{\rm K}$	Kolmogoroff microscale
L	Loss value in decibel
$L_{\rm B}$	Maximum scale of eddy in the inertial subrange (or buoyancy lengthscale)
Ldr	Linear depolarization ratio in linear unit
LDR	Linear depolarization ratio in decibel
т	Complex refractive index of drop (or particle), modified refractive index, vertical wavenumber
m_n	The <i>n</i> th moment of drop size distribution

Μ	Mean molecular weight of the atmosphere, number of DFT or FFT
	points, number of signal samples along sample time axis (total number
	of samples), refractive modulus,
Mъ	Total number of points of periodogram (FFT points)
M ₁	Number of coherent integration
M-	Number of independent samples
M	Number of inacherent integration
Minc	
M_n	Refractive index gradient (=dn/dz)
M _s	Total number of actual signal samples
M_{v}	Total water vapor content [kg mm ⁻³]
n	Refractive index
n _r	Real part of the complex refractive index
Ν	Bit length, Brunt Väisälä frequency, number of element antenna, number
	of raindrops, number of range samples, Nyquist number
N_0	Parameter of drop size distribution (intercept parameter)
N(D)	Drop size distribution (DSD)
Ne	Density of free electron $[m^{-3}]$
NT	Total number of raindrops
n	Atmospheric pressure [hPa]
P P	Breakdown power total electric power
P	Dielectric polarization
P	Transmitted power from sound wave source
г _а р	Received power backscattered from sound wave surface
P ar	Received signal power
D D	Seattered power
Г _S D	Transmitted neuron neels transmitted neuron
Pt D	Dirals memory
$P_{\rm V}$	
q	Humidity mixing ratio [kg kg ⁻]
$q_{\rm e}$	Linear density of meteor trail [m ⁻¹]
Q	Quadrature phase component of the complex signal
r	Distance between the radar and the scatterer, range
ra	Maximum observable range
$r_{\rm R}$	Distance between bistatic scatterer and receiver
r_{T}	Distance between transmitter and bistatic scatterer
R	Gas constant, rainfall rate,
R _d	Transmitter's duty cycle
R_{f}	Flux Richardson number
R_i	Richardson number
$R_{\rm R}$	Radiation resistance of short dipole
$R_{\rm sp}$	Specific constant of drying air $(= 287 \text{ J K}^{-1} \text{ kg}^{-1})$
Sf	Frequency stability
s	Backscattering matrix of the linear polarization wave
S	Power density, signal power
S	Complex Poynting vector
S:	Incident nower density
\sim_1	meraonic power density

$S_{\rm N}$	Power spectral density of noise
Ss	Scattered power density
SS	Power spectral density of signal
S_{w}	Vertical shear $[s^{-1}]$
SNR	Signal-to-noise ratio
t	Time
Т	Atmospheric temperature [K], noise temperature [K], period of gravity wave, pulse repetition time (PRT) [s], time period
T_0	Room temperature (290 K)
$T_{\rm c}$	Correlation time
$T_{\rm e}$	Equivalent input noise temperature
$T_{\rm i}$	Input noise temperature, independent sample time
$T_{\rm s}$	Sample time interval (sampling interval), sky noise temperature
T _{sys}	System noise temperature
$T_{\rm v}$	Temperature of moist atmosphere
$T_{ m W}$	Window width
и	East-west (zonal) wind
\overline{u}	Mean zonal wind
и′	Horizontal IGW perturbation from turbulence
U	Horizontal wind speed
v.	Phase velocity of electromagnetic wave
v'	Fluctuation component of wind perpendicular to the direction of wave
	travel
v	Wind vector (v_x, v_y, v_z)
vd	Doppler velocity
\overline{v}_d	Mean Doppler velocity
$v_{\rm h}$	Horizontal wind velocity
$v_{\rm N}$	Nyquist velocity (Nyquist limit)
Vr	Radial velocity
V	Radar resolution volume
V_6	Resolution volume circumscribed by the 6 dB contour of radar parameters
$V_{\rm D}$	Volume of raindrop
w,	Vertical wind velocity (or vertical component of wind velocity; v_z)
W	Vertical IGW perturbation from turbulence
$w_{\rm T}$	Terminal velocity of precipitation (fall speed) $(1 - 3)$
W	Cloud water content (or water content in unit volume) [g m ⁻³]
WB	Bandwidth of the signal
z.	Altitude, height from sea level [km]
Z	Radar reflectivity factor
Z_{dr}	Differential reflectivity in linear unit
Z_{DR}	Differential reflectivity in decibel
Z_{e}	Equivalent radar reflectivity factor
Zi	Radar renectivity factor for ice particles
α	Azimuth angle of the baseline formed between two antennas in SDI
p	Bistatic angle

- γ Γ Specific heat ratio of ideal gas ($\simeq 1.4$ for dry air)
- Dry adiabatic lapse rate (= $g/C_p \simeq 9.80$) [K km⁻¹]
- δ Differential scattering phase, direction of horizontal wind, phase difference between successive element antennas
- Resolution of the A/D converter Δ
- ε Turbulent energy dissipation rate
- Permittivity $[F m^{-1}]$ ε
- Permittivity in vacuum [F m⁻¹] \mathcal{E}_0
- ζ Axis ratio b/a, where a is the semi-major axis diameter and b the semiminor axis diameter of a flat raindrop
- Radar reflectivity η
- η_1 Efficiency of antenna
- Antenna aperture efficiency $\eta_{\rm a}$
- Intrinsic impedance (or wave impedance) (= $\sqrt{\mu/\epsilon}$) $\eta_{\rm i}$
- θ Zenith angle of radar beam
- θ_1 One-way beamwidth between half-power points (or beam width)
- $\theta_{\rm e}$ Elevation angle of radar beam
- $\vartheta_{\rm B}$ One way half-power beamwidth in the E-plane [rad]
- Θ Potential temperature
- Wave number for Bragg scattering к
- к Wave number vector for Bragg scattering
- Wave number vector for acoustic wave κ_{a}
- Wave number corresponding to the Bragg scale Kh
- Wave number corresponding to buoyancy lengthscale $(=2\pi/L_B)$ $\kappa_{\rm B}$
- λ Radar wavelength [m]
- Λ Parameter of drop size distribution (or slope parameter)
- Structure wavelength of perturbations within inertial subrange Λ_{s}
- Permeability [H m⁻¹] μ
- Permeability in vacuum [H m⁻¹] μ_0
- Kinematic viscosity (dynamic viscosity divided by the fluid density) v
- Electric charge density $[C m^{-1}]$, radar cross section $[m^2]$ ρ
- $|\rho|^2$ Partial reflection coefficient
- Atmospheric density [kg m^{-3}] ρ_{a}
- Correlation coefficient between horizontally and vertically polarized waves $\rho_{\rm hv}$
- Water vapor density $[g m^{-3}]$ $\rho_{\rm v}$
- Density of precipitation particles $[g m^{-3}](= 10^6 \text{ for water})$ $\rho_{\rm w}$
- Electric conductivity $[S m^{-1}]$ σ
- Absorption cross section σ_{a}
- Backscattering cross section $\sigma_{\rm b}$
- Doppler frequency spectrum width [Hz] σ_f
- Scattering cross section $\sigma_{\rm s}$
- σ_{t} Extinction (or attenuation) cross section
- Doppler velocity spectrum width $[m s^{-1}]$ σ_v
- Doppler velocity spectrum width normalized with the Nyquist width σ_{vn}
- Transmitted pules width [s], time lag τ

$ au_{ m i}$	Independent sample time
$ au_{ m c}$	Correlation time
ϕ	Angular distance from the beam axis in the H-plane
$\phi_{ m h}$	Phase delay per unit distance (one way) for horizontally polarized wave [rad]
$\phi_{ m v}$	Phase delay per unit distance (one way) for vertically polarized wave [rad]
Φ_{DP}	Differential phase in two-way $(\Phi_{DP} = \Phi_{hh} - \Phi_{hh})$ [deg]
$\Phi_{ m hh}$	Phase shift in round trip between radar and scatterer for horizontally polarized wave [deg]
Φ_{vv}	Phase shift in round trip between radar and scatterer for vertically polarized wave [deg]
φ	Phase of received echo signal, zenith angle in the H-plane based on radar beam axis
$\varphi_{ m B}$	One way half-power beamwidth in the H-plane [rad]
χ	Angle between the direction of polarization of the incident electric field and the direction of scattering vector (= $\pi/2$ for backscattering
Ψ	Differential phase of measured signals between horizontally and vertically polarized waves [deg], scalar potential
ω	Angular frequency [rad s ⁻¹]
$\omega_{ m d}$	Doppler angular frequency
$\omega_{\rm i}$	Intrinsic frequency
Ω	Angular velocity of the Earth's rotation $(= 7.292 \times 10^{-5} \text{ s}^{-1})$

List of Abbreviations

A/D	Analog to digital
AFWS	Air Force Weather Service
AGC	Automatic gain control
AGL	Above ground level
AMeDAS	Automated Meteorological Rata Acquisition System
AMS	American Meteorological Society
ARM	Atmospheric Research Measurement program
ATC	Air traffic control
ATSR	Alternate transmission and simultaneous reception
BL	Boundary layer
BLR	Boundary layer radar
CAP	Cooperative Agency Profiler
CAT	Clear air turbulence
CCIR	International Radio Consultative Committee
CDL	Coherent Doppler lidar
CIRA	Committee on Space Research (COSPA) International Reference
	Atmosphere
COCO	Coaxial-collinear
СОНО	Coherent oscillator
COST	European Cooperation in Science and Technology
CRI	Coherent radar imaging
CST	Central Standard Time
CSU	Colorado State University
DBS	Doppler beam swinging
DFT	Discrete Fourier transform
DIF	Decimation-in-frequency
DIT	Decimation-in-time
DOA	Direction of arrival
DPR	Dual-frequency Precipitation Radar
DRAW	Doppler Radar for Airport Weather
DSD	Drop size distribution

XXV1	

EAR	Equatorial Atmospheric Radar
ECCD	Electromagnetically coupled coaxial dipole
EIK	Extended interaction amplifier
EST	Eastern Standard Time
FAA	Federal Aviation Administration
FCA	Full correlation analysis
FDI	Frequency domain interferometry
FET	Field effect transistor
FFT	First Fourier transform
FII	Frequency domain interferometric imaging
FIR	Finite impulse response
FMCW	Frequency-modulated continuous waves
FRP	Fiber-reinforced plastic
FSA	Full spectral analysis
FWHM	Full width at half maximum
GMAP	Gaussian model adaptive processing
GMS	Geostationary meteorological satellite
GMT	Greenwich mean time
GPM	Global Precipitation Measurement
GPS	Global positioning system
GTS	Global Telecommunication System
HEMT	High electric mobility transistor
HS	Hail signal
HVPS	High-Volume Particle Spectrometer
I	In-phase
IDFT	Inverse discrete Fourier transform
IF	Intermediate frequency
IFFT	Inverse fast Fourier transform
IGW	Inertia-gravity wave
IIR	Infinite impulse response
IR	Infrared radiation
IS	Incoherent scatter
ITU	International Telecommunication Union
IAFNA	Ioint Air Force and NASA
IAXA	Japan Aerospace Exploration Agency
IMA	Japan Meteorological Agency
IST	Japan Standard Time
KH	Kelvin–Helmholtz
KIX	Kansai International Airport
LAN	Local area network
IDR	Linear depolarization ratio
LEO	Low Farth orbit
LHC	Left-hand circular
III	I ow-level jet
ΙΝΔ	Low noise amplifier
	Low noise ampriller

LO	Local frequency
LT	Local time
LTR	Lower Troposphere Radar
M-P	Marshall–Palmer
MEM	Maximum entropy method
MESFET	Metal-semiconductor FET
ML	Multi-lag
MLIT	Ministry of Land, Infrastructure, Transport and Tourism
MLM	Maximum likelihood method
MMIC	Monolithic microwave integrated circuit
MOPA	Master oscillator and power amplifier
MP	Multi-parameter
MPIfR	Max-Planck-Institut für Radioastronomie
MPM	Millimeter-wavelength propagation model
MRI	Meteorological Research institute
MSM	Mesoscale numerical model
MST	Mesospheric-stratospheric-tropospheric
MU	Middle and Upper atmosphere
MUSIC	Multiple signal classification
NASA	National Aeronautics and Space Administration
NCAR	National Center for Atmospheric Research
NIED	National Research Institute for Earth Science and Disaster Pre-
	vention
NOAA	National Oceanic and Atmospheric Administration
NPN	NOAA Profiler Network
NSSL	National Severe Storms Laboratory
NWS	National Weather Service
ORDA	Open radar data acquisition
OTH	Over the horizon
PA	Power-aperture
PANSY	Program of the Antarctic Syowa MST/IS Radar
PBL	Planetary boundary layer
PBS	Post beam steering
PHS	Personal Handy-phone System
POS	Positioning
PPI	Plan position indicator
PR	Precipitation radar
PRF	Pulse repetition frequency
PRT	Pulse repetition time
PSS	Post static steering
PUP	Principal user processor
Q	Quadrature-phase
RASS	Radio acoustic sounding system
RCS	Radar cross section
RDA	Radar data acquisition

rf	Radio frequency
RHC	Right-hand circular
RHI	Range height indicator
RIM	Range imaging
ROPS	Radar Observation data Processing System
RPG	Radar product generator
RPM	Rotation per minute
RX	Receiver
SA	Spaced antenna
SAD	Spaced antenna drift
SCSI	Small Computer System Interface
SDI	Spatial domain interferometry
SI	Le Système International
SNR	Signal-to-noise ratio
SPBS	Sequential post beam steering
SSPA	Solid state power amplifier
ST	Stratospheric-tropospheric
STALO	Stabilized local oscillator
STC	Sensitivity time control
STSR	Simultaneous transmission and simultaneous reception
SVD	Singular value decomposition
Т	Tropospheric
TAI	Temps Atomique International
TC	Tropical cyclone
TDWR	Terminal Doppler Weather Radar
TEP	Turbulent eddy profiler
TOGA-COARE	Tropical Ocean Global Atmosphere–Coupled Ocean Atmosphere
	Research Experiment
TPPN	Trans-Pacific Profiler Network
TR	Transmitter/receiver
TRMM	Tropical Rainfall Measurement Mission
TWT	Traveling wave tube
TX	Transmitter
UHF	Ultrahigh frequency
UTC	Coordinated Universal Time
VAD	Velocity azimuth display
VCP	Volume coverage pattern
VHF	Very high frequency
VIL	Vertical integrated liquid
VVP	Volume velocity processing
WCB	Warm conveyor belt
WCRP	World Climate Research Program
WINDAS	Wind Profiler Data Acquisition System
WRC	World Telecommunication Conference
WMO	World Meteorological Organization

Chapter 1 Introduction

1.1 Principle of Radar

A variety of weather and atmospheric phenomena occur and change every moment in the Earth's atmosphere. This book presents the techniques and sciences of remote sensing various phenomena with radar. Remote sensing is a technique that indirectly measures target without touching it directly in a distant place. Radar is an abbreviation for "RAdio Detection And Ranging", which is an electronic system that generates electromagnetic waves in the transmitter, radiates them into space via antenna, receives the scattered signal returning from the target, and measures the position, movement of the target, etc. Usually, the same antenna is used for transmission of the electromagnetic wave and reception of the return signal. The target position is obtained according to the direction where the scattered signal returns to the antenna, and to the distance calculated by the lapse of time that the electromagnetic waves make in the round-trip between radar and target.

As for the targets that scatter electromagnetic waves, various types of scatterers are known, e.g., isolated objectives such as aircrafts and ships, minute distributed particles such as precipitation and clouds, and perturbations of radio refractive index due to atmospheric turbulence. In this book, the properties of scatterers such as precipitations, clouds, and fogs associated with weather, and refractive index perturbations caused by atmospheric turbulence are presented. The former is mainly observed with meteorological radar (or weather radar), and the latter with atmospheric radar. The conceptual diagrams of meteorological radar and atmospheric radar are shown in Fig. 1.1a and b, respectively. The atmospheric radars typically make observations overhead (i.e., at high elevation angles), whereas meteorological radars typically scan the atmosphere at relatively low elevation angles. Furthermore meteorological radars typically use parabolic reflector antennas whereas atmospheric radars use phased array antennas. Although the frequencies adopted for meteorological and atmospheric radars are different due to the difference of scattering mechanisms of the targets, many aspects of the basic configuration