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While the discerning layman understands that  
in the design of large constructions,  

a new town or an airport, the problems are overwhelming, 
 he probably does not realise so clearly  
that there are problems just as pressing  

and difficult for the designer  
in the design of almost any trivial product.  

A bad town will do more harm than a bad toothbrush  
but the designer of either will experience his job  

as the necessity to make a series of decisions  
between alternative courses of action,  

each affecting the decisions which come after it;  
and if no life hangs on the outcome  

of the series of decisions about the toothbrush,  
the livelihood of several people does. 

David Pye [Py78; p.75] 
 
 
 
 



Foreword 

What is the way design decisions are made in Software design and implementa-
tion? What is the relationship between a software artifact and customer require-
ments? What are the reasons, what is the rationale for a specific technical solu-
tion? How should design decisions be documented? These are only some of the 
questions which Bernhard Turban tackles in his dissertation on Tool-Based Re-
quirements Traceability.  

One of the major merits of this book is the successful bridging from design 
theories to practical tool design for embedded real-time software: Bernhard Tur-
ban actually puts design theory to work, in a way from which software designers 
and engineers may directly benefit. At the same time, this effort is firmly rooted 
in current software engineering standards like SPICE (Software Process Im-
provement and Capability Determination, ISO/IEC 15 504).  

Tackling the documentation needs for software design  decisions by imple-
menting a tool using a specific algorithm or forwarding these decisions shows the 
authors inventiveness: For a problem many software engineers are constantly 
confronted with, this solution provides an innovative solution. At the same time, 
this approach generates traceability-relevant information. 

In addition, the author does not only present a plausible and functional algo-
rithm for documenting design decisions across different levels of the develop-
ment process, he also realizes a complex interactive interface tool which seam-
lessly adds to the functionality of modeling tools. Based on this work, a commer-
cial software development tool was created. 

This work was developed not in an academic context, but in an industrial 
setting within a group of software engineers working in the domain of automo-
tive embedded real-time systems. Thus, the author can draw all examples for his 
work from immediate observations in the development projects he was working 
on. This adds to the credibility of the work presented here, and I am sure that 
both academia as well as industrial software design can learn a good deal lot from 
Bernhard Turban’s work. 

With the complexity of software projects still rising, the demand for better 
documentation and traceability will grow beyond typical fields like the engineer-
ing of embedded systems. Therefore, it is to be hoped for that many software 
projects will benefit from Bernhard Turban’s theoretical approach towards design 
decisions as well as from the tool solutions he has created. 

 
Prof. Dr. Christian Wolff 
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Abstract 

Developing safety-critical systems imposes special demands for ensuring quality 
and reliability of the developed systems. Process standards such as SPICE 
(ISO15504) or CMMI have been developed to ensure high quality processes, 
leading to the development of high quality systems. Central principles of these 
standards are demands for requirements traceability. Traceability means compre-
hensible documentation of all origins and later influences of a requirement 
throughout the complete development endeavor. Among other uses ascribed, the 
traceability concept tries to ensure that every requirement is adequately consid-
ered in development and that if changes on the requirement are needed, impacts 
of these changes can be adequately estimated and consistently implemented later 
on. Even though the traceability concept seems promising in theory, it faces sub-
stantial problems in practice. One problem is that despite the needed efforts, the 
perceived benefits for developers are often low because the quality of captured 
traceability information is often coarse grained, does not prove helpful in the 
situational context, or has already degraded.  

This thesis tries to show that traceability between requirements and design is 
an especially difficult problem. To analyze the problem context, the thesis at first 
analyzes theories, in which the problem is cross-cutting. These are embedded 
systems development, systems engineering, software engineering, requirements 
engineering and management, design theory and process standards for safety-
critical systems.  

This analysis mainly identifies a twofold gap between the requirements and 
the design domain. Obviously a tooling gap exists because different tools are 
used for the requirements and design domain. However, more important, between 
requirement descriptions and designs a substantial inherent gap exists because 
design is a creative decision process of designers often guided by intuition and 
tacit knowledge thus difficult to trace by current traceability concepts. To prove 
this argumentation, the author analyzes four design theories (symbolic infor-
mation processing (Simon), wicked problems (Rittel), reflective practice (Schön) 
and patterns (Alexander)). As a solution to the gap problem, the thesis introduces 
a tool-based traceability method that supports designers in their thinking, avoids 
disturbing designers in their intuitive phases of creativity, allows establishing 
traceability nearly as a by-product, provides early benefit to designers, improves 
collaboration between designers and extends usual traceability concepts by two 
integrated decision models allowing further decision information (rationale) to 
be documented. The decision models also allow deriving new design internal 
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“requirements” (design constraints and budgeted resource constraints) as conse-
quences. In this way, it is possible to clearly distinguish real requirements origi-
nating from customers from ‘requirements’ arising from internal decision pro-
cesses during design leading to the definition of a ‘requiremental items taxono-
my’. As the thesis further shows, these concepts also prove to be helpful to avoid 
unnecessary redundancies in the artifact process models of SPICE (ISO15504) or 
CMMI, where different requirement (system requirements, hardware require-
ments and software requirements) and design artifacts (system design, hardware 
design and software design) are considered in their interplay. Last but not least, 
mechanisms for graphical impact analysis, consistency management and supplier 
management complete the approach. 

Through funding of the support program IUK-Bayern, the results presented 
here could be integrated into a commercial tool solution called PROVEtech:R2A, 
now offered by the MBtech Group as a decisive means to significantly improve 
requirement-based design processes with improved support to achieve real bene-
fit from the traceability concept. 
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BRC Budgeted Resource Constraint – a concept of R2A (cf. ch. 

III.21) 
CCB Change Control Board 
CMMI Capability Maturity Model integrated (cf. ch. I.7) 
COTS Commercial Off The Shelf 
CRS Customer Requirements Specification 
CTM Conceptual Traceability Model 
CusSysDes The Customer's System Design 
DC A Design Contraint as a concept of R2A (part III) 
DEC A conflict based Decision a concept of R2A (part III) 
DOD United States Department of Defense 
DRL Decision Representation Language an RatMan approach 

(cf. ch. II.9) 
DXL DOORS eXtension Language 
ECU Embedded Control Unit 
EEPROM Electrically Erasable Programmable Read Only Memory 
EIS Estimated Impact Set 
FR Functional Requirement 
GUI Graphical User Interface 
GUID General Unique IDentifier 
HMI Human Machine Interface 



XXVI Abbreviations 

 

HIS Hersteller Initiative Software – Standardization Board of 
German Automotive OEMs (cf. ch. I.7) 

HW Hardware 
HW_RS Hardware Requirements Specification 
IBIS Issue Based Information System an RatMan (cf. ch. II.9) 

approach (see also gIBIS) 
IDE Integrated Development Environment 
ISO    International Standards Organization 
MF Measurement Framework (see SPICE) 
NFR Nonfunctional Requirement 
OCL Object Contraint Language 
PAM Process Assessment Model (see SPICE) 
PRM Process Reference Model (see SPICE) 
QOC Questions, Options, Criteria an RatMan approach (cf. ch. 

II.9) 
R2A PROVEtech:R2A – The tool environment resulting from 

this research (part III) 
RatMan Rationale Management (cf. ch. II.9) 
RDP Requirements Dribble Process a heuristic supported by 

R2A (part III) 
REM Requirements Engineering and Management 
REQ Requirement from the customer as a concept of R2A 

(part III) 
RI Requiremental Item a concept of R2A (part III) 
RIF Requirement Interchange Format 
RIS Requirement Influence Scope a concept of R2A in con-

nection with the RDP (part III) 
ROM Read Only Memory 
RUP Rational Unified Process 
RE Requirements Engineering 
RM Requirements Management 
REM Requirement Engineering and Management 
RMS Rationale Management System 



Abbreviations XXVII 

RSD Requirement Source Document as a concept of R2A 
(part III) 

RTF Rich Text Format 
SE Software Engineering 
SEI Software Engineering Institute (SEI) of the Carnegie 

Mellon University in Pittsburg 
SIL Safety Integrity Level as described in IEC 61508 
SIS Starting Impact Set 
SPICE Software Process Improvement Capability dEtermination 

(IS0 15504), (cf. ch. I.7) 
SysEng Systems Engineering (ch. I.4) 
SYS_RS System Requirements Specification 
SuppRS Supplier Requirements Specifications 
SW Software 
SW_RS Software Requirements Specification 
SysML System Modeling Language 
TQM Total Quality Management (cf. ch. I.7) 
UML Unified Modeling Language 



Introduction 

Nothing is more powerful in the world than an idea whose time has come. 
Victor Hugo (*)  

Introduction to the Topic 

Usually, systems developed by humans are not developed for their own sake of 
existence. Instead, these systems shall help to achieve certain human goals or 
purposes. Goals or purposes, however, are often very abstract and vague in the 
same way as the usage situations of these systems are manifold and complex. 
Correspondingly, a more precise definition of what a system must exactly per-
form is needed. This leads to the need for defining the exact requirements of a 
system. Then, such a system must just be designed and constructed to fulfill the 
defined requirements.  

Concerning the development of software-based systems, development expe-
riences of the last decades have been rather disenchanting. Often, five out of six 
development projects are considered as rather unsuccessful [BMH+98; p.3], 
[St95], [St01], [Eb05; p.23ff]. One major issue identified through the years is that 
the developed systems often do not achieve the goals and purposes they were 
intended for, or if they fulfill them, the resulting system's development project 
significantly has exceeded planned budget and (resp. or) effort [St95], [St01].  

Research on the causes for these problems is ongoing. Among others, three 
issues can be identified as root causes (cf. ch. I.5): Unclear requirements, often 
changing requirements and inadequate processes for handling. 

One approach to solve the first problem is to spend extra effort on identify-
ing and defining clear and adequate requirements upfront. Today, a whole set of 
artifacts, heuristics, practices and processes around the topic requirements are 
available summarized under the theory of requirements engineering (RE). How-
ever, development experiences have shown that even though extra focus and 
effort is spent upfront on the definition of requirements, changing requirements 
are still more the norm than the exception. As ch. I.5.6 shows, reasons are mani-
fold.  

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_1, © Springer Fachmedien Wiesbaden 2013



2 Introduction 

In the author's opinion, at least two essential causes for the requirements 
change problem exist: 

1. Software (SW) and SW-based systems are abstract and thus essentially diffi-
cult to define comprehensively.  

2. In addition, SW-based systems themselves with their intercorrelations with 
other systems and their embedding into processes infer a significant com-
plexity leading to the problem that not all cases and eventualities can be con-
sidered beforehand.  

These causes – among others described in ch. I.5.6 – significantly challenge 
the paradigm that the extensive specification and analysis of requirements upfront 
will tame the requirements change problem. They might rather be a good lever-
age to mitigate the problem, but changing requirements will still remain a deci-
sive factor for projects. RE-theory also seems to have acknowledged this fact in 
the way that it more and more emphasizes the aspect that requirements must also 
be adequately managed (see ch. I.5.3). Thus, the author rather prefers to speak of 
requirements engineering and management (REM). 

In REM theory, requirements traceability (in the following simply called 
traceability) is considered as central means to manage requirement changes. 
Traceability means “comprehensible documentation of requirements, decisions 
and their interdependencies to all produced information resp. artifacts from pro-
ject start to project end” ([RS02; p.407 (*)]). Through recorded traceability in-
formation, impact analysis of changes is possible allowing estimating the impact 
of suggested requirement changes. This information allows project stakeholders 
to decide, whether the benefits of a requirement change outweigh its costs, thus 
avoiding disadvantageous changes. Once it is decided to perform a change, 
traceability helps to consistently propagate the change to all impacted locations 
in a project. Thus, consistently inferring the change into the project prevents 
dangers of forgetting to change affected locations leading to defects or even fatal 
consequences. In this way, the traceability concept is a promising means to im-
prove REM and especially change management processes, thus avoiding incon-
sistencies – introduced during inevitably applied changes – leading to failures in 
the system, thus leading to significantly improved quality of developed systems.  

Even though the traceability concept is already known for over 20 years and 
it always has seemed very promising to be a significant value gain in a project, it 
is still not very widely spread in development practice except for development 
projects under certain circumstances. As ch. II.10.5 tries to outline, this seems to 
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be the case, because it suffers from a general problem of efficiency and of low 
direct benefit perceived by the project members intended to capture the traceabil-
ity information. 

The quality of developed systems generally is a decisive factor. On the other 
side, ensuring quality involves significant efforts and costs. Even though quality 
must not necessarily be seen as a cost factor, but should rather be seen as a factor 
of investment, only finite resources can be spent for quality in order to ensure 
economic success. For once, this appeals to ensuring a high degree of effective-
ness on quality assurance methods in general. For the other, demands for quality 
may differ concerning the purpose of the system. As an example, it may be an 
acceptable risk for PC-based SW systems that some minor bugs or other minor 
flaws remain undiscovered in a delivered system, because applying an update on 
a PC is acceptable as long as the number of updates is acceptable to the users and 
it is easy to apply the updates. Concerning embedded systems steering a technical 
equipment, it is much more difficult to perform SW-updates, as this in most cases 
implies a product recall to apply the new software update. Besides high costs, this 
is rather not acceptable for the users and often involves significant image losses 
for the involved companies. Beyond that, so called safety-critical systems exist, 
where a malfunction can lead to significant damages to values or even impose 
hazards for persons' health or lives. In these cases, even minimal probabilities of 
failures involving injury or death of persons must be best possibly eliminated.  

Another important means to ensure good product quality is to employ good 
development processes. In the context of embedded projects and especially for 
safety-critical embedded projects, significant efforts have been undertaken to 
standardize the processes with their decisive characteristics to be performed in 
order to achieve high quality outcomes. Ch. I.7 describes these efforts and the 
demands for these processes. In these process standards, a demand crosscutting 
through all engineering processes is the demand for traceability of every re-
quirement to the influences it imposes on every artifact developed in any engi-
neering process.  

The implementation of these demands in practice, however, often makes ap-
parent that these demands themselves are difficult to implement and if they are 
implemented it is highly questionable whether the effort and resources spent 
really bring significant benefit to development projects. Instead, traceability 
demands are often rather performed to correspond to the standards' demands.  

In this thesis, the author tries to identify several core reasons for these prob-
lems. Besides the benefit problem mentioned above, an essential problem is that 
different tools are used for different processes. This, however, implies that the 
traceability concept must somehow cross these tool gaps in order to connect the 
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information within the different tools. In the author's opinion, this actually is one 
essential cause for the benefit problem, as crossing these gaps generally requires 
higher efforts, decreases accuracy and significantly increases potentials for in-
consistencies.  

Unfortunately, the author considers one problem as even more essential: 
This problem origins from the fact that requirements describe a problem space 
that must be transformed into a solution. This transformation process is usually 
referred to as design. Usual traceability models rather assume that these connec-
tions between requirements and design artifacts are rather linear semantic allow-
ing to trace these connections.  

The author, however, believes that a semantic gap exists between the prob-
lem space described by requirements and the solution found. This gap exists, 
because design is a complex task of performing sequences of complex design 
decisions leading to the solution. There, the connections being rather nonlinear 
make it very difficult to record valuable traceability information.  

As a way to address these problems identified, this thesis also introduces a 
tool environment called PROVEtech:R2A (R2A) to support requirements tracea-
bility to design with specific focus on diminishing both mentioned gaps. In this 
way, the author also hopes to diminish the benefit gap to a degree that collecting 
traceability information provides direct benefit for the designers thus hoping to 
really achieve the promises of the traceability concept. 

 
 

Context of this Thesis Project 

In order to provide a better understanding to the reader how the research results 
described in this thesis have emerged, this chapter provides a short overview 
about the history of this research project.  

First ideas to some core problems and features addressed by R2A arose as a 
consequence of the direct development experiences of the author in an automo-
tive ECU development project for lights steering with SPICE level two processes. 
At that time, the Micron Electronic Devices AG (MEDAG) and the Competence 
Center for Software Engineering (CC-SE) at the University of Applied Sciences 
Regensburg have begun a collaboration with the goal to improve the connection 
of theoretic research with industrial practice. 

In the development project, from 2004 to 2005 the author worked as repre-
sentative of the CC-SE at MEDAG where the author was at first responsible for 
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introducing REM-processes with the REM-tool IBM Rational DOORS1 to be 
newly introduced into the company's project practice. During further develop-
ment, the author was responsible for module design and implementation. In this 
way, the author was also responsible for maintaining the requirements traceabil-
ity to the module design directly experiencing the shortcomings and problems 
involved. 

These experiences have lead to the idea about a tool environment, where de-
signers should directly benefit from gathered traceability information by making 
the influences of requirements on design directly visible to designers (basic ideas 
of ch. III.13, ch. III.15 and ch. III.18.2.2) and by improving the collaboration of 
all involved designers (basic ideas of ch. III.18.2.4).  

In 2005 the identified key concepts have then been formulated in a theoretic 
outline with an extended theoretical case study being reviewed by representatives 
from MEDAG and CC-SE. The concepts proved promising. As the concepts also 
base on extensive user interaction, where usability is a key factor for success, the 
project made contact to the Institute for Media, Information and Cultural Studies 
at the University of Regensburg, where usability is one major research topic. 

The three organizations have decided to form a partnership to realize the pro-
ject. For this goal, the partners decided to develop a prototype tool evaluating the 
theoretical results by practical feedback and to apply for financial aid at the 
IUK2-program of the Bavarian Ministry of Economic Development.  

During the application phase in 2006, the prototype tool implementation has 
been developed and has been continuously assessed by design practitioners of the 
partners to achieve immediate feedback of implemented features.  

With these granted financial aids, a two years project for six persons could be 
realized to transfer the achieved theoretical and prototypical research results into 
a solution relevant for practice. The project has been performed from Feb. 2007 
to Feb. 2009 leading to the commercial tool PROVEtech:R2A as it is discussed in 
this part. Because the tool's features have been considered as very innovative, 
where good usability at complex user interactions is essential, and because most 
core features have been extensively analyzed upfront by theoretical discussion 
and the prototype, the project members decided to develop the project using the 
evolutionary prototyping concept from agile development methods. Evolutionary 
prototyping means that the project started with a prototype where all identified 
features were successively integrated into the prototype so that the prototype 

                                                           
1 At that time called Telelogic DOORS 
2 The IUK program (In German: Information Und Kommunikation (Information and 

Communication)) is a research funding program to support transferring newest re-
search results into commercial solutions applicable in practice. 
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successively evolves to the final product. In this way, new features could at first 
be realized via a prototype implementation. These features then could be intro-
duced to design practitioners to acquire direct feedback on the prototypical im-
plementation. This feedback could then be used to improve and refactor the im-
plementation to fully integrate it into the project's program base. Concerning the 
tool's architectural design, therefore, only an architectural skeleton has been 
developed sketching the core concepts of the tool environment and leaving de-
tails of the architecture open for change.  

This proceeding may, at first, seem to contradict principles discussed in this 
thesis about REM, but, as discussed in ch. I.5.6 and ch. I.6.2.2, prototype-based 
requirement evaluation is a common practice to address the problem that highly 
innovative projects face a high volatility of requirements. 

During the project in the midst of 2008, the MEDAG has been taken over by 
the MBtech Group GmbH & Co. KGaA (in the further simply called MBtech) a 
subsidiary company of the Daimler AG specialized on engineering services. The 
concepts and ideas of the project convinced the MBtech of the innovative poten-
tials of the tool leading to a continued endeavor to develop the results to a com-
mercial solution. In this way, the developed tool has been named 
PROVEtech:R2A3 (called R2A in the following) and has been integrated into the 
PROVEtech tool family.  

Currently, R2A is offered as commercial solution of the MBtech to address the 
traceability problems described in this thesis. It is continuously maintained and 
improved through a half-year release cycle. In this way, the project described 
here also is an example of how theoretic research results can be successfully 
brought into commercial project practice. 

                                                           
3 R2A stands for Requirements 2 Architecture. Further information on PROVEtech:R2A 

can be found at the company homepage: http://www.mbtech-group.com/eu-
en/electronics_solutions/tools_equipment/provetechr2a_traceability_management/trac
eability_management.html (Access: 2010/09). 
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General Remarks on this Thesis 

Before stepping into the thesis, the reader should note some general remarks. 

Registered Trademarks 

The reader of this thesis should note that some mentioned techniques and tools 
referred to in this thesis are registered trademarks or under protection of copy-
right laws.  

Argumentation 

The thesis introduced here is not an empirical study, but rather a theoretical work. 
The work can be considered somewhere between systems engineering and soft-
ware engineering theory. As a matter of fact, many of the mentioned theories and 
'facts' presented in this thesis have no irrevocable evidence but are to a certain 
degree a 'fact' of experience, interpretation and believe. When the author collect-
ed these 'facts' from different sources, dangers of misinterpretation or selective 
interpretation by the author cannot be excluded. Facts found in a research paper 
cannot always be seen on their own. Often, these 'facts' are embedded in a certain 
context (e.g., a special research theory or project). Now, taking conclusions from 
these 'facts' should be done with a certain care. To address this problem, the au-
thor often considered not only to cite the pure 'fact' concluded somewhere, but 
also tried to outline the context where these 'facts' have arisen and he also tried to 
provide available possible alternative interpretations by other authors, or theories 
to allow the reader to derive his (her) own conclusions about the evidence and 
how cogent the author's argumentation is. As a matter of fact, however, most 
theories are not compatible or consistent to each other. Correspondingly, a tech-
nique to outline the context of some argumentation may also result in some in-
consistency or contradictory statements. The reader should consider these incon-
sistencies or contradictions as phenomenon of the manifold complexity that re-
search theories produce in their connection to each other and the limited capabili-
ties of humans to completely cope with these complexities. Besides, the author 
generally doubts the potential existence of one grand unified theory about sys-
tems and software development. Rather the author considers inconsistencies and 
contradictions as spring of new knowledge in research. 


