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Füredi, Z. and Simonovits, M.: The History of Degenerate
(Bipartite) Extremal Graph Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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Preface

Paul Erdős was one of the most influential mathematicians of the twenti-
eth century. His work in number theory, combinatorics, set theory, and other
branches of mathematics has determined the development in large areas of
these fields. His name is forever attached to combinatorial and additive
number theory, combinatorial geometry, extremal graph and hypergraph
theory, random graphs, and the probabilistic method. His contributions to
set theory, the theory of primes, analysis, probability, and other classical
areas in mathematics are also fundamental.

Paul Erdős passed away in 1996. Three years later, a conference was
organized in Budapest to survey his work, his contributions to mathematics,
and the far-reaching impact of his work on many branches of mathematics.
A 2-volume collection of papers, “Paul Erdős and his Mathematics” (János
Bolyai Mathematical Society and Springer-Verlag 2002), was also published,
which contained papers about his life, surveys of areas which he initiated or
contributed to, and personal reminiscences by his friends and collaborators.

We feel that in 2013, on the 100th anniversary of his birth, it was time to
have another look on the long-term impact of his work. We are organizing
another conference devoted to his mathematics. This volume (which is
not the Proceedings of this conference, but of course having the similar
goals) undertakes the almost impossible task to describe the ways in which
problems raised by him and topics initiated by him (indeed, whole branches
of mathematics) continue to flourish.

Written by outstanding researchers in these areas, the papers in this
volume include extensive surveys of classical results as well as of new de-
velopments. It would be even more hopeless to be comprehensive than in
1999, but we hope that this volume, as well as the lectures at the confer-
ence, will give a glimpse into how his mind was working, and a feeling for
his tremendous influence on modern mathematics.

The interested reader should also consult the home page of the con-
ference (http://www.renyi.hu/erdos100), which contains more material,
including the program and abstracts of posters submitted to the confer-
ence. We plan that recordings of plenary talks will also be made available.
The Paul Erdős page (http://www.renyi.hu/~p_erdos) contains scanned
copies of most Erdős papers, along with many photos and a lot of other
material.
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Our thanks are due to Dömötör Pálvölgyi for his very careful and effi-
cient work as managing editor of this volume, to Dezső Miklós for organizing
the production, and to Ildikó Miklós for the expert production of the LATEX
files.

Budapest, May 2013 László Lovász
Imre Z. Ruzsa
Vera T. Sós
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Paul Erdős and Probabilistic Reasoning

NOGA ALON∗

One of the major contributions of Paul Erdős is the development of the Proba-
bilistic Method and its applications in Combinatorics, Graph Theory, Additive
Number Theory and Combinatorial Geometry. This short paper describes some
of the beautiful applications of the method, focusing on the long-term impact of
the work, questions and results of Erdős. This is mostly a survey, but it contains
a few novel results as well.

1. The Probabilistic Method

The Probabilistic Method is one of the most significant contributions of
Paul Erdős, and part of his greatness is the fact that applications of the
probabilistic method and of random graphs have become so common that
it is now possible to use those without explicitly mentioning him. The
method is a powerful tool with numerous applications in Combinatorics,
Graph theory, Additive Number Theory and Geometry and had an immense
impact on the development of theoretical Computer Science as well. The
results and tools are far too numerous to cover in a short survey, even if
the focus is only on those influenced directly by the work and problems of
Erdős, and thus this paper is mainly a selection of topics that illustrate the
method, and is not meant to be a comprehensive treatment of the whole
area. Several books that contain more material on the subject are [13], [18],
[54], [60].

It is convenient to classify the applications of probabilistic techniques
in Discrete Mathematics into three groups. The first one deals with the
study of random combinatorial objects, like random graphs or random
matrices. The results here are essentially results in Probability Theory,

∗Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant
and by the Israeli I-Core program.



12 N. Alon

although many of them are motivated by problems in Combinatorics. The
second group consists of probabilistic constructions. These are applications
of probabilistic arguments in order to prove the existence of combinatorial
structures which satisfy a list of prescribed properties. Existence proofs of
this type often supply extremal examples to various questions in Discrete
Mathematics. The third group, which contains some of the most striking
examples, focuses on the application of probabilistic reasoning in the proofs
of deterministic statements whose formulation does not give any indication
that randomness may be helpful in their study.

Random graphs are covered in another chapter of this volume. The
present chapter contains a brief description of several results in each of the
other two groups, as well as a very brief discussion of some of the applications
of the probabilistic method in theoretical Computer Science. The influence
of the work and questions of Paul Erdős in all these has been crucial.

This is mostly a survey paper, but it contains several new results,
presented in subsections 3.2 and 3.5, as well.

2. Probabilistic constructions

The applications of probabilistic constructions have yielded numerous re-
sults in Combinatorics, Graph Theory, Combinatorial Geometry and Addi-
tive Number Theory. Below is a selection of several representative examples.

2.1. Ramsey Numbers

Let H1,H2, . . . ,Hk be k finite, undirected, simple graphs. The (multicolor)
Ramsey number

r(H1, H2, . . . , Hk)

is the minimum integer r such that in every edge coloring of the complete
graph on r vertices by k colors, there is a monochromatic copy of Hi in color
i for some 1 ≤ i ≤ k. By a (special case of) a well known theorem of Ramsey
(c.f., e.g., [49]), this number is finite for every sequence of graphs Hi.

The determination or estimation of these numbers is usually a very
difficult problem. When each graph Hi is a complete graph with more than
two vertices, the only values that are known precisely are those of r(K3,Km)
for m ≤ 9, r(K4,K4), r(K4,K5) and r(K3,K3,K3). Even the determination
of the asymptotic behavior of Ramsey numbers up to a constant factor is a
hard problem, and despite a lot of efforts by various researchers (see, e.g.,
[49], [22] and their references), there are only a few infinite families of graphs
for which this behavior is known.
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In one of the first applications of the probabilistic method in Com-

binatorics, Erdős [26] proved that if
(
n
k

)
21−(

k
2) < 1 then R(Kk,Kk) > n,

that is, there exists a 2-coloring of the edges of the complete graph on
n vertices containing no monochromatic clique of size k. This implies that
R(Kk,Kk) > 2k/2 for all k ≥ 3. The proof is extremely short: the prob-
ability that a random two-edge coloring of Kn contains a monochromatic

copy of Kk is at most
(
n
k

)
21−(

k
2) < 1, and hence there is a coloring with the

required property.

It is worth noting that although this argument seems almost trivial
today, it was far from being obvious when published in 1947. In fact, several
prominent researchers believed, before the publication of this short paper,
that R(Kk,Kk) may well be bounded by a polynomial in k. In particular,
Paul Turán writes in [67] that he had conjectured for a while that R(Kk,Kk)
is roughly k2, and that Erdős’s result showed that this quantity behaves very
differently than expected.

A particularly interesting example of an infinite family for which the
asymptotic behavior of the Ramsey number is known, is the following result
of Kim and of Ajtai, Komlós and Szemerédi.

Theorem 2.1 ([56], [3]). There are two absolute positive constants c1, c2
such that

c1m
2/ logm ≤ r(K3,Km) ≤ c2m

2/ logm

for all m > 1.

The upper bound, proved in [3], is probabilistic, and applies a certain
random greedy algorithm. There are several subsequent proofs, all are based
on probabilistic arguments. The lower bound is proved by a “semi-random”
construction and proceeds in stages. The detailed analysis is subtle, and
is based on certain large deviation inequalities. An alternative analysis of
this probabilistic construction, inspired by the differential equation method
of Wormald [71], is given by Bohman in [17]. It is worth noting that the
question of obtaining a super-linear lower bound for r(K3,Km) is mentioned
already in [26], and Erdős has established in [28], by an appropriate proba-
bilistic construction, an Ω(m2/ log2m) lower bound. More on this appears
in another chapter of this volume.

Even less is known about the asymptotic behavior of multicolor Ramsey
numbers, that is, Ramsey numbers with at least 3 colors. The asymptotic
behavior of r(K3,K3,Km), for example, has been very poorly understood
for quite some time, and Erdős and Sós conjectured in 1979 (c.f., e.g., [22])
that

lim
m �→∞

r(K3,K3,Km)

r(K3,Km)
= ∞.
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This has been proved in [12], where it is shown that in fact r(K3,K3,Km) is
equal, up to logarithmic factors, to m3. A more complicated, related result
proved in [12], that supplies the asymptotic behavior of infinitely many
families of Ramsey numbers up to a constant factor is the following.

Theorem 2.2. For every t > 1 and s ≥ (t− 1)! + 1 there are two positive
constants c1, c2 such that for every m > 1

c1
mt

logtm
≤ r(Kt,s,Kt,s,Kt,s,Km) ≤ c2

mt

logtm
,

where Kt,s is the complete bipartite graph with t vertices in one color class
and s vertices in the other.

The proof of the lower bound forms yet another example of a probabilis-
tic construction, where each of the first three color classes is a randomly
shifted copy of an appropriate Kt,s-free graph that contains a relatively
small number of large independent sets, as shown by combining some spec-
tral techniques with character sum estimates.

2.2. Combinatorial Geometry

There are several striking examples where a probabilistic construction sup-
plies rather easily counter-examples to well studied conjectures in Combi-
natorial Geometry. The following result of Erdős and Füredi illustrates this
point.

Theorem 2.3 ([34]). For every d ≥ 1 there is a set of at least �1
2(

2√
3
)
d�

points in the d-dimensional Euclidean space Rd, such that all angles deter-
mined by three points from the set are strictly less than π/2.

The proof is obtained by considering a random set of binary vectors in
Rd. We omit the details but mention that this disproves an old conjecture
of Danzer and Grünbaum [23] which suggests that the maximum cardinality
of such a set is at most 2d− 1. The authors of [23] did prove, motivated
by a question of Erdős and Klee, that the maximum cardinality of a set of
points in Rd in which all angles are at most π/2 is 2d.

A range space S is a pair (X,R), where X is a (finite or infinite) set and
R is a (finite or infinite) family of subsets of X. The members of X are
called points and those of R are called ranges. If A is a subset of X
then PR(A) = {r ∩A : r ∈ R} is the projection of R on A. In case this
projection contains all subsets of A we say that A is shattered. The Vapnik-
Chervonenkis dimension (or VC-dimension) of S, denoted by V C(S), is the
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maximum cardinality of a shattered subset of X. If there are arbitrarily
large shattered subsets then V C(S) = ∞.

A subset N ⊂ A is an ε-net for A if any range r ∈ R satisfying |r ∩A| ≥
ε|A| contains at least one point of N .

A well known result of Haussler and Welzl [52], following earlier work of
Vapnik and Chervonenkis [68], asserts that for any n and ε > 0, any set of
size n in a range space of VC-dimension d contains an ε-net of size at most
O(dε log(1/ε)).

The authors of [61] asked in 1990 whether or not in all natural geometric
scenarios of bounded V C-dimension, there always exists an ε-net of size
O(1/ε). This problem received a considerable amount of attention over the
years, until it has finally been answered negatively in [5] and in [62], by
constructions that have essential probabilistic ingredients. The following,
however, is still open.

Problem 2.4. Are there sets Xn of points in the plane and a sequence
εn > 0 tending to zero so that the minimum size of an εn-net for Xn with
respect to line ranges is Ω( 1

εn
log( 1

εn
))?

2.3. Additive Number Theory

Erdős and Turán [41] asked if for any asymptotic basis of order 2 of the
positive integers (that is, a set A of positive integers so that each sufficiently
large integer has a representation as a sum of two elements of A), there must
be, for any constant t, integers that have more than t such representations.

Erdős has used in [27] a probabilistic construction to prove the existence
of a set A of integers such that every n is represented as n = x+ y with
x, y ∈ A at least once but at most O(lnn) times. This settles a problem
posed by Sidon and shows that in the Erdős-Turán question mentioned
above one cannot expect to necessarily have too many representations of an
integer n, although the question, as posed, is still wide open.

A somewhat similar question is considered by Canfield and Wilf in [21]
and by Ljujić and Nathanson in [59]. For two sets A and M of positive
integers and for a positive integer n, let p(n,A,M) denote the number of
partitions of n with parts in A and multiplicities inM , that is, the number of
representations of n in the form n =

∑
a∈Amaa where ma ∈ M ∪ {0} for all

a, and all numbers ma but finitely many are 0. There are simple examples of
M and A in which M is finite so that p(n,A,M) = 1 for all n, but it seems
more difficult to find infinite sets A and M for which p(n,A,M) has a
polynomial growth in n. For the specific cases of A = {k!}∞k=1, A = {kk}∞k=1
(and many other cases), the existence of such an infinite M is proved in
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[6] using a probabilistic construction and answering questions raised in [21]
and [59]. These constructions are tailored to fit the growth of the given
sequence A, and are general enough to ensure that the same sequence M
can work simultaneously for several sequences A. The analysis is based on
some large deviation inequalities.

Erdős and Newman studied in [39] another problem dealing with bases for
sets of integers. They studied bases for m-element subsets A of {1, . . . , n},
where a set B is a basis for A if A ⊂ B +B = {b1 + b2 : b1, b2 ∈ B}. Since
{0} ∪A is a basis for A, and there is a set X with at most c

√
n elements

such that X +X ⊃ {1, . . . , n} it follows that for any m-element subset of
{1, . . . , n} there is always a basis of size min(c

√
n,m+ 1). Erdős and New-

man showed by a simple probabilistic construction that if m is somewhat
smaller than

√
n, say m = O(n1/2−ε), then almost no m-element set has a

basis of size o(m). Similarly, ifm is at least n1/2+ε then almost allm-element
sets require a basis of size at least c

√
n. For the borderline case when m is

of the order
√
n their counting argument only yields existence of sets that

need a basis of size c
√
n log logn/ logn, and they asked if every m-set of size

m =
√
n has a basis with o(m) elements. This is established in [7], where it

is shown that in fact any such set has a basis of size O(
√
n log logn/ logn).

The argument is probabilistic.

Estimating the size of the smallest possible basis for explicitly given sets
is often far harder. Erdős and Newman showed that any basis for the set
of squares {t2 : t = 1, . . . , n} (which is a subset of {1, 2, . . . , n2}) is of size

at least n2/3−o(1) for large values of n, which is an improvement over the
trivial lower bound of n1/2. They constructed a small basis for the squares,
of size only O

(
n

logM n

)
for any M . Wooley asked about powers other than

the squares. Whereas it is likely that any basis for the set of d-th powers
{td : t = 1, . . . , n} is of size Ω(n1−ε) for every ε > 0 and d ≥ 2, only a modest

improvement of the n2/3−o(1) lower bound of Erdős and Newman for large
values of d is proved in [7], where it is shown that the set {td : t = 1, . . . , n}
does not have a basis of size O(n3/4− 1

2
√
d
− 1

2(d−1)
−ε) for any ε > 0.
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3. Deterministic Theorems

3.1. Sum-free subsets

A subset A of an abelian group is called sum-free if there is no solution
to the equation x+ y = z with x, y, z ∈ A. Erdős [31] showed that any set
of n positive integers contains a sum-free subset of size at least n/3. The
proof is a simple yet intriguing application of the probabilistic method, and
proceeds as follows. Let A be a set of n positive integers, choose a real x
uniformly between 0 and 1 and let B = Bx be the set of all a ∈ A so that
axmod 1 ∈ (1/3, 2/3). It is not difficult to check that B is always sum-free,
and that the expected value of the size |Bx| of B is n/3. Therefore, there is
a fixed x so that the size of Bx is at least n/3, providing the required result.

In [8] the authors showed that a similar proof gives a lower bound of
(n+1)/3. Bourgain [20] has further improved this estimate to (n+2)/3. It
seems possible that the constant 1/3 cannot be replaced by a larger constant,
but this is an open problem. The best known upper bound is 11/28, proved
by Lewko [58], improving earlier estimates of 3/7 in [31] and 12/29 in [8].
In subsection 3.2 we present a further (modest) improvement. It is worth
noting that for general abelian groups there is a similar result proved in
[8]: any set of n nonzero elements in any abelian group contains a sum-free
subset with more than 2n/7 elements. The constant 2/7 is best possible.

3.2. The sum-free subset constant

For a set B of nonzero integers, let s(B) denote the maximum cardinality

of a sum-free subset of B. The infimum value of the ratio s(B)
|B| as B ranges

over all nonempty sets of nonzero integers is called the sum-free subset
constant, and is denoted by δ. As mentioned in the previous subsection
Erdős proved that δ ≥ 1/3 and observed that δ ≤ 3/7. The upper bound
has been improved in [8] and further improved in [58]. All these upper
bounds are established by exhibiting a set B and by computing s(B). The
next statement shows that for any given example B it is possible to construct
another one which gives a (slightly) better upper bound for δ.

Proposition 3.1. Let B be a finite set of b nonzero integers and define
s = s(B). Put

p = [b(b− 1) + 1](b− s+ 1), q = p!(e− e−1 + 3)/2� − p+ 2

and

m =

⌈
q

b(b− 1) + 1

⌉
b.
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Then there is a set C of at most m elements so that

s(C)

|C| ≤ s(B)

|B| − 1

|C| .

The result of [58] is proved by exhibiting an explicit set B of 28 nonzero
integers for which s(B) = 11. Therefore δ ≤ 11/28. By the proposition
above this can be improved to 11/28− ε for some ε which is roughly
10−50,000. It is possible to get a slightly bigger value of ε, but as this is
certainly far from giving a tight bound, we make no serious attempt to op-
timize this value here. Note that the proposition above implies that δ is
an infimum, and not a minimum, that is, there is no finite set B so that

δ = s(B)
|B| .

Proof. Put |B| = b, s = s(B). Let n be a large integer, to be chosen later,
and let G be the graph whose set of vertices is {1,2, . . . , n}, where i and j are
adjacent iff the two sets iB and jB intersect (and i �= j). It is clear that the
maximum degree of this graph is at most b(b− 1) and hence, by the Hajnal-
Szemerédi Theorem [51], it has a proper coloring f with k = b(b− 1) + 1
colors and nearly equal color classes. This coloring provides a partition of
[n] = {1, 2, . . . , n} into k sets Ij , so that each of the set Bj = ∪i∈Ij iB is a
set of exactly |Ij |b nonzero integers.

Claim: If n is sufficiently large then at least one of these sets Bj does not
contain a sum-free subset containing s elements from each of the sets iB for
all i ∈ Ij .

Indeed, assuming this is not the case, fix a sum-free subset Aj in each Bj

so that |Aj ∩ iB| = s for all i ∈ Ij . Using the sets Aj , define a coloring g of
Ij by b− s+1 colors as follows. Let x1 < x2 < . . . < xb be the members of B
and suppose i ∈ Ij . By assumption Aj contains at least one of the elements
ixq for some q ∈ {1, 2, . . . , b− s+ 1}. Let q be the smallest index for which
this holds and define g(i) = q. The ordered pair (f(i), g(i)) defines a coloring
of the integers in [n] by k(b− s+ 1) = [b(b− 1) + 1](b− s+ 1) colors.

Note that there is no monochromatic Schur triple in this coloring, that
is, there are no i, j, t ∈ [n] so that i+ j = t and (f(i), g(i)) = (f(j), g(j)) =
(f(t), g(t)). This is because if there is such a triple then for (f ′, g′) =
(f(i), g(i)) we have iB∪ jB∪ tB ⊂ Bf ′ , and for xg′ ∈ B ixg′ , jxg′ , txg′ all lie
in Af ′ . This contradicts the fact that Af ′ is sum-free, as ixg′ + jxg′ = txg′ .
Thus there are indeed no monochromatic Schur triples.

An old Theorem of Schur (c.f., e.g., [49]) asserts that if n is sufficiently
large as a function of the number of colors used then there must be a
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monochromatic Schur triple, contradiction. This contradiction proves the
assertion of the claim.

Returning to the proof of the proposition, note that the number of colors
in the construction above is p = [b(b− 1) + 1](b− s+ 1). By [70] if n is at
least q = p!(e− e−1 + 3)/2� − p+ 2 then there is a monochromatic Schur
triple. This implies that if indeed n is at least that large, then at least one
of the sets Bj cannot contain a sum-free subset that consists of s elements
from each iB for i ∈ Ij . Hence s(Bj) ≤ |Ij |s−1 and as the size of each set Ij
is at most  q

b(b−1)+1� the set C = Bj completes the proof of the proposition.

3.3. List coloring and Euclidean Ramsey Theory

The list chromatic number (or choice number) χ�(G) of a graph G = (V,E)
is the minimum integer s such that for every assignment of a list Lv of
s colors to each vertex v of G, there is a proper vertex coloring of G in
which the color of each vertex is in its list. This notion was introduced
independently by Vizing in [69] and by Erdős, Rubin and Taylor in [40]. In
both papers the authors realized that this is a variant of usual coloring that
exhibits several new interesting properties, and that in general χ�(G), which
is always at least as large as the chromatic number of G, may be arbitrarily
large even for graphs G of chromatic number 2.

It is natural to extend the notion of list coloring to hypergraphs. The
list chromatic number χ�(H) of a hypergraph H is the minimum integer s
such that for every assignment of a list of s colors to each vertex of H, there
is a vertex coloring of H assigning to each vertex a color from its list, with
no monochromatic edges.

An intriguing property of list coloring of graphs, which is not shared by
ordinary vertex coloring, is the fact that the list chromatic number of any
(simple) graph with a large average degree is large. Indeed, it is shown in
[4] that the list chromatic number of any graph with average degree d is
at least (12 − o(1)) log2 d, where the o(1)-term tends to zero as d tends to
infinity. For r ≥ 3, simple examples show that there is no nontrivial lower
bound on the list chromatic number of an r-graph in terms of its average
degree. However, such a result does hold for simple hypergraphs. Recall
that a hypergraph is simple if every two of its distinct edges share at most
one vertex. The following result is proved in [10].

Theorem 3.2. For every fixed r ≥ 2 and s ≥ 2, there is a d = d(r, s), such
that the list chromatic number of any simple r-graph with n vertices and
nd edges is greater than s.
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A similar result for the special case of d-regular 3-uniform simple hyper-
graphs has been obtained independently in [53]. A subsequent proof with
a better upper estimate for d(r, s) appears in a recent paper of Saxton and
Thomason [66].

The proof of the theorem is probabilistic and proceeds by induction
on r. For simplicity we only outline the idea for the case of graphs with
a large minimum degree. Let G = (V,E) be a graph with n vertices and

minimum degree d. Choose a random set B of about n/
√
d vertices and

assign a random list of size s out of a set S of 2s− 1 colors to each vertex
of B. A simple computation shows that if, say, d > 10s, then with positive
(and in fact high) probability many of the vertices v not in B have every
subset of size s of S assigned to at least one of their B-neighbors. Fix such
a choice of the set B and lists of colors to its vertices. Note now that for
each fixed choice of a coloring f of the vertices of B from their lists, at
least s distinct colors appear on the B-neighbors of any vertex v of the type
mentioned above. If we now assign a random list to such a vertex v, then

with probability at least
(2s−1

s

)−1
> 4−s it will be a forbidden list, that is,

it will consist only of colors assigned by f to its neighbors, showing that
the coloring f of the B vertices cannot be extended to a proper list coloring
of the whole graph. There are only s|B| possible colorings of the vertices
of B from their lists, and the probability that no vertex v gets a forbidden
list is small enough to ensure that this will not happen for any of these
colorings. This argument suffices to show that the list chromatic number
of G exceeds s. The hypergraph case is more complicated, and we do not
include it here.

The argument above suggests an interesting algorithmic question: given
a graph G = (V,E) with minimum degree d > 10s, can we find, determinis-
tically and efficiently, lists of size s for each v ∈ V so that there is no proper
coloring of G assigning to each vertex a color from its list? This problem is
open, as is the simpler NP version of it, that is, that of finding sets Sv and
providing a certificate that there is no proper coloring using the lists. Here
the sets do not have to be found efficiently, and we only require that one
will be able to check the certificate efficiently.

The last theorem has an interesting application in Euclidean Ramsey
Theory – yet another subject initiated by Erdős and his collaborators. A
well known problem of Hadwiger and Nelson is that of determining the
minimum number of colors required to color the points of the Euclidean
plane so that no two points at distance 1 have the same color. Hadwiger
showed already in 1945 that 7 colors suffice, and Moser and Moser noted in
1961 that 3 colors do not suffice. These bounds have not been improved,
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despite a considerable amount of effort by various researchers, see [55, pp.
150–152] and the references therein for more on the history of the problem.

A more general problem is considered in [35], [36], [37], where the main
question is the investigation of finite point sets K in the Euclidean space for
which any coloring of an Euclidean space of dimension d by r colors must
contain a monochromatic copy of K. There are lots of intriguing conjectures
that appear in these papers. One of them asserts that for any set K of 3
points which do not form an equilateral triangle the minimum number of
colors required for coloring the plane with no monochromatic isometric copy
of K is 3. The situation is very different for list coloring. A simple Corollary
of the theorem above is the following.

Theorem 3.3 ([10]). For any finite set X in the Euclidean plane and for
any positive integer s, there is an assignment of a list of size s to every point
of the plane, such that whenever we color the points of the plane from their
lists, there is a monochromatic isometric copy of X.

3.4. Turán numbers and Dependent random choice

For a graphH and an integer n, the Turán number ex(n,H) is the maximum
possible number of edges in a simple graph on n vertices that contains no
copy of H. The asymptotic behavior of these numbers for graphs H of
chromatic number at least 3 is well known, and is determined by the Erdős-
Stone-Simonovits Theorem. For bipartite graphs H, however, the situation
is considerably more complicated, and there are relatively few nontrivial
such graphs H for which the order of magnitude of ex(n,H) is known.
A rather general result with a relatively simple proof, described in [11],
asserts that for every fixed bipartite graph H in which the degrees of all
vertices in one color class are at most r, there is a constant c = c(H) so that

ex(n,H) ≤ cn2−1/r. This is tight for all values of r, as it is known that for
every r and t > (r− 1)!, there is a simple graph with n vertices and at least

cr,tn
2−1/r edges, containing no copy of the complete bipartite graph Kr,t.

The basic tool in the proof is a simple and yet surprisingly power-
ful method, whose probabilistic proof may be called “dependent random
choice”, as it involves a random selection of a set of vertices, where the
choices are dependent in a way that increases the probability that r-tuples
of the selected vertices will have many common neighbors. An early ver-
sion of this lemma has first been proven in [50] and [57], and many variants
and extension have been obtained afterwards. See [44] for a survey contain-
ing lots of applications in Extremal Graph Theory and in Additive Number
Theory.
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One of the basic versions of the lemma is the following.

Lemma 3.4 ([11]). Let a, b, n, r be positive integers. Let G = (V,E) be
a graph on |V | = n vertices with average degree d = 2|E|/n. If

(1)
dr

nr−1 −
(
n

r

)(
b− 1

n

)r

> a− 1 ,

then G contains a subset A0 of at least a vertices so that every r vertices of
A0 have at least b common neighbors.

The proof proceeds by considering a (multi)-set T of r random vertices
of G, chosen uniformly with repetitions. Let A be the set of all vertices of
G which are neighbors of all members of T . The crucial fact is that the
expected value of |A| is large, by linearity of expectation and convexity,
whereas the expected number of r-tuples of vertices of A with a small
number of common neighbors is small, as it is not likely that all vertices of
T fall into such a small set of common neighbors. The set A0 can thus be
obtained from A by deleting a vertex from each such undesirable r-tuple.

The lemma above easily implies the following result, that can also be
derived from an earlier result of Füredi [47] proved by a different method,
in response to a question of Erdős.

Theorem 3.5. Let H be a bipartite graph with maximum degree r on one
side. Then there exists a constant c = c(H) > 0 such that

ex(n,H) < cn2− 1
r .

The method yields several related results, but does not suffice to settle
the following problem, suggested by Erdős.

Problem 3.6 ([33]). A graph is r-degenerate if every subgraph of it contains
a vertex of degree at most r. Is it true that for every fixed r-degenerate
bipartite graph H, ex(n,H) ≤ O(n2−1/r)?

As shown in [11], the method of dependent random choice with some

twists does imply that for each such H on h vertices, ex(n,H) ≤ h1/2rn2− 1
4r .
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3.5. Hypergraph coloring

Erdős realized already in the 60s that probabilistic methods are powerful
in the study of hypergraph coloring problems. Several examples appear in
[29], [30], [38]. A k-uniform hypergraph is two-colorable if it has a vertex
coloring by two colors so that no edge is monochromatic. In [29], [30] Erdős
applies probabilistic arguments to prove that the minimum possible number
of edges in a k-hypergraph that is not two-colorable is at least 2k−1 and at
most O(k22k). The lower bound has been improved several times, and all
the improved proofs apply the probabilistic method. The current record is

Ω(
√

k
log k2

k), due to Radhakrishnan and Srinivasan [64]. See also [63] for a

weaker Ω(k1/42k) bound, with a beautiful short (probabilistic) proof.

One of the main motivations for proving the Lovász Local Lemma in
[38] has also been the study of the minimum possible number of edges of a
simple k-uniform hypergraph which is not two-colorable.

A recent result of Blais, Weinsein and Yoshida [16] deals with a new intrigu-
ing variant of hypergraph coloring. In the rest of this section we describe
this notion and present some new results about it.

A hypergraph F is t-intersecting if the intersection of any two of its edges
is of size at least t. A vertex coloring of F is c-strong if any edge F contains
vertices of at least min{|F |, c} colors. Let χ(t, c) denote the minimum f so
that any t-intersecting hypergraph admits a c-strong coloring with at most
f colors, (∞ if there is no such f).

This notion is defined in [16] where the authors observe that χ(t, c) is
infinite for all t ≤ c− 2, χ(c− 1, c) ≥ 2c− 1 and that χ(t, c) ≥ 2c− 2 for all
t ≥ c ≥ 2, and prove that χ(c, c) <

√
cec and that for all t ≥ 2c, χ(t, c) ≤ 2c2.

They raise several questions regarding the determination of this function,
and in particular note that their method does not provide any sub-quadratic
(in c) bound for χ(t, c) for any t, and ask whether or not for each fixed c
the limit of χ(t, c) as t tends to infinity is 2c− 2.

The following theorem nearly settles this question.

Theorem 3.7. For every fixed c ≥ 2 there exists a t0 = t0(c)
(
≤ O(c2)

)
so

that for all t > t0, χ(t, c) ≤ 2c− 1.

The proof follows the basic approach of [16], showing that a random
coloring with 2c− 1 colors provides a c-strong coloring with positive proba-
bility bounded away from zero. We note that the example of all subsets of
cardinality at least (n+ t)/2 of an n-element set, where n � t2, shows that
for a random coloring 2c− 2 colors do not suffice, as with high probability
the largest c− 1 color classes will contain more than (n+ t)/2 elements. A
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more careful analysis sketched at the end of this section shows that for ran-
dom colorings with 2c− 1 colors, the O(c2) estimate for the intersection t
is optimal as well.

We need a result about the biased measure of t-intersecting hypergraphs.
A sharp version of this result was first proved in [2], and can be deduced
from the main result of [1]. See also [14], [24], [46] for subsequent related
statements. Here we give a much simpler, self-contained proof of a somewhat
weaker estimate that suffices for our purpose.

For a hypergraph F and a real p, 0 ≤ p ≤ 1/2, let μp(F) denote the
p-measure of F , that is, the probability that a random set of vertices of
F obtained by selecting each vertex, randomly and independently, with
probability p, forms an edge in F . Thus μp(F) =

∑
F∈F μp(F ), where

μp(F ) = p|F |(1− p)n−|F |, and n is the number of vertices of F . It is con-
venient to formulate the results in terms of escape probabilities of random
walks. A p-biased random walk of length n is a sequence of independent,
identically distributed random variables X1, X2, . . . , Xn where each Xi is
+1 with probability p and −1 with probability 1− p. Put Si =

∑i
j=1Xj ,

let W (p, t, i) be the probability that Si ≥ t and let W (p, t) denote the prob-
ability that there exists some i so that Si ≥ t.

Associate each subset F of [n] = {1, 2, . . . , n} with an assignment of
values to the variables X1,X2, . . . ,Xn by defining Xi = 1 if i ∈ F and Xi =
−1 otherwise. With this assignment, μp(F ) is exactly the probability of the
corresponding walk.

Let Wi denote the set of all walks for which Si ≥ t, and let Fi denote
the corresponding family of subsets. It is easy to see that this family is
t-intersecting. Indeed, if two sets in the family correspond to the walks
(X1,X2, . . . Xn) and (Y1, Y2, . . . , Yn), then

∑i
j=1(Xj + Yj) ≥ 2t and as each

term Xj + Yj lies in {−2, 0, 2}, at least t of the terms are 2, providing the
required intersection. Therefore, for every i ≤ n there is a t-intersecting
family of subsets of [n] of p-measure at least W (p, t, i). It turns out that the
maximum possible p-measure of such a family is exactly maxi≤nW (p, t, i).

Lemma 3.8 ([2]). For any t-intersecting hypergraph F on n vertices and
any p < 1/2, μp(F) ≤ maxi≤nW (p, t, i).

Here we give a simple proof of the following weaker estimate

Lemma 3.9. For any (finite) t-intersecting hypergraph F and any p < 1/2,
μp(F) ≤ W (p, t).

Proof: We apply shifting, which is a common technique in the area,
see, e.g., [45]. Let [n] be the set of vertices of F . For each 1 ≤ i <
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j ≤ n define an operator Sij on the edges of F , where for each F ∈ F ,
Sij(F ) = F −{j}∪{i} if j ∈ F , i /∈ F and F −{j}∪{i} /∈ F , and Sij(F ) = F
otherwise. Put Sij(F) = {Sij(F ) : F ∈ F}. Is is easy and well known that
if F is t-intersecting so is Sij(F). It is also clear that Sij(F) has exactly
the same p-measure as F . Moreover, if Sij(F) differs from F , then the sum
of elements in all edges of Sij(F) is smaller than that of the elements in
all edges of F . We can thus keep applying the shift operators Sij to our
hypergraph until the process stabilizes, providing a left-shifted family of
subsets, which, with a slight abuse of notation, we also denote by F . By
the comments above this is still t-intersecting and has the same measure as
the original family. The important property of the shifted family is that if
it contains an edge F , it also contains every set obtained from F by shifting
elements to the left, that is, by replacing some elements of F by smaller
elements not in F .

We claim that in the shifted family we cannot have a set corresponding
to a walk whose partial sums are all at most t− 1. This is because if we
have such a set, we can show that it intersects some shifted copy of itself
by less than t elements, contradiction. Indeed, let F be such a set. Using
F , define another set G as follows. Consider the elements of F one by one,
in order, starting with the smallest. The first (smallest) t− 1 elements of
F stay in G. Each subsequent element of F in its turn is replaced by the
smallest element which is not in F and is also not one of the elements placed
already in G. We claim that in this process, every element of F besides the
first t− 1 is replaced by a smaller element (which is not in F ). Indeed,
otherwise the first time in which the process fails to replace a member of F
by a smaller member is some element ft−1+i in F , where the elements of F
are listed in increasing order, so that there are only i− 1 non-elements of
F smaller than it. But this means that the random walk corresponding to
F has t− 1 + i times +1 and only i− 1 times −1 up to this point, meaning
its value at this point is t, contradicting the assumption. Therefore G is
obtained from F by left shifts, and as F is shifted, G belongs to F as well.
But by construction G intersects F in only t− 1 elements, contradicting the
assumption that F is t-intersecting.

The claim about the measure follows, completing the proof.

We need the following standard estimate for Binomial distributions. See,
e.g., [13], Theorem A.1.4.

Lemma 3.10. Let Yi, 1 ≤ i ≤ n be independent identically distributed ran-
dom variables where each Yi is +1 with probability p and −1 with proba-
bility 1− p, and put Y =

∑n
i=1 Yi. Then the probability that Y −E(Y ) ≥ b

is at most e−b2/2n.
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Corollary 3.11. Suppose c ≥ 2, and put p = c−1
2c−1 . Then:

(i) For all t and i, W (p, t, i) ≤ e−t/c. In particular, if t ≥ 2c2 thenW (p, t, i) <
e−2c.

(ii) For all t ≥ 8c2, W (p, t) < e−2c.

Proof. Part (i) follows by substituting n = i, E(Y ) = − i
2c−1 and b = t+

i
2c−1 in Lemma 3.10. This gives

W (p, t, i) ≤ e−b
2/(2i) ≤ e−4it/[2i(2c−1)] = e−2t/(2c−1) ≤ e−t/c,

as needed. To prove part (ii) note that if for a random walk X1,X2,X3, . . .
no partial sum Sit =

∑
j≤itXj satisfies

(2) Sit ≥ t/2

then all partial sums Si stay below t. We can thus bound W (p, t) by the
sum of probabilities of the events in (2), which we denote by Ei. By Lemma
3.10 the probability of Ei is at most

e−(
it

2c−1
+ t

2
)2/(2it) ≤ e−

(i+c)2t

8c2i .

The right hand side is at most e−t/(2c) for all i, since (i+ c)2 ≥ 4ic, and it

is also at most e−it/(8c2) for all i. Therefore, for t ≥ 8c2, the sum over all
i ≥ 1 is smaller than

(3)

8c2∑
i=1

e−t/(2c) +
∑
i>8c2

e−it/(8c
2) < 8c2e−t/(2c) + e−t

where the last term is an upper estimate for the infinite geometric series∑
i>8c2 e

−it/(8c2). For t ≥ 8c2 (and c ≥ 2) the quantity in (3) is smaller than

e−2c, completing the proof.

Proof of Theorem 3.7. Let F be a t-intersecting hypergraph, and let [n]
be its set of vertices. Add to the hypergraph any subset of [n] that contains
a member of F and note that the modified hypergraph is still t-intersecting
and its p-measure μp(F) is precisely the probability that a random subset
of [n] obtained by picking each element independently with probability p
contains an edge of the hypergraph. Put p = c−1

2c−1 , and let ε be smaller

than
(
2c−1
c−1

)−1
. Choose t0 so that W (p, t) < ε for all t > t0. Note that by

Corollary 3.11, part (ii) t0 ≤ O(c2). Now color randomly by 2c− 1 colors.
The probability there is a set that gets only c− 1 colors is bounded by(
2c−1
c−1

)
μp(F), implying the desired result.



Paul Erdős and Probabilistic Reasoning 27

Remarks:

• The proof above together with Lemma 3.8 and Corollary 3.11, part
(i) shows that the statement of Theorem 3.7 holds with t0 = 2c2 (with
room to spare). Lemma 3.9 and Corollary 3.11, part (ii) provide a
simple, self-contained proof that works with a somewhat larger value
of t0 (which is still O(c2)).

• The above argument, with an appropriate choice of parameters, sup-
plies a tradeoff between the number of colors used and the required
size of the intersection. In particular it implies, for example, that
χ(2c, c) ≤ O(c).

• As mentioned above, if we apply random colorings, both the term
2c− 1 and the O(c2) upper estimate for t0 in Theorem 3.7 are tight.
The fact that 2c−1 is tight for any fixed t is very simple, as mentioned
above. Here is a sketch of the argument that for 2c−1 colors the O(c2)
estimate for t is tight. Without making any attempt to optimize the
constants, consider the family of all subsets of cardinality at least
n/2 + c2/10000 in an n element set [n], where n = (2c− 1)3/10000
and c is a large integer. Consider a random coloring of [n] by 2c− 1
colors. For a fixed color i, the expected number of elements colored
i is n/(2c− 1) = (2c− 1)2/10000 and the variance is n 1

2c−1(1− 1
2c−1)

which is roughly (2c− 1)2/10000. Thus, the standard deviation is
roughly (2c− 1)/100. Expose the color classes in order, two at a
time, c− 1 times, leaving the final color class to the end. It is not
difficult to show that for any given history, assuming that at least
some n/2c elements are not yet in the color classes exposed (as is
the case with high probability) when we expose the next pair of color
classes the probability that the difference between their sizes is at
least, say, c/200, exceeds 1/2. Thus with high probability we will have
at least c/4 pairs with difference at least c/200. If this is the case,
then by picking the larger color class of every pair we will cover at
least c/4× c/200 = c2/800 more elements than by picking the smaller
class in each pair, and as with high probability the last color class is
not bigger than 2 · (2c− 1)2/10000 < 8c2/10000 these c− 1 large color
classes will contain, with high probability, a full edge. This shows that
t0 has to be at least Ω(c2).

• The study of the random variant of the problem of determining χ(t, c)
seems interesting. This is the problem of determining or estimating
the smallest possible f = f(t, c) so that a random vertex coloring of
any t-intersecting hypergraph by f colors is c-strong with probability
at least, say, 0.1.
Note that the two functions f and χ differ. Indeed, the function
χ(t, 2) is known for all values of t, as described in [16]. Specifically,
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χ(0, 2) = ∞, χ(1, 2) = 3 and χ(t, 2) = 2 for all t ≥ 2. In contrast, it is
easy to see that f(0, 2) = f(1, 2) = ∞. This is because for every fixed
number of colors r, a random r-coloring of the vertices of a star with
m > r edges will contain a monochromatic edge with probability that
tends to 1 as m tends to infinity. (The same argument implies that
f(c− 1, c) = ∞ for all c > 2.) The arguments in [16] and here also
show that f(t, 2) = 3 for all t ≥ 2.
The results here and the earlier ones in [16] show that the function f
is somewhat better understood than χ. In particular, we have shown
here that for every c and all t > 2c2, f(t, c) = 2c− 1.

4. Applications in Theoretical Computer Science

The results and questions of Erdős have not been motivated by applications
in Theoretical Computer Science (TCS), and yet the impact of his work on
the development of TCS has been substantial. This short section includes
some brief comments on this aspect of his work, focusing on applications of
probabilistic techniques.

The Probabilistic Method plays a crucial role in the development of ran-
domized algorithms. The quest for explicit constructions advocated time
and again by Erdős is one of the early drives for derandomization – the pro-
cess of converting randomized algorithms into deterministic ones. A specific
problem he kept repeating over the years is that of finding explicit construc-
tions of Ramsey graphs - graphs on n vertices in which the largest clique
and largest independent set are of size O(logn), as well as explicit examples
providing lower bounds for off-diagonal Ramsey number, like r(3, n) – see
[32].

The most successful attempts to find good explicit constructions of
Ramsey graphs led to improved constructions of dispersers which are useful
for derandomization, see [15]. Moreover, these constructions rely heavily
on sum-product theorems initiated in the work of Erdős and Szemerédi [43]
(although these are finite field analogs of the Erdős–Szemerédi results).

The method of conditional expectations, which is one of the very basic
techniques in derandomization, was initiated in the paper of Erdős and
Selfridge that introduced the study of combinatorial games [42].

Another useful technique which we only mention in passing is the Erdős-
Rado delta-system (sunflower) method, that appears in work on circuit com-
plexity and on matrix multiplication. A large body of work in Computa-
tional Geometry is also motivated by the results and questions of Erdős.
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Finally, the area of Graph Property Testing (c.f., e.g., [13], Chapter
17), which is closely related to questions in computational learning and
approximation algorithms, has its roots in old questions and results of
Erdős. We do not include here a discussion of the general area, and only
mention that one of the basic questions studied in it deals with the local
and global nature of graph coloring. The specific question here is the ability
to distinguish between graphs on n vertices that are k-colorable and graphs
from which one has to delete at least εn2 edges to get a k-colorable graph,
by sampling a random induced subgraph on a small number of vertices. The
first papers dealing with this question are [19] by Erdős and his collaborators
and [65]. Better quantitative results appear in [48], where the systematic
study of Graph Property Testing has been initiated, and in [9]. As is the
case with so many other topics, the initial questions and results here can be
traced back to the work of Paul Erdős.

Note added in proof: Very recently, Eberhard, Green and Manners have
proved in [25] that the sum-free subset constant discussed in subsection 3.2
is in fact 1/3. The problem of deciding whether or not every set of n nonzero
integers contains a sum-free subset of cardinality at least n/3+w(n), where
w(n) tends to infinity with n, remains open.
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[3] M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, J. Combina-
torial Theory Ser. A 29 (1980), 354–360.

[4] N. Alon, Degrees and choice numbers, Random Structures & Algorithms 16 (2000),
364–368.

[5] N. Alon, A non-linear lower bound for planar epsilon-nets, Proc. of the 51th IEEE
FOCS (2010), 341-346. Also: Discrete and Computational Geometry 47 (2012),
235–244.

[6] N. Alon, Restricted integer partition functions, Integers 13 (2013), A16, 9pp.

[7] N. Alon, B. Bukh and B. Sudakov, Discrete Kakeya-type problems and small bases,
Israel J. Math. 174 (2009), 285–301.

[8] N. Alon and D. J. Kleitman, Sum-free subsets, in: “A Tribute to Paul Erdős”
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