

Tool-Based Requirement Traceability
between Requirement and Design
Artifacts

Bernhard Turban

Tool-Based Requirement
Traceability between
Requirement and Design
Artifacts

Foreword by Prof. Dr. Christian Wolff

Bernhard Turban
Nabburg, Germany

Turban, Bernhard: Tool-Based Requirements Traceability between Requirement and
Design Artifacts for Safety-Critical Systems
Zugl.: Regensburg, Univ., Diss., 2011

Th is work was accepted as a Ph. D. dissertation thesis by the Faculty of Languages, Lit-
erature and Cultural Studies of the University of Regensburg in 2011.

D 355

 ISBN 978-3-8348-2473-8 ISBN 978-3-8348-2474-5 (eBook)
 DOI 10.1007/978-3-8348-2474-5

 Th e Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Library of Congress Control Number: 2013933878

Springer Vieweg
© Springer Fachmedien Wiesbaden 2013
Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
soft ware, or by similar or dissimilar methodology now known or hereaft er developed. Ex-
empted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifi cally for the purpose of being entered and executed on
a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
Th e use of general descriptive names, registered names, trademarks, service marks, etc. in
this publication does not imply, even in the absence of a specifi c statement, that such names
are exempt from the relevant protective laws and regulations and therefore free for general
use. While the advice and information in this book are believed to be true and accurate at
the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. Th e publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer Vieweg is a brand of Springer DE.
Springer DE is part of Springer Science+Business Media.
www.springer-vieweg.de

While the discerning layman understands that
in the design of large constructions,

a new town or an airport, the problems are overwhelming,
 he probably does not realise so clearly
that there are problems just as pressing

and difficult for the designer
in the design of almost any trivial product.

A bad town will do more harm than a bad toothbrush
but the designer of either will experience his job

as the necessity to make a series of decisions
between alternative courses of action,

each affecting the decisions which come after it;
and if no life hangs on the outcome

of the series of decisions about the toothbrush,
the livelihood of several people does.

David Pye [Py78; p.75]

Foreword

What is the way design decisions are made in Software design and implementa-
tion? What is the relationship between a software artifact and customer require-
ments? What are the reasons, what is the rationale for a specific technical solu-
tion? How should design decisions be documented? These are only some of the
questions which Bernhard Turban tackles in his dissertation on Tool-Based Re-
quirements Traceability.

One of the major merits of this book is the successful bridging from design
theories to practical tool design for embedded real-time software: Bernhard Tur-
ban actually puts design theory to work, in a way from which software designers
and engineers may directly benefit. At the same time, this effort is firmly rooted
in current software engineering standards like SPICE (Software Process Im-
provement and Capability Determination, ISO/IEC 15 504).

Tackling the documentation needs for software design decisions by imple-
menting a tool using a specific algorithm or forwarding these decisions shows the
authors inventiveness: For a problem many software engineers are constantly
confronted with, this solution provides an innovative solution. At the same time,
this approach generates traceability-relevant information.

In addition, the author does not only present a plausible and functional algo-
rithm for documenting design decisions across different levels of the develop-
ment process, he also realizes a complex interactive interface tool which seam-
lessly adds to the functionality of modeling tools. Based on this work, a commer-
cial software development tool was created.

This work was developed not in an academic context, but in an industrial
setting within a group of software engineers working in the domain of automo-
tive embedded real-time systems. Thus, the author can draw all examples for his
work from immediate observations in the development projects he was working
on. This adds to the credibility of the work presented here, and I am sure that
both academia as well as industrial software design can learn a good deal lot from
Bernhard Turban’s work.

With the complexity of software projects still rising, the demand for better
documentation and traceability will grow beyond typical fields like the engineer-
ing of embedded systems. Therefore, it is to be hoped for that many software
projects will benefit from Bernhard Turban’s theoretical approach towards design
decisions as well as from the tool solutions he has created.

Prof. Dr. Christian Wolff

Acknowledgements

This work would not have been accomplished without the support of so many
people. I would like to thank them all for their support.

University of Regensburg
To begin with, I would like to thank my supervisors at the University of Regens-
burg Professor Dr. Christian Wolff and Professor Dr. Rainer Hammwöhner for
their constant support. I specially thank them for giving me the chance to write
this thesis.

University of Applied Sciences in Regensburg
Particularly, I would like to thank Professor Dr. Athanassios Tsakpinis from the
University of Applied Sciences Regensburg and director of the Competence Cen-
ter for Software Engineering. Without his very significant support the results
described here might not have been accomplishable.

I further want to thank Professor Dr. Markus Kucera and Professor Dr.
Bernhard Kulla for their advice and support.

Former Micron Electronic Devices AG
Further, I would like to thank Peter Schiekofer and Jörg Aschenbrenner for giv-
ing me a chance to perform my doctor’s thesis with the Micron Electronic Devic-
es AG and specially thank them for their open-mindedness to the vague ideas I
first sketched to them seeing the innovative potential within the ideas.

Mercedes Benz technology (MBtech)
At the MBtech Group, I would like to thank Dr. Nico Hartmann for giving the
R2A-project a home, after the integration of Micron Electronic Devices AG.

The PROVEtech:R2A development team
I also would like to thank the R2A development team for their good work and
enthusiasm.

My Editors
I also want to thank Florian Weiss and my brother Andreas Turban for cross-
reading my thesis. Futher, I especially want to thank Anita Wilke from Springer
Fachmedien Wiesbaden GmbH for helping me bringing this thesis to a book.

X Acknowledgements

Family and Friends
Last but not least, I would like to especially thank my parents, grandparents and
all my friends for their patience and encouragements in difficult situations.

Bernhard Turban

Abstract

Developing safety-critical systems imposes special demands for ensuring quality
and reliability of the developed systems. Process standards such as SPICE
(ISO15504) or CMMI have been developed to ensure high quality processes,
leading to the development of high quality systems. Central principles of these
standards are demands for requirements traceability. Traceability means compre-
hensible documentation of all origins and later influences of a requirement
throughout the complete development endeavor. Among other uses ascribed, the
traceability concept tries to ensure that every requirement is adequately consid-
ered in development and that if changes on the requirement are needed, impacts
of these changes can be adequately estimated and consistently implemented later
on. Even though the traceability concept seems promising in theory, it faces sub-
stantial problems in practice. One problem is that despite the needed efforts, the
perceived benefits for developers are often low because the quality of captured
traceability information is often coarse grained, does not prove helpful in the
situational context, or has already degraded.

This thesis tries to show that traceability between requirements and design is
an especially difficult problem. To analyze the problem context, the thesis at first
analyzes theories, in which the problem is cross-cutting. These are embedded
systems development, systems engineering, software engineering, requirements
engineering and management, design theory and process standards for safety-
critical systems.

This analysis mainly identifies a twofold gap between the requirements and
the design domain. Obviously a tooling gap exists because different tools are
used for the requirements and design domain. However, more important, between
requirement descriptions and designs a substantial inherent gap exists because
design is a creative decision process of designers often guided by intuition and
tacit knowledge thus difficult to trace by current traceability concepts. To prove
this argumentation, the author analyzes four design theories (symbolic infor-
mation processing (Simon), wicked problems (Rittel), reflective practice (Schön)
and patterns (Alexander)). As a solution to the gap problem, the thesis introduces
a tool-based traceability method that supports designers in their thinking, avoids
disturbing designers in their intuitive phases of creativity, allows establishing
traceability nearly as a by-product, provides early benefit to designers, improves
collaboration between designers and extends usual traceability concepts by two
integrated decision models allowing further decision information (rationale) to
be documented. The decision models also allow deriving new design internal

XII Abstract

“requirements” (design constraints and budgeted resource constraints) as conse-
quences. In this way, it is possible to clearly distinguish real requirements origi-
nating from customers from ‘requirements’ arising from internal decision pro-
cesses during design leading to the definition of a ‘requiremental items taxono-
my’. As the thesis further shows, these concepts also prove to be helpful to avoid
unnecessary redundancies in the artifact process models of SPICE (ISO15504) or
CMMI, where different requirement (system requirements, hardware require-
ments and software requirements) and design artifacts (system design, hardware
design and software design) are considered in their interplay. Last but not least,
mechanisms for graphical impact analysis, consistency management and supplier
management complete the approach.

Through funding of the support program IUK-Bayern, the results presented
here could be integrated into a commercial tool solution called PROVEtech:R2A,
now offered by the MBtech Group as a decisive means to significantly improve
requirement-based design processes with improved support to achieve real bene-
fit from the traceability concept.

Contents

Foreword .. VII

Acknowledgements ... IX

Abstract .. XI

Contents ... XIII

List of Figures .. XIX
List of Tables .. XXIII
Abbreviations ... XXV

Introduction .. 1

Introduction to the Topic .. 1
Context of this Thesis Project .. 4
General Remarks on this Thesis .. 7

Registered Trademarks ... 7
Argumentation .. 7
Citations ... 8

General Structure of this Thesis .. 9
I. General Context and Theories .. 11

I.1 The Model Concept .. 13
I.2 Embedded Systems Development ... 16

I.2.1 Definition and Context .. 16
I.2.2 Characteristics ... 16
I.2.3 Embedded Development in the Automotive Domain 19

I.3 Software Engineering (SE) .. 24
I.4 Systems Engineering (SysEng) .. 26
I.5 Requirements Engineering and Management 31

I.5.1 The Term 'Requirement' .. 34
I.5.2 Phases, Artifacts and Techniques in REM 40
I.5.3 Requirements Management ... 43
I.5.4 Models in REM ... 44

XIV Contents

I.5.5 Separation between Requirements and Design 48
I.5.6 The Role and Nature of Requirement Change 49
I.5.7 Traceability in the Context of Requirements Management 55

I.5.7.1 Traceability in Different Aspects of Development
 Activities ... 57

I.5.7.2 Traceability as an Issue of Quality 61
I.5.7.3 The Potential Uses of Traceability 62

I.5.8 Deficiencies of Today's REM Practices 64
I.6 Design in Systems and Software Development 65

I.6.1 Different Design Phases in SysEng and SE 66
I.6.1.1 System Design .. 67
I.6.1.2 Software Architecture ... 67
I.6.1.3 Detailed Design ... 70

I.6.2 General Theories about Design .. 70
I.6.2.1 Design as Symbolic Information Processing 71
I.6.2.2 Design as Wicked Problems .. 84
I.6.2.3 Design as Situated Action ... 89
I.6.2.4 Design as a Language of Patterns 94

I.6.3 Comparison of General Design Theories 103
I.6.4 Dependency between Design Models and Code 105
I.6.5 Architecture Documentation ... 107
I.6.6 Design in the Automotive Domain .. 110

I.6.6.1 Modeling Methods and Tools Used in Automotive
 Design .. 111

I.6.6.2 Integrating other Organizations into a Design 115
I.7 Quality Standards for Safety-Critical Development Processes 116

I.7.1 SPICE (ISO 15504) ... 119
I.7.1.1 The Process Reference Model of SPICE 120
I.7.1.2 The Measurement Framework 121
I.7.1.3 The Process Assessment Model (PAM) 122

I.7.2 Requirements, Design and Traceability in the Context of
SPICE .. 124
I.7.2.1 ENG.1: Requirements Elicitation 124
I.7.2.2 ENG.2: System Requirements Analysis 126
I.7.2.3 ENG.3: System Architectural Design 130
I.7.2.4 ENG.4: Software Requirements Analysis 132
I.7.2.5 ENG.5: Software Design ... 133
I.7.2.6 ENG.6: Software Construction 134
I.7.2.7 SUP.10: Change Management 135

Contents XV

I.7.3 Traceability in SPICE ... 137
I.7.3.1 Intersect: Dangers of Prescriptive Process Models ... 138
I.7.3.2 The Nature of the ENG-Processes, Traceability, and

its Implications .. 142
I.7.4 Automotive SPICE .. 148
I.7.5 Safety Engineering: IEC 61508, ISO 26262 151

I.8 Feedback from Embedded Practice .. 153

II. Rationale Management and Traceability in Detailed Discussion 159

II.9 Rationale Management in Systems and Software
Engineering ... 159
II.9.1 Characterization Criteria for Rationale Approaches 162

II.9.1.1 Representation .. 162
II.9.1.2 Basic Rationale Processes .. 163
II.9.1.3 Descriptive versus Prescriptive Approaches 164
II.9.1.4 Intrusiveness ... 164

II.9.2 Rationale Management Systems (RMS) 165
II.9.3 Overview of Different Rationale Approaches 166

II.9.3.1 Schemas for Argumentation 166
II.9.3.2 Approaches beyond Argumentation 173
II.9.3.3 Alternative Categorization.. 175

II.9.4 Why Rationale Management Could not yet Succeed
in Practice ... 177

II.9.4.1 Cognitive Limitations ... 178
II.9.4.2 Rationale Capture Limitations as Central Challenge

 in Rationale Management ... 179
II.9.4.3 Retrieval Limitations .. 186
II.9.4.4 Usage Limitations .. 186
II.9.4.5 Synopsis of Rationale Limitations

 Concerning Alternative Design Theories 187
II.9.5 The Role of Rationale in System and Software Design ... 188

II.10 Requirements Traceability ... 192

II.10.1 Overview ... 192
II.10.2 Traceability and Consistency Gaps between Artifacts 194
II.10.3 Impact Analysis and Traceability 197
II.10.4 Core Dimensions for Characterization 201

II.10.4.1 Purpose ... 202

XVI Contents

II.10.4.2 Conceptual Trace Model 204
II.10.4.3 Process .. 229
II.10.4.4 Tools .. 234

II.10.5 Traceability and its Benefit Problem 242
II.10.6 Traceability between Requirements and Design 245

II.10.6.1 Theoretic Research Results 245
II.10.6.2 Tool Couplings between REM- and Design

 Tools in Practice .. 248
II.10.7 Traceability between Requirements, Design and Code 254
II.10.8 Rationale Management and Traceability 257

III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 259

III.11 Research Goals .. 261
III.12 Accompanying Case Study ... 265
III.13 Closing the Tool Gap .. 268
III.14 Closing the Gap between Requirements and Design 271
III.15 Abstraction Layers and Abstraction Nodes 27
III.16 Models Crossing Tool-Barriers .. 280

III.16.1 Insertion: Coupling Different REM- and Modeling
Tools ... 280

III.16.2 Integrating Several Modeling Tools in a Single Model 281
III.17 Basic Support Features of R2A ... 284

III.17.1 Support for Collaborative Design Tasks 284
III.17.2 The Notes Mechanism ... 285
III.17.3 Extensibility: XML-Reporting and User Tagging 286
III.17.4 Unique Identifier Support for any Item in R2A 287
III.17.5 Evolutionary Traceability – Recording History and

 Baselines .. 287
III.17.6 The Properties Dialog .. 288

III.18 Requirements and Requirements Traceability 290
III.18.1 Managing Requirement Sources 290
III.18.2 Establishing Requirements Traceability........................... 293

III.18.2.1 Traceability Operations in R2A 296
III.18.2.2 The Requirement Influence Scope (RIS) 299
III.18.2.3 Representing Requirement Contextual Data 302
III.18.2.4 The Requirement Dribble Process (RDP) 304
III.18.2.5 Overview over Navigation and Handling of

 Requirements Aspects in R2A 311

Contents XVII

III.19 Taxonomy of Requiremental Items .. 313
III.20 Support for Capturing Decisions ... 316

III.20.1 Relation to Approaches of Rationale Management 319
III.20.2 Effects on the Traceability Model 322
III.20.3 Example How to Tame the Development Process Model

 of SPICE .. 324
III.20.4 Implementation of the Decision Model in R2A 326
III.20.5 Additional Support of the Decision Model for Designers 337

III.20.5.1 Patterns .. 338
III.20.5.2 Ensuring Adequate Realization of Design and

Decisions ... 339
III.20.5.3 Support for Architecture Evaluation 339

III.21 Resource Allocation as a Special Decision Making Case 341
III.21.1 Budgeted Resource Constraints as further

Requiremental Items ... 343
III.21.2 Advantages for Collaboration and Sharing Project

 Knowledge .. 345
III.21.2.1 Within Project Refinement 345
III.21.2.2 Communicating Information across
 Organizational Boundaries 346
III.21.2.3 Change Management 347
III.21.2.4 Different Views on the Same Problem 348

III.21.3 Representing Budgeted Resource Constraints in SysML . 349
III.21.4 Combining both Decision Models 351

III.22 Managing Changes and Consistency 352
III.22.1 Usage of Traces – Managing Requiremental Changes 353

III.22.1.1 Selective Tracing: Impact Analysis 353
III.22.1.2 Interactive Tracing: The Model Browser 357
III.22.1.3 Non-Guided Tracing: Additional Features
 for Fast Look-Up ... 358

III.22.2 Consistency Maintenance of Requirements, Traceability
 and Design .. 359

III.23 Aspects of Embedding R2A in a Process Environment 362
III.23.1 Avoiding Redundancies in Supplier Management 363
III.23.2 Traceability over Several Artifact Models without

 Redundancies ... 365
III.23.3 Decoupled Development of Requirement and Design

 Artifacts .. 368

XVIII Contents

III.24 Overall Architecture of R2A .. 370
III.24.1 General Architecture .. 370
III.24.2 The Meta-Model .. 372
III.24.3 Further Interfaces ... 376

IV. Synopsis .. 379

IV.25 Summary of the Achieved Research Results 379
IV.26 Perspectives for Further Research ... 385

 IV.27 Conclusions .. 392

Bibliography ... 395
Index .. 435

List of Figures

Figure 1-1 Properties of original and model [LL07; p.6 (*)] 14
Figure 4-1 The view of systems engineering processes of Hood et al.

[HWF+08; p.29] .. 30
Figure 5-1 Functional and nonfunctional requirements [HR02; p.86 ff] 37
Figure 5-2 The Requirements Engineering framework defined by Pohl

[Po08; p.39 (*)] ... 41
Figure 5-3 The view of Hood et al. [HWF+08] logically derived by the

author. .. 44
Figure 5-4 Overview over different traceability terms oriented on Brcina

[Br07a; p.4] ... 58
Figure 5-5 The three dimensions of the RE framework

[Po93; p.284], [Po08; p.42] ... 61
Figure 6-1 The design problem space according to Goel [Go99; fig.1] 93
Figure 7-1 Processes defined in ISO/IEC 15504-5 basing on

ISO/IEC 12207 .. 123
Figure 7-2 The example in current practice of the SPICE process model .. 143
Figure 7-3 The altered example above with less redundancies 146
Figure 7-4 Summary of traceability BPs in A-SPICE [ASPICE08a;

Annex E] ... 149
Figure 9-1 IBIS schema example outlining a discussion. 168
Figure 9-2 QOC schema as interpreted by [HHL+06; p.413] 169
Figure 10-1 A requirements specification with attributes in IBM Rational

DOORS ... 207
Figure 10-2 Efficiency gains, process orientation and tool support

[Eb08; p.290] .. 235
Figure 10-3 Traceability tool couplings via surrogate modules 250
Figure 10-4 Requirements fan-out effect according to Alderidge [Al03] 253
Figure 12-1 Example use case of the case study ... 265
Figure 12-2 Requirements specification for the case study in IBM

Rational DOORS ... 266
Figure 12-3 Example SW design for the requirements specification

in fig. 12-2 ... 267
Figure 13-1 R2A in combination with a design tool (Sparx Systems

Enterprise Architect) ... 268
Figure 13-2 Logical structure of the R2A tool approach 270

XX List of Figures

Figure 15-1 Hierarchical decomposition of a system shown as
abstraction tree .. 273

Figure 15-2 Detailed content and structure of an abstraction node
(SubSystem1) .. 274

Figure 15-3 Example of a UML project repository in Enterprise Architect . 276
Figure 15-4 With the AN tree view and the tab “Views and Description” ... 279
Figure 16-1 Different modeling tools integrated into one design model

via R2A ... 283
Figure 17-1 The properties dialog in R2A ... 289
Figure 18-1 Managing different requirement sources in R2A 291
Figure 18-2 Requirements source document synchronized with IBM

Rational DOORS .. 291
Figure 18-3 Ways of establishing requirements traceability via drag-

and-drop in R2A. .. 298
Figure 18-4 Requirements and the requirement influence scope 300
Figure 18-5 Showing requirements in the design situational context of

an AN .. 303
Figure 18-6 Overview of how the requirements-related features are

integrated into R2A concerning navigation and handling......... 312
Figure 19-1 Requiremental items, requirements and design constraints

taxonomy .. 314
Figure 20-1 Interactions between nonfunctional, functional requirements

and architectural decisions [PDK+02] 317
Figure 20-2 Documented decisions build the connection between

requirements, design elements and resulting design
constraints .. 318

Figure 20-3 The newly emerged and more detailed traceability
information scheme... 323

Figure 20-4 The example of SPICE conforming design processes in
the new way .. 325

Figure 20-5 Decision dialog in R2A .. 326
Figure 20-6 R2A's visualization of the decision taken above 328
Figure 20-7 Architectural influence factors assessment with R2A's

decision model .. 333
Figure 20-8 Consequences of the architectural influence factors

assessment of fig. 20-7 ... 334
Figure 21-1 Requiremental items taxonomy with budgeted resource

constraints .. 343
Figure 21-2 Resource allocation example with budgeted resource

constraints .. 344

List of Figures XXI

Figure 21-3 Sub budgeting of the Light_hdl module 346
Figure 21-4 Tabular view with corresponding abstraction hierarchies. 348
Figure 21-5 Tabular view with assignment inconsistency (selected line) 349
Figure 21-6 Representation of the same information as fig. 21-4 but

in SysML view .. 350
Figure 21-7 Example for combining both decision models together 352
Figure 22-1 Two examples for visualizing impact on the abstraction

nodes hierarchy ... 354
Figure 22-2 Impact analysis dialog and R2A's main window with an

impact set taking decisions into account 356
Figure 22-3 The model browser in R2A ... 358
Figure 22-4 Life-cycle of a requiremental item and its color coding

in R2A ... 361
Figure 23-1 Process chain of an integrated design model for system, HW

and SW design ... 366
Figure 23-2 Process chain of multi-layered requirements and design

artifacts .. 367
Figure 23-3 Consistent integration of changes () beyond version

barriers .. 369
Figure 24-1 High-level architecture of R2A ... 372
Figure 24-2 The meta-model of R2A .. 374

List of Tables

Table 7.1 Maturity Levels and their Process Attributes
(cf.[HDH+06; p.16]) ... 122

Table 9.1 Alternative categorization of rationale approaches
[OM07; p.16]... 176

Table 9.2 Relation to design theories and rationale in design
according to [HA06a; p.77] ... 187

Table 10.1 Prioritization of stakeholders and usage purposes concerning
traceability between requirement and design artifacts 203

Table 10.2 Characteristics of low-end and high-end traceability users
[RJ01; p.65] ... 225

Table 10.3 Kinds of traceability tools according to [GF94] and
[Kn01b; p.57] .. 236

Table 20.1 Example of an architectural influence factors assessment 332
Table 21.1 Example resource estimation of RAM consumption in

design .. 342

Abbreviations

The following lists the most common abbreviations used in this thesis over sever-
al chapters:

AIS Actual Impact Set
AN Abstraction Node – a concept of R2A (cf. ch. III.15)
ANH Abstraction Nodes Hierarchy – a concept of R2A (cf. ch.

III.15)
A-SPICE Automotive SPICE (cf. ch. I.7.4)
BRC Budgeted Resource Constraint – a concept of R2A (cf. ch.

III.21)
CCB Change Control Board
CMMI Capability Maturity Model integrated (cf. ch. I.7)
COTS Commercial Off The Shelf
CRS Customer Requirements Specification
CTM Conceptual Traceability Model
CusSysDes The Customer's System Design
DC A Design Contraint as a concept of R2A (part III)
DEC A conflict based Decision a concept of R2A (part III)
DOD United States Department of Defense
DRL Decision Representation Language an RatMan approach

(cf. ch. II.9)
DXL DOORS eXtension Language
ECU Embedded Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
EIS Estimated Impact Set
FR Functional Requirement
GUI Graphical User Interface
GUID General Unique IDentifier
HMI Human Machine Interface

XXVI Abbreviations

HIS Hersteller Initiative Software – Standardization Board of
German Automotive OEMs (cf. ch. I.7)

HW Hardware
HW_RS Hardware Requirements Specification
IBIS Issue Based Information System an RatMan (cf. ch. II.9)

approach (see also gIBIS)
IDE Integrated Development Environment
ISO International Standards Organization
MF Measurement Framework (see SPICE)
NFR Nonfunctional Requirement
OCL Object Contraint Language
PAM Process Assessment Model (see SPICE)
PRM Process Reference Model (see SPICE)
QOC Questions, Options, Criteria an RatMan approach (cf. ch.

II.9)
R2A PROVEtech:R2A – The tool environment resulting from

this research (part III)
RatMan Rationale Management (cf. ch. II.9)
RDP Requirements Dribble Process a heuristic supported by

R2A (part III)
REM Requirements Engineering and Management
REQ Requirement from the customer as a concept of R2A

(part III)
RI Requiremental Item a concept of R2A (part III)
RIF Requirement Interchange Format
RIS Requirement Influence Scope a concept of R2A in con-

nection with the RDP (part III)
ROM Read Only Memory
RUP Rational Unified Process
RE Requirements Engineering
RM Requirements Management
REM Requirement Engineering and Management
RMS Rationale Management System

Abbreviations XXVII

RSD Requirement Source Document as a concept of R2A
(part III)

RTF Rich Text Format
SE Software Engineering
SEI Software Engineering Institute (SEI) of the Carnegie

Mellon University in Pittsburg
SIL Safety Integrity Level as described in IEC 61508
SIS Starting Impact Set
SPICE Software Process Improvement Capability dEtermination

(IS0 15504), (cf. ch. I.7)
SysEng Systems Engineering (ch. I.4)
SYS_RS System Requirements Specification
SuppRS Supplier Requirements Specifications
SW Software
SW_RS Software Requirements Specification
SysML System Modeling Language
TQM Total Quality Management (cf. ch. I.7)
UML Unified Modeling Language

Introduction

Nothing is more powerful in the world than an idea whose time has come.
Victor Hugo (*)

Introduction to the Topic

Usually, systems developed by humans are not developed for their own sake of
existence. Instead, these systems shall help to achieve certain human goals or
purposes. Goals or purposes, however, are often very abstract and vague in the
same way as the usage situations of these systems are manifold and complex.
Correspondingly, a more precise definition of what a system must exactly per-
form is needed. This leads to the need for defining the exact requirements of a
system. Then, such a system must just be designed and constructed to fulfill the
defined requirements.

Concerning the development of software-based systems, development expe-
riences of the last decades have been rather disenchanting. Often, five out of six
development projects are considered as rather unsuccessful [BMH+98; p.3],
[St95], [St01], [Eb05; p.23ff]. One major issue identified through the years is that
the developed systems often do not achieve the goals and purposes they were
intended for, or if they fulfill them, the resulting system's development project
significantly has exceeded planned budget and (resp. or) effort [St95], [St01].

Research on the causes for these problems is ongoing. Among others, three
issues can be identified as root causes (cf. ch. I.5): Unclear requirements, often
changing requirements and inadequate processes for handling.

One approach to solve the first problem is to spend extra effort on identify-
ing and defining clear and adequate requirements upfront. Today, a whole set of
artifacts, heuristics, practices and processes around the topic requirements are
available summarized under the theory of requirements engineering (RE). How-
ever, development experiences have shown that even though extra focus and
effort is spent upfront on the definition of requirements, changing requirements
are still more the norm than the exception. As ch. I.5.6 shows, reasons are mani-
fold.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_1, © Springer Fachmedien Wiesbaden 2013

2 Introduction

In the author's opinion, at least two essential causes for the requirements
change problem exist:

1. Software (SW) and SW-based systems are abstract and thus essentially diffi-
cult to define comprehensively.

2. In addition, SW-based systems themselves with their intercorrelations with
other systems and their embedding into processes infer a significant com-
plexity leading to the problem that not all cases and eventualities can be con-
sidered beforehand.

These causes – among others described in ch. I.5.6 – significantly challenge
the paradigm that the extensive specification and analysis of requirements upfront
will tame the requirements change problem. They might rather be a good lever-
age to mitigate the problem, but changing requirements will still remain a deci-
sive factor for projects. RE-theory also seems to have acknowledged this fact in
the way that it more and more emphasizes the aspect that requirements must also
be adequately managed (see ch. I.5.3). Thus, the author rather prefers to speak of
requirements engineering and management (REM).

In REM theory, requirements traceability (in the following simply called
traceability) is considered as central means to manage requirement changes.
Traceability means “comprehensible documentation of requirements, decisions
and their interdependencies to all produced information resp. artifacts from pro-
ject start to project end” ([RS02; p.407 (*)]). Through recorded traceability in-
formation, impact analysis of changes is possible allowing estimating the impact
of suggested requirement changes. This information allows project stakeholders
to decide, whether the benefits of a requirement change outweigh its costs, thus
avoiding disadvantageous changes. Once it is decided to perform a change,
traceability helps to consistently propagate the change to all impacted locations
in a project. Thus, consistently inferring the change into the project prevents
dangers of forgetting to change affected locations leading to defects or even fatal
consequences. In this way, the traceability concept is a promising means to im-
prove REM and especially change management processes, thus avoiding incon-
sistencies – introduced during inevitably applied changes – leading to failures in
the system, thus leading to significantly improved quality of developed systems.

Even though the traceability concept is already known for over 20 years and
it always has seemed very promising to be a significant value gain in a project, it
is still not very widely spread in development practice except for development
projects under certain circumstances. As ch. II.10.5 tries to outline, this seems to

Introduction to the Topic 3

be the case, because it suffers from a general problem of efficiency and of low
direct benefit perceived by the project members intended to capture the traceabil-
ity information.

The quality of developed systems generally is a decisive factor. On the other
side, ensuring quality involves significant efforts and costs. Even though quality
must not necessarily be seen as a cost factor, but should rather be seen as a factor
of investment, only finite resources can be spent for quality in order to ensure
economic success. For once, this appeals to ensuring a high degree of effective-
ness on quality assurance methods in general. For the other, demands for quality
may differ concerning the purpose of the system. As an example, it may be an
acceptable risk for PC-based SW systems that some minor bugs or other minor
flaws remain undiscovered in a delivered system, because applying an update on
a PC is acceptable as long as the number of updates is acceptable to the users and
it is easy to apply the updates. Concerning embedded systems steering a technical
equipment, it is much more difficult to perform SW-updates, as this in most cases
implies a product recall to apply the new software update. Besides high costs, this
is rather not acceptable for the users and often involves significant image losses
for the involved companies. Beyond that, so called safety-critical systems exist,
where a malfunction can lead to significant damages to values or even impose
hazards for persons' health or lives. In these cases, even minimal probabilities of
failures involving injury or death of persons must be best possibly eliminated.

Another important means to ensure good product quality is to employ good
development processes. In the context of embedded projects and especially for
safety-critical embedded projects, significant efforts have been undertaken to
standardize the processes with their decisive characteristics to be performed in
order to achieve high quality outcomes. Ch. I.7 describes these efforts and the
demands for these processes. In these process standards, a demand crosscutting
through all engineering processes is the demand for traceability of every re-
quirement to the influences it imposes on every artifact developed in any engi-
neering process.

The implementation of these demands in practice, however, often makes ap-
parent that these demands themselves are difficult to implement and if they are
implemented it is highly questionable whether the effort and resources spent
really bring significant benefit to development projects. Instead, traceability
demands are often rather performed to correspond to the standards' demands.

In this thesis, the author tries to identify several core reasons for these prob-
lems. Besides the benefit problem mentioned above, an essential problem is that
different tools are used for different processes. This, however, implies that the
traceability concept must somehow cross these tool gaps in order to connect the

4 Introduction

information within the different tools. In the author's opinion, this actually is one
essential cause for the benefit problem, as crossing these gaps generally requires
higher efforts, decreases accuracy and significantly increases potentials for in-
consistencies.

Unfortunately, the author considers one problem as even more essential:
This problem origins from the fact that requirements describe a problem space
that must be transformed into a solution. This transformation process is usually
referred to as design. Usual traceability models rather assume that these connec-
tions between requirements and design artifacts are rather linear semantic allow-
ing to trace these connections.

The author, however, believes that a semantic gap exists between the prob-
lem space described by requirements and the solution found. This gap exists,
because design is a complex task of performing sequences of complex design
decisions leading to the solution. There, the connections being rather nonlinear
make it very difficult to record valuable traceability information.

As a way to address these problems identified, this thesis also introduces a
tool environment called PROVEtech:R2A (R2A) to support requirements tracea-
bility to design with specific focus on diminishing both mentioned gaps. In this
way, the author also hopes to diminish the benefit gap to a degree that collecting
traceability information provides direct benefit for the designers thus hoping to
really achieve the promises of the traceability concept.

Context of this Thesis Project

In order to provide a better understanding to the reader how the research results
described in this thesis have emerged, this chapter provides a short overview
about the history of this research project.

First ideas to some core problems and features addressed by R2A arose as a
consequence of the direct development experiences of the author in an automo-
tive ECU development project for lights steering with SPICE level two processes.
At that time, the Micron Electronic Devices AG (MEDAG) and the Competence
Center for Software Engineering (CC-SE) at the University of Applied Sciences
Regensburg have begun a collaboration with the goal to improve the connection
of theoretic research with industrial practice.

In the development project, from 2004 to 2005 the author worked as repre-
sentative of the CC-SE at MEDAG where the author was at first responsible for

Context of this Thesis Project 5

introducing REM-processes with the REM-tool IBM Rational DOORS1 to be
newly introduced into the company's project practice. During further develop-
ment, the author was responsible for module design and implementation. In this
way, the author was also responsible for maintaining the requirements traceabil-
ity to the module design directly experiencing the shortcomings and problems
involved.

These experiences have lead to the idea about a tool environment, where de-
signers should directly benefit from gathered traceability information by making
the influences of requirements on design directly visible to designers (basic ideas
of ch. III.13, ch. III.15 and ch. III.18.2.2) and by improving the collaboration of
all involved designers (basic ideas of ch. III.18.2.4).

In 2005 the identified key concepts have then been formulated in a theoretic
outline with an extended theoretical case study being reviewed by representatives
from MEDAG and CC-SE. The concepts proved promising. As the concepts also
base on extensive user interaction, where usability is a key factor for success, the
project made contact to the Institute for Media, Information and Cultural Studies
at the University of Regensburg, where usability is one major research topic.

The three organizations have decided to form a partnership to realize the pro-
ject. For this goal, the partners decided to develop a prototype tool evaluating the
theoretical results by practical feedback and to apply for financial aid at the
IUK2-program of the Bavarian Ministry of Economic Development.

During the application phase in 2006, the prototype tool implementation has
been developed and has been continuously assessed by design practitioners of the
partners to achieve immediate feedback of implemented features.

With these granted financial aids, a two years project for six persons could be
realized to transfer the achieved theoretical and prototypical research results into
a solution relevant for practice. The project has been performed from Feb. 2007
to Feb. 2009 leading to the commercial tool PROVEtech:R2A as it is discussed in
this part. Because the tool's features have been considered as very innovative,
where good usability at complex user interactions is essential, and because most
core features have been extensively analyzed upfront by theoretical discussion
and the prototype, the project members decided to develop the project using the
evolutionary prototyping concept from agile development methods. Evolutionary
prototyping means that the project started with a prototype where all identified
features were successively integrated into the prototype so that the prototype

1 At that time called Telelogic DOORS
2 The IUK program (In German: Information Und Kommunikation (Information and

Communication)) is a research funding program to support transferring newest re-
search results into commercial solutions applicable in practice.

6 Introduction

successively evolves to the final product. In this way, new features could at first
be realized via a prototype implementation. These features then could be intro-
duced to design practitioners to acquire direct feedback on the prototypical im-
plementation. This feedback could then be used to improve and refactor the im-
plementation to fully integrate it into the project's program base. Concerning the
tool's architectural design, therefore, only an architectural skeleton has been
developed sketching the core concepts of the tool environment and leaving de-
tails of the architecture open for change.

This proceeding may, at first, seem to contradict principles discussed in this
thesis about REM, but, as discussed in ch. I.5.6 and ch. I.6.2.2, prototype-based
requirement evaluation is a common practice to address the problem that highly
innovative projects face a high volatility of requirements.

During the project in the midst of 2008, the MEDAG has been taken over by
the MBtech Group GmbH & Co. KGaA (in the further simply called MBtech) a
subsidiary company of the Daimler AG specialized on engineering services. The
concepts and ideas of the project convinced the MBtech of the innovative poten-
tials of the tool leading to a continued endeavor to develop the results to a com-
mercial solution. In this way, the developed tool has been named
PROVEtech:R2A3 (called R2A in the following) and has been integrated into the
PROVEtech tool family.

Currently, R2A is offered as commercial solution of the MBtech to address the
traceability problems described in this thesis. It is continuously maintained and
improved through a half-year release cycle. In this way, the project described
here also is an example of how theoretic research results can be successfully
brought into commercial project practice.

3 R2A stands for Requirements 2 Architecture. Further information on PROVEtech:R2A

can be found at the company homepage: http://www.mbtech-group.com/eu-
en/electronics_solutions/tools_equipment/provetechr2a_traceability_management/trac
eability_management.html (Access: 2010/09).

General Remarks on this Thesis 7

General Remarks on this Thesis

Before stepping into the thesis, the reader should note some general remarks.

Registered Trademarks

The reader of this thesis should note that some mentioned techniques and tools
referred to in this thesis are registered trademarks or under protection of copy-
right laws.

Argumentation

The thesis introduced here is not an empirical study, but rather a theoretical work.
The work can be considered somewhere between systems engineering and soft-
ware engineering theory. As a matter of fact, many of the mentioned theories and
'facts' presented in this thesis have no irrevocable evidence but are to a certain
degree a 'fact' of experience, interpretation and believe. When the author collect-
ed these 'facts' from different sources, dangers of misinterpretation or selective
interpretation by the author cannot be excluded. Facts found in a research paper
cannot always be seen on their own. Often, these 'facts' are embedded in a certain
context (e.g., a special research theory or project). Now, taking conclusions from
these 'facts' should be done with a certain care. To address this problem, the au-
thor often considered not only to cite the pure 'fact' concluded somewhere, but
also tried to outline the context where these 'facts' have arisen and he also tried to
provide available possible alternative interpretations by other authors, or theories
to allow the reader to derive his (her) own conclusions about the evidence and
how cogent the author's argumentation is. As a matter of fact, however, most
theories are not compatible or consistent to each other. Correspondingly, a tech-
nique to outline the context of some argumentation may also result in some in-
consistency or contradictory statements. The reader should consider these incon-
sistencies or contradictions as phenomenon of the manifold complexity that re-
search theories produce in their connection to each other and the limited capabili-
ties of humans to completely cope with these complexities. Besides, the author
generally doubts the potential existence of one grand unified theory about sys-
tems and software development. Rather the author considers inconsistencies and
contradictions as spring of new knowledge in research.

