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Preface

The evolution of economic agglomeration in cities is observed historically. The most
likely and most accepted scenario is the evolution from an evenly spread population
of farmers with evenly spread economic activities en route to agglomeration of
economic activities in a few urban regions. Urbanization is indeed the cradle of eco-
nomic development and prosperity. Nowadays, megalopolises prosper worldwide:
Tokyo, Jakarta, New York, Seoul, Manila, Mumbai, São Paulo, Mexico City, Delhi,
and Shanghai, to name a few. A question to be answered is “How and where is
spatial agglomeration self-organized?”

The problem of self-organization involves several aspects of human activities
and, accordingly, is of interest in various fields of studies. The self-organization of
hexagonal agglomeration patterns of industrial regions was first predicted by central
place theory in economic geography based on an empirical investigation of southern
German cities. Self-organization of such distributions in two-dimensional economic
agglomeration was envisaged by Krugman, who developed a new economic geo-
graphical model for spatial agglomeration. This model incorporated microeconomic
mechanisms, including the following: monopolistic competition model of Dixit–
Stiglitz, increasing returns at the level of firms, iceberg transport costs, factor
mobility, and so on. Krugman noticed the vital role of bifurcation in the evolution
of economic agglomeration. This motivated a thorough study of the mathematical
mechanism of bifurcation engendering economic agglomeration presented in this
book.

A two-dimensional space for economic activities is modeled, in this book, by a
hexagonal lattice with periodic boundaries. Places (cities) for economic activities,
such as consumption and production, are located on the nodes of this lattice and
are connected by roads forming a regular-triangular mesh. By virtue of periodic
boundaries, every place on the lattice enjoys equal competition. Microeconomic
interactions among the places are expressed by core–periphery models in new
economic geography. Population distribution on this lattice is obtained as a solution
to the governing equation of these models. Manufactured goods are transported
along these roads at a certain transport cost. When the transport cost is high,
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vi Preface

the uniform state, in which each place has the same population and is in the
same economic state, is stable. Yet, when the cost is reduced to a certain level in
association with the progress of technology, the uniform state is destabilized by
bifurcations to produce prospering places with increasing population and decaying
ones with decreasing population. Then certain patterns, the hexagonal ones being of
particular interest, are self-organized.

In this book, after a brief introduction of central place theory and new eco-
nomic geography, the missing link between them is discovered by elucidating the
mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation
by such bifurcation is a well-studied topic in nonlinear mathematics, and group-
theoretic bifurcation analysis is a well-developed theoretical tool to investigate
possible bifurcating patterns. A finite hexagonal lattice is used in this book to
express uniformly distributed places, and the symmetry of this lattice is expressed by
a finite group. Several mathematical methodologies indispensable for tackling the
present problem are gathered in a self-contained manner. The existence of hexagonal
distributions is verified by group-theoretic bifurcation analysis, first by applying
the so-called equivariant branching lemma and next by solving the bifurcation
equation. This book consequently offers a complete guide for the application of
group-theoretic bifurcation analysis to economic agglomeration on the hexagonal
lattice.

As a main technical contribution of this book, a complete analysis of bifurcating
solutions for hexagonal distributions from critical points of multiplicity 12 is
conducted. Mathematically, the analysis of hexagonal distributions is carried out in a
streamlined manner by means of fundamental theoretical tools for integer matrices,
such as the Smith normal form and determinantal divisors. In particular, a solvability
criterion for a system of linear equations in integer unknown variables that refers
to determinantal divisors plays a significant role. Duality nature between the two
methods, one by the equivariant branching lemma and the other by bifurcation
equations, is made clear. The equivalence of the results obtained by these two
methods is established through a theorem for integrality of solutions, the so-called
integer analogue of the Farkas lemma.

Numerical bifurcation analysis of an economy on the hexagonal lattice with
periodic boundaries is conducted to demonstrate the emergence of hexagonal distri-
butions envisaged in central place theory, led by Christaller and Lösch. Moreover, as
a step toward a connection with the real world, self-organization of central places is
demonstrated for a domain with the shape of southern Germany without periodic
boundaries. This is the birthplace of central place theory, to which Christaller’s
theory was first applied, and nowadays cities of several sizes are scattered on its
relatively flat land to exhibit a hierarchy of central places. Unlike the hexagonal
lattice with symmetry, no bifurcation for agglomeration would occur on this domain
as it has no symmetry, but it has turned out that bifurcation serves as an underlying
mechanism for the progress of the agglomeration. The hexagonal patterns, observed
also for the hexagonal lattice, have appeared in the middle of the domain, just as
regularly-arrayed hexagonal cells appear in the experiment of Bénard convection in
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fluid dynamics. This indicates the generality of the emergence of hexagonal patterns
in spatial agglomeration, regardless of the shape and the boundary conditions of the
domain. Thus the agglomeration behaviors on the hexagonal lattice capture much
desired realism at the expense of idealization of periodic boundaries. This suffices
to show the role and the importance of the theoretical and computational analysis
on the hexagonal lattice presented in this book.

Hexagonal agglomeration in economic geography investigated in this book is
a topic of interdisciplinary study of various fields, encompassing central place
theory in economic geography, core–periphery models in new economic geography,
and bifurcation theory in nonlinear mathematics. Naturally, several prerequisites in
preparation for this study are contained in this book. The book can be read profitably
by those who study applied mathematics as it presents related backgrounds of
central place theory and geographical models in a self-contained manner. The book
can also be addressed to professional researchers of economic geography and new
economic geography. A complete guide of group-theoretic bifurcation analysis
is provided encompassing introductory fundamental issues and an application to
the economy on the hexagonal lattice. A complete classification of hexagonal
distributions that can appear on the hexagonal lattice is obtained so as to assist
the understanding of agglomeration behavior. The present methodology is endowed
with extendibility to other problems with other symmetry groups. In addition,
numerically obtained agglomeration patterns would contribute to gaining an intu-
itive understanding of two-dimensional agglomeration. In particular, agglomeration
patterns of southern Germany points to a promising direction of a further study.
Ample references are introduced to assist readers who are interested in further study.

The book comprises two parts. Part I is devoted to the preparation of fundamental
issues, whereas the hexagonal agglomeration in economic geography is revealed in
light of bifurcation in Part II.

Part I is organized as follows. Chapter 1 introduces several fundamental
and introductory issues. The hexagonal market areas of Christaller and Lösch’s
hexagons studied in central place theory are introduced. As a step toward a
connection with the real world, self-organization of a hexagonal distribution called
Christaller’s k D 3 system is demonstrated for a domain with the shape of southern
Germany with a microeconomic mechanism of Krugman’s core–periphery model
in new economic geography. Such a distribution is observed much clearer for
an economy on the hexagonal lattice with periodic boundaries. This shows the
suitability of such hexagonal lattice as a spatial platform for agglomeration in
economic geography. The equilibrium equation of Krugman’s core–periphery
model is formulated by assembling several relations on economic concepts, and
its stability is described. The history of the study of self-organization of cities is
reviewed, encompassing works in economic geography, new economic geography,
and physics. Chapter 2 presents fundamentals of group-theoretic bifurcation theory.
Agglomeration of population in a two-place economy is advanced in order to
demonstrate the predominant role of bifurcation in economic agglomeration. The
mechanism of this bifurcation is elucidated by group-theoretic bifurcation analysis
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of a system with dihedral-group symmetry. Bifurcation equation, equivariant
branching lemma, and block-diagonalization are introduced as mathematical tools
used to tackle bifurcation of a symmetric system. Chapter 3 serves as a bridge to the
study in Part II. The spatial agglomeration in a racetrack economy is investigated
as an application of group-theoretic bifurcation analysis to a problem with a simple
group, the dihedral group. Theoretically possible agglomeration (bifurcation)
patterns of this economy are predicted by this analysis and the existence of these
patterns is demonstrated by numerical bifurcation analysis. Such prediction and
demonstration are conducted in Part II, in a more general setting, for a larger group
expressing the symmetry of economy on a hexagonal lattice to clarify the existence
of the hexagonal patterns of Christaller and Lösch.

In Part II, we would like to tackle the objective of this book: investigation
of the mechanism of the hexagonal agglomeration in economic geography on a
hexagonal lattice in light of bifurcation. Hexagonal population distributions of
several sizes are shown to be self-organized from a uniformly inhabited state, which
is modeled by a system of places (cities) on a hexagonal lattice. Microeconomic
interactions among the places are expressed by core–periphery models in new
economic geography. We search for hexagonal distributions of Christaller and Lösch
using group-theoretic bifurcation theory. The symmetries of possible bifurcating
solutions can be determined from the algebraic structure of the group that describes
the symmetry of the system. Hence, the first step of the bifurcation analysis is to
identify the underlying group and its algebraic structure. After an introduction of the
hexagonal lattice as a two-dimensional spatial platform of economic agglomeration,
the symmetry group of this lattice is presented (Chap. 5). In comparison with the
dihedral group, which describes the symmetry of the racetrack economy (Chap. 3 in
Part I), this symmetry group has a more complicated structure, thereby, entailing
a far more complicated bifurcation mechanism. Such complexity, however, is
untangled by group-theoretic (equivariant) bifurcation analysis in Chaps. 8 and 9.

Part II is organized as follows. Chapter 4, serving as a prelude of Part II, presents
the equilibrium equation of core–periphery models and gives the proof of the
equivariance of this equation. Theoretical results of Chaps. 5–9 that elucidate the
mechanism of these bifurcations are previewed. Bifurcations on the hexagonal lat-
tice engendering hexagonal distributions of interest are demonstrated by numerical
bifurcation analysis. Chapter 5 introduces a hexagonal lattice as a two-dimensional
discretized uniform space for economic agglomeration. Hexagonal distributions
on this lattice, corresponding to those envisaged by Christaller and Lösch in
central place theory (Sect. 1.2), are explained, parameterized, and classified. The
symmetry group of the hexagonal lattice is presented. Chapter 6 gives a derivation
of irreducible representations of this group according to a standard procedure known
as the method of little groups in group representation theory. Chapter 7 presents
matrix representations of the group for the hexagonal lattice. Among the irreducible
representations of this group, those which are relevant to this lattice are identified.
Chapters 8 and 9 present group-theoretic bifurcation analysis, respectively, by
using the equivariant branching lemma and by solving the bifurcation equation.
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Irreducible representations and the sizes of the hexagonal lattice that can engender
hexagonal patterns of interest are set forth and classified. Asymptotic forms of
bifurcating equilibrium paths and the directions of these paths are presented.

It would be our great pleasure if this book contributes to a better understanding
of self-organization of economic agglomeration.

Sendai, Japan Kiyohiro Ikeda
Tokyo, Japan Kazuo Murota
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Chapter 1
Hexagonal Distributions in Economic
Geography and Krugman’s
Core–Periphery Model

Abstract At the beginning of this book, several fundamental concepts related to the
study of hexagonal economic agglomerations are presented and importance of this
study is demonstrated. Christaller’s three hexagonal market areas associated with
market, traffic, and administrative principles and Lösch’s hexagons derived from
geometrical consideration in central place theory are introduced. As a step toward a
connection with the real world, self-organization of central places is demonstrated
for a domain with the shape of southern Germany with a microeconomic mech-
anism of Krugman’s core–periphery model in new economic geography. Such a
distribution is observed much clearer for an economy on the hexagonal lattice with
periodic boundaries to demonstrate the importance of the group-theoretic study on
this lattice conducted in this book. Nonlinear equilibrium equations and the stability
of Krugman’s core–periphery model are introduced. History of the study of self-
organization of cities is reviewed, encompassing works in economic geography, new
economic geography, and physics.

Keywords Agglomeration of population • Bifurcation • Central place theory •
Christaller’s hexagonal market area • Core–periphery model • Economic agglom-
eration • Krugman model • Lösch’s hexagons • Southern Germany • Spatial
equilibrium • Stability

1.1 Introduction

Hierarchical urbanization of megalopolises, cities, towns, villages, and so on
displays interesting scattering patterns that hint at the existence of an underlying
mechanism. A first attempt to elucidate such a mechanism was conducted for
southern Germany by Christaller, 1933 [8]. Figure 1.1 depicts a distribution of
large cities in southern Germany, where cities of various sizes are distributed. In
particular, Frankfurt, Stuttgart, Nuremberg, and Munich appear to be approximately
equidistant. A question to be answered is “How and where are these cities

K. Ikeda and K. Murota, Bifurcation Theory for Hexagonal Agglomeration
in Economic Geography, DOI 10.1007/978-4-431-54258-2_1, © Springer Japan 2014
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Munich

Nuremberg

Frankfurt

Stuttgart

Fig. 1.1 Distribution of large cities in southern Germany

self-organized?” Although diversified studies have been conducted in social and
natural sciences, to be described in Sect. 1.6, the elucidation of this mechanism
remains difficult.

Successful simulation of self-organization is indeed a difficult task as it involves
the modeling of various aspects: geometry of locations, microeconomic activities,
interaction of places via transportation of goods, and so on. In addition, there are
detailed factors, such as the location of houses and factories and the shipment
of goods by trucks and trains. In this book, to avoid excessive complexity, we
specifically examine the most likely and most generally accepted scenario: an
evolution from an evenly spread population of farmers to an agglomeration of
economic activities in a few urban regions. In accordance with this scenario, we
introduce the modeling of several issues:

• For the modeling of locations, we refer to central place theory, which describes
geometrically possible spatial patterns of urbanization that are self-organized
from a uniform economic space, as explained in Sect. 1.2.

• For the modeling of economic activities, we utilize the core–periphery model in
new economic geography that incorporates several microeconomic mechanisms,
such as interactions occurring among production with increasing returns, trans-
port costs, and factor mobility, as expounded in Sect. 1.5.

By virtue of this modeling, a nonlinear equilibrium equation can be formulated, in
which the population migrating among places serves as an independent variable and
the transport cost serves as a bifurcation parameter. As a solution to this equation, we
can obtain loci of equilibria expressing the progress of agglomeration parameterized
by the transport cost. The analysis of the equation is, however, complicated due to
the multiplicity of solutions by bifurcations.

The book, accordingly, has become an interdisciplinary study of hexagonal
patterns in central place theory in economic geography, core–periphery models
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for economic agglomeration in new economic geography, and group-theoretic
bifurcation theory. At the beginning of this book, fundamentals of central place
theory and core–periphery models are presented, whereas the history of economic
geography and new economic geography is given in Sect. 1.6 and the group-
theoretic bifurcation theory is shown in detail in Chap. 2.

This book offers a group-theoretic methodology to elucidate the mechanism of
self-organization of hexagonal patterns in economic agglomeration. In this chapter,
the occurrence of self-organization is demonstrated and explained on the basis of
computational simulations of economic agglomeration in southern Germany and in
a hexagonal lattice.

This chapter is organized as follows. Hexagonal market areas in central place
theory in economic geography are introduced in Sect. 1.2. Economic agglomeration
in a domain of the shape of southern Germany with regular-triangular meshes is
simulated to demonstrate the emergence of hexagonal patterns in Sect. 1.3. Emer-
gence of hexagonal patterns on a hexagonal lattice with regular-triangular meshes
and periodic boundaries is demonstrated numerically in Sect. 1.4. Krugman’s core–
periphery model is presented in Sect. 1.5. History of the study of self-organization
of cities is reviewed in Sect. 1.6.

1.2 Christaller’s Hexagonal Market Areas and Lösch’s
Hexagons

Self-organization of hexagonal distributions has been studied by Christaller and
Lösch in central place theory.1 The concept of flat earth is introduced on the basis
of several simplifying assumptions, such as

• The land surface is completely flat and homogeneous in every aspect. It is, in
technical terms, an isotropic plain.

• Movement can occur in all directions with equal ease and there is only one type
of transportation.

• The plain is limitless or unbounded, so that complications that tend to occur at
boundaries do not need to be dealt with.

• The population is spread evenly over the plain.

1.2.1 Christaller’s Hexagonal Distributions

Christaller, 1933 [8] considered a hierarchical structure of industries with different
sizes of demand and showed that a nested set of hexagonal market areas of

1For central place theory, see, for example, Lösch, 1940 [23]; Lloyd and Dicken, 1972 [22]; Isard,
1975 [20]; and Beavon, 1977 [4].
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3

4

first-level center
second-level center

a b

c

Fig. 1.2 Three systems predicted by Christaller. (a) Christaller’s k D 3 system. (b) Christaller’s
k D 4 system. (c) Christaller’s k D 7 system. The dashed lines denote hexagonal market areas

places, such as cities, towns, and villages, emerges. A hierarchy of places with
different levels exists in each market area governed by the highest-level (first-level)
center with the largest population, the second-level center with the second largest
population, and so on.2 Self-organization of hexagonal market areas of three kinds
shown in Fig. 1.2 was advanced as a key concept.

Christaller introduced the so-called k value as an important index to characterize
hexagonal market areas, as stated by Dicken and Lloyd, 1990 (p. 28) [11] as

Christaller’s model, then, implies a fixed relationship between each level in the hierarchy.
This relationship is known as a k value (k meaning a constant) and indicates that each center
dominates a discrete number of lower-order centers and market areas in addition to its own.

The k value has a geometrical implication in that it is proportional to the size (area)
of the hexagonal market area. Its square root

p
k is proportional to the spatial

period L, the shortest distance between the first-level centers, which represents the
radius of hexagons. The three smallest values, k D 3, 4, and 7, are associated with
Christaller’s systems (Fig. 1.2).

2Such a hierarchy is also called metropolis, city, town, village, hamlet; or A-level center, B-level
center, C-level center, and so on.
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a b

c

Fig. 1.3 Hexagonal distributions of Christaller on the hexagonal lattice. (a) Christaller’s k D 3

system. (b) Christaller’s k D 4 system. (c) Christaller’s k D 7 system. The larger circles represent
the first-level centers and the smaller ones represent the second-level centers; the dashed lines
denote hexagonal market areas

Christaller’s three systems are explained by market, traffic, and administrative
principles, respectively (Christaller, 1933 [8]; Dicken and Lloyd, 1990, Chap. 1
[11]). These principles are explained below with reference to Fig. 1.3, which
displays Christaller’s hexagonal distributions on a hexagonal lattice.

• In the k D 3 system in Fig. 1.3a, neighboring first-level centers (larger circles)
are connected by two kinked roads, each of which passes a second-level center
(smaller circle) at the kink. This system is explained by Christaller’s market
principle of supplying the maximum number of evenly distributed consumers
from the minimum number of central places.

• In the k D 4 system in Fig. 1.3b, neighboring first-level centers are connected
by a straight road that passes a second-level center. This system is explained
by Christaller’s traffic principle of achieving efficient transportation. Christaller
wrote: “The traffic principle states that the distribution of central places is most
favorable when as many important places as possible lie on one traffic route
between two important towns, the route being as straightly and as cheaply as
possible.”
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• The distribution in the k D 7 system in Fig. 1.3c agrees with Christaller’s
administrative principle of avoiding the sharing of a satellite place by two first-
level centers to prevent administrative conflict. Christaller stated: “The ideal of
such a spatial community has the nucleus as the capital (a central place of a higher
rank), around it, a wreath of satellite places of lesser importance, and toward the
edge of the region a thinning population density—and even uninhabited areas.”

The number Nj of the j th level centers dominated by the first-level center is
given by the recurrence formula3

N1 D 1; Nj D kj�1 � kj�2; j D 2; 3; : : : I k D 3; 4; 7: (1.1)

For example, we have

N1 W N2 W N3 W � � � D
�
1 W 2 W 6 W 18 W 54 W 162 W � � � for k D 3 system;
1 W 3 W 12 W 48 W 192 W � � � for k D 4 system:

d/ 2 d/ 2

d/ 2

d/ 2d/ 2d/ 2

d/ 2d/ 2

d/ 2
d/ 2

Fig. 1.4 Lösch’s ten smallest hexagons

3See Christaller, 1933 (1966, p. 67) [8] for the case of k D 3 and Dicken and Lloyd, 1990, Chap. 1
[11] for the case of k D 4.
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1.2.2 Lösch’s Hexagons

Lösch, 1940 [23] demonstrated, for a single industry, that market areas must be
hexagonal in order to minimize transport costs for a given density of central places.
The ten smallest hexagons shown in Fig. 1.4 were presented as fundamental sizes of
market areas. Based on the geometry of the hexagonal lattice, the normalized spatial
period L=d was shown to take some specific values, such as

L

d
D pD D 1;p3; 2;p7; 3;p12;p13; 4;p19;p21; 5; : : : ; (1.2)

where d is the distance between two neighboring places and D is an important
parameter for the characterization of Lösch’s hexagons.

It should be emphasized that central place theory relies on a normative and
geometrical approach and does not reveal the microeconomic or mathematical
mechanism of self-organization of hexagonal patterns. This book underpins this
theory by mathematical study of the geometry of the hexagonal lattice (Chap. 5)
and elucidates the mechanism of self-organization in light of bifurcation theory
(Chaps. 6–9).

1.3 Agglomeration in Southern Germany: Realistic Spatial
Platform

As a step toward a connection with the real world, self-organization of central places
is demonstrated here by economic agglomeration analysis4 of the domain in Fig. 1.5.
The shape of this domain was chosen to mimic the shape of southern Germany.5

In comparison with the hexagonal lattice to be studied in Sect. 1.4, this domain
has the following two characteristics.

• An irregular shape without any symmetry.
• Nonperiodic boundaries.

No bifurcation for agglomeration would occur on this domain as it has no symmetry,
but it will turn out that bifurcation serves as an underlying mechanism for the

4This domain comprises 404 places connected by a set of triangular meshes and the nominal mesh
size d D 1=32. For microeconomic modeling, the core–periphery model with (4.6) in Sect. 4.5 was
used with the parameter values of .�; �; �/ D .5:0; 0:4; 10000/. See also Sect. 1.5 for fundamental
issues of this model.
5Southern Germany is the birthplace of central place theory to which Christaller’s theory was first
applied (Christaller, 1933 [8]), and nowadays cities of several sizes are scattered on its relatively
flat land to exhibit a hierarchy of central places.
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Fig. 1.5 Grid model of southern Germany. Places are located on the nodes of the grid; a regular-
triangular mesh of roads is assumed to exist even at the location where the grid is absent
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Fig. 1.6 Change of the population size �i at a place in the middle of the domain plotted against the
transport cost parameter � . Solid curves mean stable equilibria; dotted curves, unstable equilibria

progress of the agglomeration. The major objective of this book is to develop a
theoretical framework to explain the mechanism of this agglomeration behavior.

The population �i at a place in the middle is plotted6 against the transport cost
parameter � in Fig. 1.6 .0 < � < 14:0/ with enlarged views (a)–(c), and in Fig. 1.7
population distributions are shown by expressing population size by the area of
black circle. The curves in Fig. 1.6c are very complicated forming several loops
that are a mixture of stable and unstable equilibria (see Sect. 1.5.4 for the definition
of stability). Several characteristic states of the progress of agglomeration as �
decreases (in association with the development of technology) were observed as
explained below.

6The population versus the transport cost parameter curve in Fig. 1.6 was obtained only in the
ranges of � > 9:57 and � < 2:73 because the curve formed a plethora of loops and was too
complicated in the range of 2:73 < � < 9:57 between points G and F.
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Fig. 1.7 Progress of agglomeration in association with the decrease of transport cost parameter �
observed at points A–L in Fig. 1.6. The area of black circle indicates population size. (a) Point A.
(b) Point B. (c) Point C. (d) Point D. (e) Point E. (f) Point F. (g) Point G. (h) Point H. (i) Point I.
(j) Point J. (k) Point K. (l) Point L

Emergence of Christaller’s k D 3 System

In an early state (14:0 > � > 12:86), the population curve in Fig. 1.6 remained
almost flat and the population of each place changed slowly, and the population was
distributed almost uniformly (see Fig. 1.7a for � D 14:0).

A rapid increase of population �i started at � D 12:86 (point A0 in the enlarged
view in Fig. 1.6a). There was a short unstable curve A0B0 subject to a snap back
(shown by the dotted curve). The stability was lost at the minimal point A0 of � and
recovered at the maximal point B0 of � . In association with monotonic reduction
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of the value of the transport cost parameter � , we encounter the stable path AA0, a
dynamical shift between A0 and B (bypassing B0), and another stable path BC in this
sequence.

Along the curve AA0B0B, some places lost their population, other places gained
population to grow into first-level centers, and, in turn, to self-organize a spatial
pattern. At point B with � D 12:74 in Fig. 1.6, a zone containing sparsely and
regularly distributed central places appeared in the middle of the domain (Fig. 1.7b).
Since the distance between these places is equal to L=d D pD D p3, this
demonstrates a self-organization of Christaller’s k D 3 system with D D 3. This
zone grew stably thereafter (Figs. 1.7c–e). At � D 10:23 at point E in Fig. 1.6,
the sparsely- and regularly-distributed zone covered the domain away from the
boundary (Fig. 1.7e). The curve AA0B0BC had a step-like shape with a snap back
followed by a plateau. Such a shape of an equilibrium path is characteristic in the
emergence of hexagonal patterns, as we will see in Sect. 1.4.

Transition via the Hexagon with D D 9

After a relatively stable and calm era of the dominance of the k D 3 system with
the spatial period L=d D pD D p3 during 12:74 > � > 10:23, there appeared a
transient state in Fig. 1.7f at � D 9:57, in which the spatial period among growing
places elongated approximately to L=d D pD D p9 D 3. Thus we encountered a
cascade of bifurcations, in which the spatial period became

p
3 times repeatedly as

L

d
D pD W 1!p3! 3: (1.3)

Such elongation progressed gradually without undergoing bifurcation and the
initiation of the elongation was not clear.7

Agglomeration and Redispersion State

In the agglomeration and redispersion state (2:73 > � > 0:0), as shown in Fig. 1.6,
the population �i in the middle of the domain grew rapidly between points G–K,
hit the plateau between K–K0, and then decreased between K0–L. As shown in
Fig. 1.7g, at point G with � D 2:73, the population is agglomerated at seven places
denoted by black circle, which are approximately equidistant. Although these places
do not have the same population and do not display a regular-hexagonal distribution
due to the irregular shape of the domain, each place keeps sufficient and almost

7The cascade of spatial period elongation in (1.3) was observed more clearly for the 9�9 hexagonal
lattice with periodic boundaries, for which this cascade was entailed by a cascade of bifurcations
(Sects. 1.4.2 and 4.5.1).
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the same distances from neighboring places to maintain its own market area. Such
distribution agrees with Christaller’s administrative principle of avoiding the sharing
of a satellite place so as to prevent administrative conflict (Sect. 1.2).

The number of agglomerated places decreased in association with the decrease
of � (Figs. 1.7g–j), until the emergence of a megalopolis with a completely agglom-
erated population (Fig. 1.7k). Thereafter, the redispersion took place (Fig. 1.7l).

1.4 Hexagons on Hexagonal Lattice: Idealized Spatial
Platform

As we have seen in Sect. 1.3, an agglomeration analysis for hexagonal patterns on
the irregular shaped domain of southern Germany involved too complicated solution
curves with a number of loops. In this book, we advance the hexagonal lattice
as an idealized platform for the analysis of spatial agglomeration. The theoretical
analysis and the numerical analysis of this lattice are previewed in this section. It is
demonstrated that the agglomeration behavior on this lattice can capture essential
characteristics of agglomeration in southern Germany at the expense of several
idealizations.

1.4.1 Hexagonal Lattice and Possible Hexagonal Distributions

A completely homogeneous infinite two-dimensional land surface, the flat earth
in central place theory (Sect. 1.2), needs to be expressed compatibly with the
discretized analysis of core–periphery models. For this purpose, an n � n finite
hexagonal lattice with periodic boundaries is used in this book.8 Nodes on this
lattice represent uniformly spread places of economic activities. These places are
connected by roads of the same length d forming a regular-triangular mesh (see
Fig. 1.8 for an example of n D 4), and goods are transported along these roads.
In comparison with the domain with the shape of southern Germany studied in
Sect. 1.3, the hexagonal lattice is endowed with uniformity, the same geometrical
environment for every place, owing to periodic boundaries. Agglomeration would
occur on this domain by way of bifurcations.

By a theoretical consideration, pertinent lattice sizes n that would engender
hexagonal distributions of interest are given in Chap. 5. For example, Christaller’s
distributions (Fig. 1.3) are shown to be compatible with the lattice sizes

8The term of hexagonal lattice is commonly used in many fields of mathematical sciences, although
it is also called regular-triangular lattice.


