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Preface

The present dissertation of Benedict Baur characterizes a milestone in the
the theory of Dirichlet forms. In the last decades the theory of Dirichlet
forms emerged to be a very useful concept for the construction and analysis
of solutions to stochastic differential equations (SDEs). In particular, this
theory was and is of great success in the construction of solutions to equations
with singular coefficients, such as they are showing up in many applications
from Physics. Moreover, the concepts of Dirichlet forms allow to treat
equations in bounded domains with various boundary conditions. Classical
existence results from the theory of SDEs in the presence of boundary
conditions often are rather limited or, for certain boundary conditions, even
not available up to now.
But the general theory of Dirichlet forms has a disadvantage. One can

treat many equations, but in general it is not clear for which initial conditions.
More precisely, one has a solution for only almost all starting points. Well,
the notion “almost all” can even be refined, but in worst case one can
not specify even a single starting point for which a solution exists. This
disadvantage can be overcome by a combination of Dirichlet from techniques
with strong Feller properties. This idea, for example, has been worked out
by Masatoshi Fukushima, one of the giants and founders of the theory of
Dirichlet forms. Then, approximately 10 years ago, these ideas were refined
by Michael Röckner, a further giant of the theory of Dirichlet forms, to be
applicable to much more general classes of equations. At that time those
concepts were applied to an interesting system of SDEs from Statistical
Physics. Later on these concepts were generalized to treat more and more
examples.
The impressive contribution of Benedict Baur is the development of a

general concept out of the above ideas. In his dissertation he invented a
collection of functional analytic conditions. These imply the existence of a
solution to a given SDE. The construction of the solution is via Dirichlet
form techniques and, nevertheless, the solution process can be started in an
explicitly known set of initial points. That these analytic conditions are of
practical use, he illustrated by providing several challenging and interesting
examples.
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In the cases with reflecting boundary conditions, even the corresponding
Skorokhod decomposition is provided. Furthermore, as a byproduct, elliptic
regularity results up to the boundary were derived.

It is desirable that the present dissertation will serve as a standard reference
for constructing solutions to SDEs via Dirichlet forms for an explicitly known
set of initial conditions.

Kaiserslautern Dr. Martin Grothaus

Full Professor of Mathematics
Head of Functional Analysis

and Stochastic Analysis Group
University of Kaiserslautern
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1 Introduction

1.1 Introduction

This thesis consists of three main parts: First, the construction of Lp-
strong Feller processes from sub-Markovian strongly continuous contraction
semigroups on Lp-spaces that are associated with symmetric regular Dirichlet
forms, see Chapter 2.

Second, providing a regularity result for weak solutions to elliptic equations
under local assumptions on the coefficients, see Chapter 3 and Section 4.2.

Third, construction of elliptic diffusions with singular drift and reflecting
boundary behavior and providing a Skorokhod representation (or semimartin-
gale decomposition). This representation holds for every starting point that
is not in the singularity set of the drift term and is either in the interior of
the domain or at a C2-smooth boundary part. See Chapter 4 and Chapter
6 for details.

All results are applied to construct stochastic dynamics for finite particle
systems with singular interaction in continuum and for Ginzburg-Landau
interface models, see Chapter 5, Section 6.4 and Section 6.5.
Let us now describe the results in more detail.

Construction of Lp-strong Feller processes

We start with the first part, i.e., Chapter 2. In this chapter we provide a
general construction scheme for Lp-strong Feller processes that give solutions
to a martingale problem for starting points from a known set. With Lp-
strong Feller we mean that for some 1 ≤ p < ∞ the semigroup of the process
(Pt)t≥0 maps Lp (w.r.t. to a specified measure) into C0(E1), the space of
continuous functions on a given set E1.

The motivation is the following: Dirichlet form methods allow to construct
stochastic processes in a very general setting, see [FOT11] and [MR92]. In
particular, the construction of diffusions with very singular drift and general
boundary behavior are possible.

However, these methods yield processes that solve the associated martin-
gale problem for the corresponding L2-generator for starting points outside

B. Baur, Elliptic Boundary Value Problems and Construction of Lp-Strong Feller
Processes with Singular Drift and Reflection, DOI 10.1007/978-3-658-05829-6_1,
© Springer Fachmedien Wiesbaden 2014



2 1 Introduction

an exceptional set only. In general, this set cannot be explicitly specified
and in particular need not to be empty.

In recent years it turned out that additional techniques allow to refine these
results to get a process that can be started from every point in a specified
set of admissible starting points. Now the process yields solutions to the
martingale problem for starting points from this set and has continuous
paths in this set. In applications this specified set is naturally related to
coefficients in equations describing the process, like the formulation of the
martingale problem.

Albeverio, Kondratiev and Röckner ([AKR03]) construct distorted Brown-
ian motion on Rd, d ∈ N, with strongly singular drift (see also Theorem 2.4.2).
The process can be started from those points where the drift is not singular.
Fattler and Grothaus ([FG07] and [Fat08]) generalize these methods to
construct Brownian motion with singular drift in the interior and reflecting
boundary behavior on domains with certain smoothness assumptions. There
one has to exclude all points with singular drift and all non-smooth boundary
points. In both cases drifts with very strong (repulsive) singularities are
allowed, in particular potentials of Lennard-Jones type can be treated.

Both works make use of an elliptic regularity of Bogachev, Krylov and Röck-
ner, see [BKR97] and [BKR01], and path-regularity techniques of Dohmann,
see [Doh05].

The construction method in [FG07] is quite similar to the one of [AKR03].
We generalize this method to an abstract setting in the following way: We
start with a regular symmetric strongly local Dirichlet form (E , D(E)) on
L2(E, μ) with E being a locally compact separable metric space. Well-known
theorems (see Theorem 7.2.3) yield that there exists an associated sub-
Markovian strongly continuous contraction semigroup (T p

t )t≥0 and resolvent
(Gp

λ)λ>0 on Lp(E, μ) for 1 ≤ p < ∞ with associated generator (Lp, D(Lp)).
We assume that there exists a Borel set E1 ⊂ E complemented by an
exceptional set such that for some 1 < p < ∞ we have

• D(Lp) ↪→ C0(E1) and the embedding is locally continuous.

• D(Lp) is point separating on E1 in the sense of Condition 2.1.2(ii).

From this we construct a semigroup of Lp-strong Feller transition kernels
(Pt)t≥0 and resolvents of Lp-strong Feller kernels (Rλ)λ>0. Both give regu-
larized version of the corresponding Lp-semigroup (T p

t )t≥0 and Lp-resolvent
(Gp

λ)λ>0, i.e., for u ∈ Lp(E, μ)

Ptu (x) = T̃ p
t u (x) and Rλu (x) = G̃p

λu (x) for t > 0, λ > 0 and x ∈ E1.
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Here T̃ p
t u (G̃p

λu) denotes the continuous version of T p
t u (Gp

λu) which exists
due to the regularity assumption on D(Lp) and the mapping properties of
the semigroup and resolvent.
These kernels give rise to an associated process, solving the martingale

problem (for functions in a certain space) for starting points in E1. With
techniques of [Doh05] and [AKR03] we get continuity of the paths in [0,∞).
For the right-continuity at t = 0 it is crucial to have point separating
functions in D(Lp).
So altogether, we obtain a general construction result for processes from

symmetric regular Dirichlet forms that can be started from every point in a
known set. The generality of the construction scheme is comparable to the
construction of classical Feller processes but works under local assumptions.
In Section 2.4 we provide concrete examples for the application of the
construction scheme.

Elliptic regularity up to the boundary

We aim to apply this general scheme for construction of reflected elliptic
diffusions on sets Ω with open interior Ω ⊂ Rd, d ∈ N. Therefore, we have to
provide an elliptic regularity result which gives regularity of weak solutions
both in the interior Ω and at boundary parts. This is the main part of
Chapter 3.
We provide in Chapter 3 an Sobolev space regularity result for weak

solutions of elliptic equations. This result is a (partial) generalization of
a result of Morrey, see [Mor66, Theo. 5.5.4’]. However, therein only a
short sketch of the proof is given. Our proof is based on techniques of
Shaposhnikov, see [Sha06]. There a detailed proof of an a-priori estimate
of Morrey, [Mor66, Theo. 5.5.5’], is given. See also Chapter 3 for a further
discussion.
We can prove local regularity at all points where the coefficient matrix

is continuous and strictly elliptic, and that are either interior points or
located at a C1-smooth boundary part. Since we do not assume any global
assumptions on the matrix, we can handle gradient Dirichlet forms with
density, having a non-trivial zero set.

Let us now describe the proof of the regularity result: For interior points
we represent a weak solution in terms of potentials containing Green’s func-
tion. With this representation we can conclude iteratively higher regularity,
starting from local H1,2-regularity. For boundary points we use a reflection
method to reduce this case to the interior point case.
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Construction of elliptic diffusions with reflection at the
boundary

Combining the results of Chapter 2 and Chapter 3 we construct elliptic
diffusions in Chapter 4. They are constructed as Lp-strong Feller processes
associated with gradient Dirichlet forms. So let A be a matrix-valued
mapping of symmetric and strictly elliptic matrices and � a density on a set
Ω ⊂ Rd, d ∈ N, with open interior Ω. Our Dirichlet form is constructed as
the closure of the pre-Dirichlet form

E(u, v) =
∫
Ω

(A∇u,∇v) dμ,

u, v ∈ D :=
{
u ∈ Cc(Ω) |u ∈ H1,1

loc (Ω), E(u, u) < ∞}
,

see (4.1). For the construction of the process we assume that the matrix
coefficient A is C1-smooth, the boundary of Ω is C2-smooth boundary
(except for a set of capacity zero) and certain weak differentiability conditions
on the density, see Condition 4.1.1 and Condition 4.1.6. These stronger
assumptions on the boundary and matrix are imposed to construct point
separating functions in the domain of the Lp-generator. Nevertheless, our
assumptions on the density are so weak that very singular drift terms can
be handled. In particular, interacting particle systems with Lennard-Jones
type potentials can be treated. For the construction we fix a boundary part
Γ2 ⊂ ∂Ω, open in ∂Ω, and complemented in ∂Ω by a set of capacity zero.
The set of all admissible starting points E1 consists of all points where

the density is non-zero and that are either in the interior or at the smooth
boundary part Γ2, i.e., E1 = (Ω ∪ Γ2) ∩ {� > 0}.

We can show that the domain of the Lp-generator contains a subspace DNeu

of C2-functions with compact support in E1 and Neumann-type boundary on
Γ2, see (4.4). On this set the generator has the form of an elliptic differential
operator of second order with singular drift, denoted by L̂. So for u ∈ DNeu

it holds

Lpu = L̂u :=

d∑
i,j=1

aij∂i∂ju+

d∑
j=1

(
d∑

i=1

∂iaij +

d∑
i=1

1

�
aji∂i�

)
∂ju,

see (4.5). Using the general construction scheme from the first part together
with the elliptic regularity result from the second part we obtain an Lp-strong
Feller diffusion

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈E∪{Δ}),
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see Chapter 2 or Section 7.3 for the notion. Then the process solves the
martingale problem for u ∈ D(Lp), in particular for u ∈ DNeu. So we have
that

M
[u]
t := ũ(Xt)− ũ(X0)−

∫ t

0

Lpu(Xs) ds, t ≥ 0,

is an (Ft)-martingale under Px for all x ∈ E1 and u ∈ D(Lp). Here ũ denotes
the continuous version of u on E1 provided by the elliptic regularity result.
Next we aim to investigate the boundary behavior of the constructed

diffusion process. We construct the local time of the process on the boundary
part Γ2 ∩ {� > 0}. We show that the process solves a martingale problem
even for C2-functions with compact support in E1 that do not have the
Neumann boundary condition. More precisely,

M
[u]
t := u(Xt)− u(X0)−

∫ t

0

L̂u(Xs) ds+

∫ t

0

(A∇u, η) � (Xs) d�s, t ≥ 0,

is an (Ft)-martingale under Px for all x ∈ E1 and u ∈ C2
c (E1). Here η

denotes the outward unit normal at Γ2.
We can characterize the quadratic variation process of the martingale

(M
[u]
t )t≥0 in terms of the matrix coefficient. Altogether, we get a semimartin-

gale decomposition for (u(Xt)− u(X0))t≥0. Using a localization technique
we get such a decomposition (or Skorokhod representation) for the process
itself. Denote by (bi)1≤i≤d the first-order coefficients of L̂. Then we have

X
(i)
t∧X −X

(i)
0 =

∫ t∧X

0

bi(Xs) ds−
∫ t∧X

0

(ei, Aη)� (Xs) d�s +M
(i)
t∧X , t ≥ 0,

Px-a.s. for x ∈ E1 and 1 ≤ i ≤ d. The (M
(i)
t )t≥0, 1 ≤ i ≤ d, are continuous

local martingales (up to the lifetime X ) with quadratic variation process
(up to X )

〈M (i),M (j)〉·∧X = 2 (aij · t)·∧X for 1 ≤ i, j ≤ d.

Let us emphasize that these decompositions hold under the path meas-
ures Px for every x ∈ E1, i.e., we have again a pointwise statement. For
conservative processes we can further conclude existence of weak solutions.
The construction of the boundary local time and the semimartingale

decomposition for u ∈ C2
c (E1) is based on [FOT11, Ch. 5]. To apply

these results to our setting we need the absolute continuity of the semigroup
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(Pt)t≥0 and certain regularity of potentials of the surface measure at compact
boundary parts. We first have to refine the construction theorem in [FOT11,
Theo. 5.1.6] to our setting since the semigroup (Pt)t≥0 is in our case absolutely
continuous on E1 only. Then we apply our regularity result from Chapter 3
to potentials of the surface measure at compact boundary parts to conclude
the regularity needed to apply the construction of additive functionals. Our
regularity result implies even continuity properties of the potentials, but for
the construction boundedness properties are already sufficient. Additional
care has to be taken in our setting due to the singularity of the drifts.
We apply our results to concrete models in Mathematical Physics. We

construct stochastic dynamics for finite particle systems with singular inter-
action in continuum and reflection at the boundary of the state space. Our
approach allows very singular interaction potentials of Lennard-Jones type.
Furthermore, we construct stochastic dynamics for Ginzburg-Landau

interface models with reflection (also called: entropic repulsion) at a hard
wall. There we can also handle general potentials. These dynamics describe
the random evolution of an interface, e.g., the surface of a liquid that is
conditioned to stay above a hard wall.

Let us mention other works concerning the construction of reflected diffu-
sions, see also the beginning of Chapter 6 for a more detailed comparison
with other works. Strong solutions are constructed by Lions and Sznitman,
see [LS84]. Strook and Varadhan construct reflected diffusions as solutions
to the sub-martingale problem, see [SV71]. Moreover, there are several
works on reflected diffusions and Dirichlet forms: Let us mention [FT95] and
[FT96] where classical Feller processes associated with gradient Dirichlet
forms with uniformly elliptic coefficient matrix, but without density are
constructed. Using the results of [FOT94] a semimartingale decomposition is
given. Note, however, that their setting does not cover the case of diffusions
with singular drift term. Trutnau (see [Tru03]) constructs diffusions with
reflection and singular drift using generalized non-symmetric Dirichlet forms,
admitting a more general class of drift terms. The derived semimartingale
decomposition, however, holds for quasi-every starting point only.
Furthermore, one can use operator semigroups with Feller(-type) regu-

larizing properties also in the infinite dimensional setting for constructing
martingale (or even weak) solutions to stochastic partial differential equa-
tions, see e.g. [PR02] and [RS06].

Finally, let us summarize the core results and progress achieved by this work:
• We obtain a general construction result for Lp-strong Feller processes

from analytic assumptions, see Theorem 2.1.3.
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• We prove a local Sobolev space regularity result up to the boundary for
elliptic equations under local assumptions on the coefficients and boundary,
see Theorem 3.1.1.

• We construct Lp-strong Feller elliptic diffusions with singular drift and
reflection at the boundary, see Theorem 4.1.14.

• We provide a pointwise Skorokhod decomposition for the constructed
diffusions, see Theorem 6.2.9 and Theorem 6.3.2, and obtain weak solutions,
see Theorem 6.3.5.
In the Appendix we provide several auxiliary results. Most of them are

well-known but we needed from time to time modified versions which apply
for our specific settings.

1.2 Notation

The notation we use in this work is quite standard. By N, Q, R, C we denote
the set of all natural, rational, real and complex numbers, respectively.
Notions like positive or increasing are meant in the non-strict sense. By | · |
we denote the euclidean norm on Rd, d ∈ N, which yields in one dimension
just the modulus. By (· , ·) we always denote the Euclidean scalar product
on Rd, d ∈ N. All other scalar products will be explicitly distinguished.
For real numbers a and b we denote by a ∧ b and a ∨ b the minimum and
maximum, respectively.
For a topological space (E, τ) we denote by B(E) the Borel σ-algebra

generated by the open sets. By Bb(E), respectively B+(E), we denote the
set of Borel-measurable real-valued bounded, respectively positive, functions.

For a subset A ⊂ E we denote by
◦
A, A and ∂A the interior, closure and

boundary of A, respectively. For A ⊂ B we say A is open (closed) in B if
A is open (closed) w.r.t. the trace topology of E on B. For a matrix A we
denote by A� the transpose of A.
By C0(E), E ⊂ Rd, we denote the space of all continuous functions on

E, by C0,α(E), 0 < α < 1, the space of all Hölder continuous functions
of order α. By Cm,α(E), E ⊂ Rd, d,m ∈ N, 0 < α < 1, we denote the

set of all m-times continuously differentiable functions in
◦
E such that the

derivatives up to order m− 1 admit a continuous continuation to ∂E ∩ E
(possibly empty, e.g. if E is open) and the m-th derivatives admit a Hölder
continuous extension of order α. The subindex c marks that the functions
are supposed to have compact support in E. The subindex b marks that
the function and its derivatives up to order m are bounded on E. By
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support of a function u we denote the closure of all points where u is not
zero, denoted by supp[u]. Denote by C∞(E) the intersection of all Cm(E),
m ∈ N. With cutoff for A in B we mean a C∞

c (E)-function that is constantly
equal 1 on A and has compact support in B. We call an open subset of Rd

sometimes also a domain. For a differentiable function u on an open set
Ω ⊂ R we denote by ∇u the gradient, seen as a column vector, and by ∂iu,
1 ≤ i ≤ d, the partial derivative in direction ei, ei the i-th unit vector. The
expression (∇u) (x− y) means evaluating the gradient of u at x− y rather
than differentiating the function x �→ u(x− y) or y �→ u(x− y). By dx we
denote the Lebesgue measure, by εx the point measure in a point x. Let
(E,B) be a measurable space with a topology τ . For a measure μ we denote
by topological support of μ all points for which an open neighborhood with
positive μ-measure exists. We denote by Lp(E, μ), 1 ≤ p ≤ ∞, the space
of p-integrable functions and by Lp(E, μ) the corresponding equivalence
classes. For a function space L we denote by σ(L) the σ-algebra generated
by L, i.e., the smallest σ-algebra for which all functions in L are measurable.
By Hm,p(Ω), Ω ⊂ Rd open, m, p ∈ N, p ≥ 1, we denote the Sobolev space
of m-times weakly differentiable Lp-functions with Lp(Ω, dx)-integrable
derivatives. The corresponding local spaces are marked by the subindex
loc, they are introduced in Section 7.5. In a metric space (E,d) we denote
by Br(x) the ball with radius r > 0 around x ∈ E. By dist(x,A), x ∈ E,
A ⊂ E, we denote the distance of x to A.



2 Construction of Lp-Strong
Feller Processes

In this chapter we provide a general construction scheme for Lp-strong Feller
processes on locally compact separable metric spaces. The construction
result yields that starting from certain regularity conditions on the semigroup
associated with a symmetric Dirichlet form, one obtains a diffusion process
which solves the corresponding martingale problem for every starting point
from an explicitly known set. In Theorem 2.3.10 we mention further useful
properties of the process, formulated also as pointwise statements. In
Section 2.4 we provide concrete examples. Our results and their proofs
are based on [AKR03] and [Doh05]. We got also many ideas from [FG07],
[FG08] and [Sti10]. For the construction of classical Feller processes from
strongly continuous contraction semigroups on spaces of continuous functions
vanishing at infinity, see e.g. [BG68, Ch. I, Theo 9.4]. There are also results
on the construction of Hunt processes from resolvents of kernels, see [Sto83]
and Remark 2.3.1 below.
We have published the results of this chapter already in [BGS13].

2.1 A General Construction Scheme

For readers, who are unfamiliar with the concepts of Dirichlet forms or
Lp-strong Feller processes, it might help to have a look at the examples
provided in Section 2.4 first.

Throughout Section 2.2 and 2.3 we fix a metric space (E,d), a measure μ
on the Borel σ-algebra B(E) and a Dirichlet form (E , D(E)) on L2(E, μ).

We assume the following conditions.

Condition 2.1.1.
(i) (E,d) is a locally compact separable metric space.
(ii) μ is a locally finite Borel measure with full topological support.
(iii) (E , D(E)) is symmetric, regular and strongly local.

B. Baur, Elliptic Boundary Value Problems and Construction of Lp-Strong Feller
Processes with Singular Drift and Reflection, DOI 10.1007/978-3-658-05829-6_2,
© Springer Fachmedien Wiesbaden 2014
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Except for the locality assumption these are the standard assumptions
under which Dirichlet forms and stochastic processes are considered in
[FOT11]. With locally finite Borel measure we mean that μ is defined on the
Borel σ-algebra and is finite on compact sets. With full topological support
we mean that for every x ∈ E there exists a neighborhood U of x such
that μ(U) > 0. By the Beurling-Deny theorem there exists an associated
strongly continuous contraction semigroup on Lr(E, μ) (Lr-s.c.c.s) (T r

t )t>0

with generator (Lr, D(Lr)) for every 1 ≤ r < ∞, see Theorem 7.2.3. If r > 1
then (T r

t )t>0 is the restriction of an analytic semigroup. Here associated
means that for f ∈ L1(E, μ) ∩ L∞(E, μ) it holds T 2

t f = T r
t f for every t ≥ 0

where (T 2
t )t≥0 is the unique L2-s.c.c.s associated with (E , D(E)).

We assume the following stronger conditions that are needed to get refined
pointwise results.

Condition 2.1.2.
There exists a Borel set E1 ⊂ E with capE(E \E1) = 0 and 1 < p < ∞ such
that

(i) D(Lp) ↪→ C0(E1) and the embedding is locally continuous, i.e., for
x ∈ E1 there exists an E1-neighborhood U and a constant C1 =
C1(U) < ∞ such that

supy∈U |ũ(y)| ≤ C1‖u‖D(Lp) for allu ∈ D(Lp). (2.1)

Here ũ denotes the continuous version of u.

(ii) For each point x ∈ E1 there exists a sequence of functions (un)n∈N in
D(Lp) such that

a) Either {u2
n |n ∈ N} ⊂ D(Lp) or 0 ≤ un ≤ 1 and un(x) = 1 for all

n ∈ N.

b) The sequence (un)n∈N is point separating in x.

Here C0(S) denotes the space of all continuous functions on a topological
space S. By ‖ · ‖D(Lp) we denote the graph norm of (Lp, D(Lp)). Point
separating in x means that for every y �= x, y ∈ E, there exists un such
that un(y) = 0 and un(x) = 1. We adjoin to E an extra point Δ which is
not contained in E. We endow EΔ := E ∪ {Δ} with the topology of the
Alexandrov one-point compactification of E. The open neighborhoods of Δ
are given by the complements of compact subsets of E.
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Under Condition 2.1.1 and Condition 2.1.2 we obtain the following the-
orem.

Theorem 2.1.3. There exists a diffusion process (i.e., a strong Markov
process having continuous sample paths on the time interval [0,∞))
M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈E∪{Δ}) with state space E and cemetery
Δ, the Alexandrov point of E. The process leaves E1 ∪ {Δ} Px-a.s., x ∈
E1 ∪ {Δ}, invariant. The transition semigroup (Pt)t≥0 is associated with
(T 2

t )t≥0 and is Lp-strong Feller, i.e., PtLp(E, μ) ⊂ C0(E1) for t > 0. The
process has continuous paths on [0,∞) and it solves the martingale problem
associated with (Lp, D(Lp)) for starting points in E1, i.e.,

M
[u]
t := ũ(Xt)− ũ(x)−

∫ t

0

Lpu(Xs) ds, t ≥ 0,

is an (Ft)-martingale under Px for all u ∈ D(Lp) and x ∈ E1. As filtration
(Ft)t≥0 we take the natural filtration, defined in (7.8) below.

Here (Pt)t≥0 being associated with (T 2
t )t≥0 means that Ptf is a μ-version

of T 2
t f for f ∈ L1(E, μ) ∩ Bb(E) (the space of Borel-measurable bounded

functions). By Lp(E, μ) we denote the space of all p-integrable functions on
(E, μ).

Remark 2.1.4. The continuity holds with respect to topology of the Al-
exandrov one-point compactification of EΔ. This means that the process
has continuous paths in E and reaches Δ only by leaving continuously every

compact set of E. The integral in M
[u]
t exists and is independent of the

μ-version of Lpu. This will be seen in the proof below.

The theorem is proven in Section 2.3, see page 31 and Theorem 2.3.11
below. Further useful properties of the constructed process are proven in
Theorem 2.3.10 below.

Under additional conditions, the corresponding resolvent of kernels (Rλ)λ>0

are even strong Feller , i.e., RλBb(E) ⊂ C0(E1). More precisely, we have the
following theorem.

Theorem 2.1.5. Assume the following conditions.

(i) For every x ∈ E1 there exists a neighborhood U ⊂ E1 such that for
the closure in E it holds U ⊂ E1 and U is compact.

(ii) For every sequence (un)n∈N in D(Lp) such that ((1 − Lp)un)n∈N

is uniformly bounded in the ‖ · ‖L∞-norm it holds that (un)n∈N is
equicontinuous.



12 2 Construction of Lp-Strong Feller Processes

Then (Rλ)λ>0 is strong Feller.

For the proof see Section 2.2 (page 21).

Remark 2.1.6. In [AKR03] it is shown that strong Feller property of
(Rλ)λ>0 and conservativity of (E , D(E)) imply that (Pt)t>0 is strong Feller.
The proof generalizes to the case considered here.

Having strong Feller properties of the resolvent family at hand, we can
provide a conservativity criterion for the process M.

Corollary 2.1.7. Assume that (E , D(E)) is conservative and (Rλ)λ>0 is
strong Feller, then M from Theorem 2.1.3 is conservative for every starting
point x ∈ E1.

See p. 34 for the proof.
For constructions in the later chapters it is convenient to consider the

so-called restriction of the process from Theorem 2.1.3 to E1 ∪ {Δ}. We
obtain the following corollary.

Corollary 2.1.8. Let M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈E∪{Δ}) be the
diffusion process constructed in Theorem 2.1.3. Let the restricted process
M1 := (Ω1,F1, (F1

t )t≥0, (X
1
t )t≥0, (P1

x)x∈E1∪{Δ}) be defined as in Definition

7.3.18 with Ẽ1 := E1∪{Δ}. Then M1 is a Lp-strong Feller diffusion process

with state space E1 and cemetery Δ. The transition semigroup (P
E1∪{Δ}
t )t≥0

is absolutely continuous on E1.

See p. 35 for the proof.

Remark 2.1.9. The filtration (F1
t )t≥0 and F1 are important for the con-

struction of additive functionals in Chapter 6. There some subsets of Ω have
full Px-measure for x ∈ E1 ∪ {Δ} only.

2.2 Construction of Lp-strong Feller Kernels

We start with the construction of a semigroup of kernels (Pt)t>0 and resolvent
of kernels (Rλ)λ>0 which yield a μ-version of (T p

t )t>0 and (Gp
λ)λ>0. For this

we assume Condition 2.1.1 and Condition 2.1.2 and fix a 1 < p < ∞ as in
Condition 2.1.2. We adapt the structure of [AKR03, Sec. 3] and modify the
statements and proofs there in order to cover the abstract setting.


