Martin Henger

Zur Betriebsfestigkeit elektrischer Maschinen in Elektro- und Hybridfahrzeugen

RESEARCH

Zur Betriebsfestigkeit elektrischer Maschinen in Elektro- und Hybridfahrzeugen

Martin Henger

Zur Betriebsfestigkeit elektrischer Maschinen in Elektro- und Hybridfahrzeugen

Mit einem Geleitwort von Dr. Stephan Usbeck und Dr. Rüdiger Schroth

RESEARCH

Martin Henger Tamm, Deutschland

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation, 2012.

Hauptberichter: Prof. Dr.-Ing. H. Hanselka Mitberichter: Prof. Dr.-Ing. S. Rinderknecht

Tag der Einreichung: 8. März 2012 Tag der mündlichen Prüfung: 5. Juni 2012

D 17

ISBN 978-3-658-00706-5 DOI 10.1007/978-3-658-00707-2 ISBN 978-3-658-00707-2 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2013

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media www.springer-vieweg.de

Geleitwort

Klimawandel und Ressourcenschonung durchdringen seit Anfang des neuen Jahrtausends in zunehmendem Maße die gesellschaftliche Diskussion und verändern konsequenterweise die Forschungsausrichtung und -förderung an Hochschulen und Universitäten sowie in der Industrie. Nicht nur die klassischen Bereiche der Automobilindustrie und Antriebstechnik sind von diesen Veränderungen betroffen, es bedarf auch neuer Konzepte in der Energieversorgung bis hin zur Gestaltung von Infrastrukturprojekten in Städten und Gemeinden.

Die Elektrifizierung von Personen- und Nutzlastverkehr ist ein vielversprechender Beitrag zur Senkung des CO₂-Ausstoßes vor allem in innerstädtischen Gebieten und bietet vielfältige Möglichkeiten, mit innovativen Produkten neue Marktchancen zu erschließen. Die Automobilindustrie und deren Zulieferer sind dabei ein Vorreiter bei der Bereitstellung nachhaltiger Antriebslösungen für Hybrid- und Elektrofahrzeuge. Zahlreiche Topologien von Mild-, Strong- über Plugin-Hybrid bis hin zu reinen Elektroantrieben sind bereits marktreif verfügbar. Unabhängig von der gewählten Fahrzeugtopologie ist stets die elektrische Maschine die zentrale Einheit, welche den motorischen und generatorischen Leistungsumsatz realisiert. Kombiniert mit moderner Leistungselektronik und Regelungstechnik erleben lange bekannte E-Maschinenkonzepte eine Renaissance als Antriebseinheit. Allerdings stellt der Einsatz im Fahrzeug auch neue Anforderungen an den Elektromotor, die einer tiefgehenden Analyse und Durchdringung bedürfen.

Mit den Auswirkungen dieser neuen Anforderungen beschäftigt sich Herr Henger in seiner Dissertation. Er entwickelt Methoden zur rechnerischen Beschreibung der Belastungen aus elektromagnetischen, eigenerregten Schwingungen, sowie mechanischen, fremderregten Rotor-Lager Schwingungen in axialer Richtung. Auf Basis dieser Methoden stellt er die Belastungen der elektrischen Maschine bei verschiedenen Fahrprofilen den derzeit gültigen Erprobungsvorgaben gegenüber und bewertet diese hinsichtlich ihres Einflusses auf die Betriebsfestigkeit. Neben der tiefen theoretischen Analyse zur Beschreibung der verschiedenen Belastungsarten stellt insbesondere der Bezug zu numerischen Berechnungsansätzen und experimentellen Ergebnissen eine wertvolle Bereicherung für diese Fachdisziplin dar. Die Anwendung der erarbeiteten Methoden auf den realen Belastungsfall eines Hybridfahrzeugs verdeutlicht schließlich die unmittelbare Praxistauglichkeit der Erkenntnisse.

Aufgrund dessen wünschen wir der Arbeit sowohl in der Wissenschaft, als auch in der Industrie eine hohe Aufmerksamkeit und dem Leser eine interessante Lektüre.

Dr. Stephan Usbeck

Dr. Rüdiger Schroth

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als Doktorand bei der Robert Bosch GmbH im Bereich der Entwicklung elektrischer Maschinen für Elektro- und Hybridfahrzeuge sowie während meiner anschließenden Tätigkeit als Entwicklungsingenieur für aktive Generatoren.

Mein herzlicher Dank gilt meinem Doktorvater, Prof. Dr. Holger Hanselka, für das mir entgegengebrachte Vertrauen und die fortwährende Unterstützung bei der Erstellung dieser Arbeit. Neben vielen fachlichen Diskussionen und wertvollen Anregungen, welche zum Gelingen der Arbeit beitrugen, sind mir insbesondere der faire und motivierende Charakter unserer Gespräche in bester Erinnerung.

Herrn Prof. Dr. Stephan Rinderknecht danke ich für die freundliche Übernahme des Korreferats, das gezeigte Interesse und die eingehende Durchsicht meiner Arbeit.

Besonders danken möchte ich meinem fachlichen Betreuer innerhalb der Robert Bosch GmbH, Dr. Rüdiger Schroth, für seinen Einsatz, auch außerhalb der Arbeitszeit, die interessanten Anregungen und die fachliche und persönliche Unterstützung.

Dr. Stephan Usbeck und Dr. Joachim Bös danke ich für die Betreuung und die Hilfestellung in allen organisatorischen Belangen meiner Arbeit.

Bei meinen ehemaligen Kollegen möchte ich mich für die gute Zusammenarbeit, die freundliche Arbeitsatmosphäre und die stete Hilfsbereitschaft bedanken. Stellvertretend erwähnen möchte ich Serge Zambou, Dr. Farshid Karim Pour, Vincent Riou und Dr. Stefan Einbock, welche mir mit interessanten Anregungen, konstruktiver Kritik und fachkundiger Unterstützung bei verschiedenen Themenschwerpunkten zur Seite standen.

Für den persönlichen Rückhalt im privaten Umfeld geht ein großer Dank an meine Familie und Freunde. Insbesondere danke ich meinen Eltern für Ihren Rückhalt und Ihre Unterstützung in meinem akademischen Werdegang. Der größte Dank gilt jedoch Dir, Kathrin, die Du mir durch Deine fortwährende Liebe, Unterstützung und Geduld diese Arbeit und so viel mehr erst ermöglicht hast.

"Nihil difficile amanti" [CICERO]

Martin Henger

Inhaltsverzeichnis

Abbildungsverzeichnis					XIII
Tabellenverzeichnis					
Formelzeichen					
1	Ein	leitung	y S		1
2	Sta	nd der	Technik		3
	2.1	Rotor	-Lager-Systeme		4
		2.1.1	Aufbau von Wälzlagern		5
		2.1.2	Modellierung des Rillenkugellagers		5
		2.1.3	Schwingungen des Rotor-Lager-Systems		7
	2.2	Elastis	sche Mehrkörpersimulation		8
		2.2.1	Beschreibung starrer Körper		9
		2.2.2	Beschreibung elastischer Körper		9
		2.2.3	Reduktionsverfahren		10
	2.3	Elektr	omagnetische Kräfte in mechanischen Strukturen		13
	2.4	Metho	oden der rechnerischen Betriebsfestigkeit		14
		2.4.1	Nennspannungskonzept		15
		2.4.2	Hypothesen der linearen Schadensakkumulation $\ . \ . \ . \ .$		16
3	Ele	ktroma	agnetisch erregte Schwingungen		19
	3.1	Physil	kalische Beschreibung elektromagnetischer Kräfte		19
		3.1.1	Berechnung elektromagnetischer Kräfte		20
		3.1.2	Analytische Beschreibung der Zugspannungswellen		22
	3.2	Imple	mentation elektromagnetischer Kräfte		24
		3.2.1	Modale Kräfte		24
		3.2.2	Anwendung am N-Massen-Schwinger		25
		3.2.3	Ergebnisse am <i>N</i> -Massen-Schwinger		27
	3.3	Imple	mentation der Kräfte in ein Maschinenmodell		30
		3.3.1	Berechnung elektromagnetischer Kräfte im Luftspalt		31
		3.3.2	Modellierung des elastischen Mehrkörpersystems		31

		3.3.3	Implementation der berechneten Kräfte	32
		3.3.4	Prüfaufbau	33
		3.3.5	Vergleich von Messung und Berechnung	34
	3.4	Ergeb	nis	38
4	Rot	or-Lag	ger-Schwingungen	39
	4.1	Model	lbildung des Rotor-Lager-Systems	43
	4.2	Lösen	der Systemgleichung im Frequenzbereich	47
		4.2.1	Harmonische Balance-Methode	47
		4.2.2	Ergebnis der harmonischen Balance-Methode	52
		4.2.3	Einflussanalyse	54
		4.2.4	Höher Harmonische Balance-Methode	56
		4.2.5	Ergebnis der höher harmonischen Balance-Methode	58
	4.3	Lösen	der Systemgleichungen im Zeitbereich	65
		4.3.1	Erweiterte Dämpfungsbetrachtung	65
		4.3.2	Ergebnis	66
	4.4	Param	neterabgleich und Vergleich mit Messwerten	70
		4.4.1	Messaufbau und Durchführung	71
		4.4.2	Ergebnis der Messung	72
		4.4.3	Abgleich der Berechnungsparameter	74
	4.5	Ergeb	nis	75
5	\mathbf{Sch}	wingu	ngen der Anbauposition	79
	5.1	Fahrze	eugmessung im Standardlastfall	79
	5.2	Fahrze	eugmessung im Sonderlastfall	83
		5.2.1	Autobahnfahrt	83
		5.2.2	Beschleunigungsfahrt	84
		5.2.3	Schlechtwegstrecken	85
	5.3	Komb	ination der Lastfälle	87
	5.4	Norm	profil elektrischer Komponenten im Kraftfahrzeug	89
		5.4.1	Quantitativer Vergleich	90
		5.4.2	Qualitativer Vergleich	91
	5.5	Ergeb	nis	95

6	Zur	Betrie	bsfestigkeit der elektrischen Maschine und deren Erprobung	97	
	6.1	1 Einfluss elektromagnetischer Kräfte			
	6.2	Einflus	s axialer Rotor-Lager-Schwingungen	98	
		6.2.1	Axiale Rotor-Lager-Schwingungen im Fahrzeug	98	
		6.2.2	Axiale Rotor-Lager-Schwingungen im Normprofil $\ \ . \ . \ . \ .$	101	
	6.3 Vergleich dynamischer Belastungen 1				
6.3.1 Vergleichsmethode				103	
		6.3.2	Fahrzeug und Normprofil: Auswirkungen auf die Belastung $\ . \ . \ .$	104	
		6.3.3	Bedeutung des Vergleichs für die Definition des Normprofils $\ \ . \ . \ .$	106	
	6.4	Maßnahmen zur Reduktion der Belastung			
	6.5 Lebensdauer der elektrischen Maschine			109	
7	7 Ergebnis und Ausblick 11				
Lit	Literaturverzeichnis 1				

Abbildungsverzeichnis

2.1	Komponenten des elektrischen Triebstrangs	4
2.2	Lagerbauarten	5
2.3	Beschreibung starrer Körper	9
2.4	Beschreibung elastischer Körper	10
2.5	Wöhlerkurve	16
3.1	Skizze eines Ständers	20
3.2	Darstellung des Spannungstensors	21
3.3	Drehmomentberechnung im Luftspalt	21
3.4	Ortsabhängige, radiale Spannungen im Luftspalt	22
3.5	Zeitabhängige, radiale Spannungen im Luftspalt	23
3.6	Darstellung einer Spannungswelle im Luftspalt	24
3.7	Modale Kräfte	25
3.8	Ungedämpfter Biegebalken	26
3.9	Magnet position zur Anregung des Schwingungssystems	26
3.10	Schwingung der mittleren Punktmasse	28
3.11	Vergleich der Ergebnisse aus nodaler und modaler Berechnung	29
3.12	Querschnitt von Rotor und Stator	31
3.13	Hybrides MKS-Modell der elektrischen Maschine auf einem Prüfstand	32
3.14	Iterationsschema des Solvers zur Implementation elektromagnetischer Kräfte	32
3.15	Versuchsaufbau zur Messung elektromagnetisch erregter Schwingungen $\ . \ .$	33
3.16	Vergleich von Messung und Simulation im Zeitbereich	34
3.17	Vergleich von Messung und Simulation im Frequenzbereich	35
3.18	Vergleich von Messung und Simulation im Frequenzbereich	36
3.19	Vergleich der Schwingungen mit an- und abgekoppelter Lastmaschine $\ . \ . \ .$	37
4.1	Radiale und axiale Komponente der Steifigkeit im Wälzlager	41
4.2	Axiale Transversalschwingungen in Rotor-Lager-Systemen	43
4.3	Abbildung des Elektromotors eines Hybridantriebs $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	44
4.4	Kontaktwinkel α in Abhängigkeit einer axialen Verschiebung	45
4.5	Mechanisches Ersatzmodell in axialer Richtung der elektrischen Maschine	46
4.6	N-Feder-Modell	48

4.7	Wirkungsbereich einer Feder i innerhalb einer Periode	51
4.8	Amplitude und Phase der Rotorschwingung im starren Lagerschild $\ \ . \ . \ .$	53
4.9	Parameter der Resonanzkurve	55
4.10	Resonanzkurve des Rotors $x_{\rm R}$	59
4.11	Resonanzkurve des Lagerschildes $x_{\rm LS}$	59
4.12	Phasenportrait der Rotorschwingung	62
4.13	Phasenportrait der Lagerschildschwingung	64
4.14	Dämpfungskraft des Rillenkugellagers	66
4.15	Schwingwege der Lagerbohrung in der 1. Ordnung	68
4.16	Phasenportraits der Relativ bewegung von Rotor und Lagerschild $\ \ldots \ \ldots$	70
4.17	Beschleunigungsverlauf am Lagerschild bei steigender Anregungsfrequenz	72
4.18	Beschleunigungsverlauf am Lagerschild bei fallender Anregungsfrequenz	73
4.19	Vergleich von Messung und Simulation	76
5.1	Stuttgart-Zykus: Geschwindigkeitsprofil	81
5.2	Koordinatensystem im Fahrzeug	82
5.3	Stuttgart-Zyklus	82
5.4	Autobahnfahrt	84
5.5	Beschleunigungsfahrt	85
5.6	Schwingungskollektiv der elektrischen Maschine bei Sonderlastfällen	86
5.7	Vergleich der Schwingungskollektive verschiedener Fahrtypen	88
5.8	Profil für Getriebeanbau nach ISO16750-3	90
5.9	Häufigkeitsverteilung von Stuttgart-Zyklus und Normprofil	91
5.10	Identifikation periodischer Schwingungen in einem verrauschten Signal $\ .\ .$.	92
5.11	Relative Häufigkeit einer Ordnung	94
5.12	Anteile der Gesamtsignalleistung	95
6.1	Relative Schwingung der Lagerbohrung bei Anregung 1	99
6.2	Relative Schwingung der Lagerbohrung bei Anregung 2	100
6.3	Relative Schwingung der Lagerbohrung bei Anregung 3	100
6.4	Rotor-Lager-Schwingung im Normprofil bei steigender Anregungsfrequenz $\ .$	101
6.5	Rotor-Lager-Schwingung im Normprofil bei fallender Anregungsfrequenz $\ .$.	102
6.6	Errechneter Beschleunigungsverlauf des Lagerschildes im Normprofil	102
6.7	Vergleichsmethode zur Bewertung verschiedener Belastungen	104

6.8	Belastung des Lagerschildes im Normprofils und im Fahrzeug bei verschie- denen Szenarien
6.9	Rotor-Lager-Schwingung im Normprofil ohne periodische Anteile 107
6.10	Belastung des Lagerschildes im modifizierten Normprofil und im Fahrzeug bei verschiedenen Szenarien
6.11	Spannungsverteilung im Lagerschild der elektrischen Maschine
6.12	Beanspruchungskollektiv und Wöhlerkurve des Lagerschildes

Tabellenverzeichnis

2.1	Eigenschaften der permanenterregten Synchronmaschine $\ . \ . \ . \ .$	3
4.1	Berechnungsparameter für das Verfahren der harmonischen Balance	52
4.2	Parameter und ihre Beeinflussung der Resonanzkurve	54
4.3	Ergänzende Berechnungsparameter für die höher harmonischen Balance	58
4.4	Ergänzende Berechnungsparameter für die transiente Berechnung $\ .\ .\ .$	67
4.5	Rahmenbedingungen zur Messung	71
4.6	Abgeglichene Berechnungsparameter der transienten Berechnung $\ \ldots \ldots \ldots$	75
5.1	Vergleich der Randbedingungen verschiedener Fahrzyklen	80
5.2	Vergleich verschiedener Schlechtwegstrecken \hdots	85
5.3	Kombination gemessener Lastfälle zu Lasttypen	87
6.1	Belastung des Lagerschildes im Normprofil und im Standardlastfall 1	105

Abkürzungen und Formelzeichen

Abkürzungen

AKF	Autokorrelationsfunktion
BEM	Randelementmethode
FEM	Finite Elemente Methode
FFT	Schneller Fouriertransformation
HBM	Harmonische Balance Methode
HHBM	Höher Harmonische Balance Methode
MKS	Mehrkörpersimulation

Griechische Buchstaben

α	Kontaktwinkel	σ	Mechanische Spannung
β	Winkellage	au	Zeitliche Verschiebung
δ	Abstand	Υ	Fourier Transformierte
Φ	Transformationsmatrix	ω	Eigenkreisfrequenz
Φ	Autokorrelationsfunktion	Ω	Kreisfrequenz
γ	Umfangswinkel	ξ	Parameter
φ	Phasenversatz	Ξ	Gleitender Mittelwert
λ	Dämpfungsfaktor des Newton-	ψ	Winkellage im komplexen Raum
	Raphson Verfahrens		
μ	Magnetische Permeabilität	Ψ	Materialkonstante
ν	Zähler		

Lateinische Großbuchstaben

A	Fläche	Μ	Massenmatrix
Α	Transformationsmatrix	N	Schwingspielzahl
D	Schadenssumme	N	Zähler
F	Kraft	N	Ordnung
G	Lagerspiel	P	Leistung
Н	Magnetische Feldstärke	Q	Koeffizientenmatrix
J	Jacobimatrix	\mathbf{R}	Residuum
Κ	Steifigkeitsmatrix	Т	$Maxwell's cher\ Spannungstensor$
L	Länge	T	Periodendauer
M	Drehmoment	V	Vergrößerungsfunktion