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Preface

It was an initiation into the love of learning, of learning how to learn [. . . ] as a matter of
interdisciplinary cognition -that is, learning to know something by its relation to something
else.

Leonard Bernstein

Movement is a common feature of both living and nonliving entities, and due to
its interrelations with most processes occurring in nature and life, it represents
a topic of interest for many fields of research. The recent affordability of GPS
technology and satellite telemetry has revolutionised the study of animal movement,
allowing to follow individual animals to remote places at high spatial and temporal
resolution. The emergence of highly resolved massive datasets on animal movement
has raised new questions and challenges to the field, compelling the need for new
methods to analyse and model movement data. It is in this context that the distinct
term movement ecology has emerged as a cross-disciplinary research field that
integrates systems biology, behavioural ecology, spatial ecology, theoretical ecology
and evolutionary biology. From a quantitative and theoretical perspective, the field
aims to combine mathematical modelling, statistical physics and novel methods for
statistical data analysis. While it can be used in a more general context, the term
movement ecology typically designates the study of animal motor output across
a broad range of scales, in an interdisciplinary and comprehensive manner and
with the focus on the mechanistic relationships between movement properties, the
internal states of organisms and the environment.

A mathematical theory of movement for nonliving entities has been built along
the years by physicists and applied mathematicians (from the times of Galileo,
Newton or Leibniz up to present), which have given rise to the fields of classical
mechanics and statistical mechanics, among others. The results and ideas from
such formalisms have been subsequently taken and adapted to study movement
in ecology (Brownian motion or biological diffusion represents two archetypical
examples of this). Without a doubt, advances in the field of movement ecology
that are to come in the forthcoming years will be reached through the close
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collaboration from these different communities (mathematicians/physicists and
biologists/ecologists). The communication between these two worlds is then more
necessary than ever, albeit this is not always easy due to the lack of tradition and the
different knowledge background of each.

Within this context, the present book has been conceived by its authors as
a humble contribution to help bridging the gap that still exists between these
research communities. It provides an overview of essential physical models and
formalisms to describe the motion of individual entities in space. Since movement
of living beings often involves a high level of unpredictability or randomness, the
mathematical basis of the book lies in the theory of stochastic processes. A great
emphasis is put in showing that stochastic processes and stochastic dispersal models
do admit several levels of description (termed here as microscopic, mesoscopic and
macroscopic). Albeit its importance to understand many of the models commonly
used in the literature on movement ecology, this multilevel description is relatively
unknown within this field.

The present book is then intended to be of utility for a broad scientific audience
within this area of knowledge. First, it would be of interest for those theoretical
biologists and ecologists who want to gain insight into physical or mathematical
aspects of random walks, persistence, intermittence, anomalous diffusion, front
propagation, Lévy processes, random searches and many other concepts which
have become relatively familiar in the biological literature. Also, we expect that
graduates and novel researchers in physics and applied mathematics with interests
in biology can use it as an introductory handbook to the field. We have tried in
general to use a pedagogical style so the book can be used to prepare the topics for
postgraduate courses on mathematical ecology, theoretical ecology or similar. With
this purpose in mind, we have also included a set of problems at the end of each
chapter (instructors can obtain solutions by contacting the authors).

Regarding the background level required to follow the book and also in accor-
dance to its interdisciplinary spirit, we have tried whenever possible to provide clear
and intuitive expositions, sometimes at the expense of some mathematical rigour.
However, the intrinsic difficulty of some of the topics addressed makes that several
parts of the book can be difficult to follow for readers without a solid mathematical
background. In order to facilitate the lecture to those readers, we have decided to
mark with an asterisk (*) those sections of the book where more advanced and
technical topics are discussed and used, so these can be skipped without losing the
essential message.

The book has been divided into three parts. The first block (Chaps. 1 and 2) is
intended to provide a compilation of mathematical results and definitions necessary
to understand the rest of the book. Chapter 1 provides a very elementary introduction
to probability theory, while Chap. 2 introduces the concept of stochastic processes
and their different levels of description: microscopic, mesoscopic and macroscopic.

The second part of the book represents its backbone and provides a compre-
hensive review of stochastic modelling approaches which can be used to describe
ecological movement. Chapter 3 presents a selection of classical and elementary
models of diffusion and dispersal while trying again to emphasise the importance
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of the micro-meso-macro descriptions to reach a global understanding. Chapter 4
then extends those models to consider more complex situations which arise under
non-Markovian conditions, specifically with the aim to introduce the concept of
anomalous diffusion. Chapter 5 considers dispersal processes coupled to reproduc-
tion, so leading mathematically to the idea of waves of advance, or fronts, through
a non-occupied territory. Finally, Chap. 6 shows the essential ideas of the random
search theory for animals, which is adequately contextualised within the field of
animal foraging.

The third and last part of the book presents specific applications and examples of
the approaches and concepts introduced previously. These three Chapters (from 7
to 9) have been conceived as a compilation of the data published in the literature on
different representative topics together with a corresponding discussion. Chapter 7,
for example, focuses on the analysis of individual cell trajectories and the departures
that recent experimental data show from classical diffusion models, which have
raised the question about the applicability of anomalous diffusion to cell motion.
Chapter 8 provides examples of how dispersal and demographic experimental data
can be properly analysed and parametrized for the description of actual biological
invasions. Chapter 9, finally, presents several experiences and field experiments
where animal random search does play a crucial role, and also provides a deep
discussion on the problems and limitations one typically finds in trying to provide
experimental evidences and verifications of the random search theory.

To finish, we affectionately wish to thank our collaborators and colleagues, who
have shared with us so many hours of work and leisure and from whom we have
learned so much. We specially acknowledge fruitful discussions with Professors
Sergei Fedotov, Werner Horsthemke, Martin Krkošek, Ignacio Pagonabarraga,
Gandhimohan M. Viswanathan, Ernesto Raposo, and Marcos G.E. da Luz; the wise
advices over the years by Professors José Casas-Vázquez, David Jou, Josep Enric
Llebot, Simon A. Levin, Ricard V. Solé, Jordi Catalan, Daniel Oro and finally to our
colleagues and friends Dr. David Alonso, Dr. Luca Giuggioli, Dr. Michael Raghib,
the “NIOO Movement Ecology Group”, Dr. Isaac Llopis, Dr. Vicente Ortega-Cejas
and Dr. Xavier Àlvarez. We also would like to thank Maite Louzao, Sepideh Bazazi,
Monique de Jager, Johan van de Koppel and Aitana Oltra for helping to generate
some of the figures. We also acknowledge financial support by Generalitat de
Catalunya with the grant SGR 2009-164 (VM) and by Ministerio de Economı́a y
Competitividad with the grants FIS2012-32334 (VM, DC), RyC 2009-04133 (FB)
and BFU2010-22337 (FB).

We appreciate the advice and guidance of Dr. Christian Caron and the Springer
staff.

Barcelona, Spain Vicenç Méndez
Daniel Campos

Blanes, Spain Frederic Bartumeus
January 2013
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Theoretical Foundations



Chapter 1
Elements of Probability Theory

The intention of this chapter is to provide a brief survey of probability theory in
a very schematic way, just to present some essential concepts and results that are
necessary to understand the ideas exposed throughout the rest of the book. Readers
with a background in mathematical probability can skip this chapter and only revisit
it occasionally when it is referred along the book.

1.1 Random Variables and Probability

The term random variable may sound somewhat confusing the first time a student
hear about it. We are trained from our school years in solving equations, so we know
that a variable x is some kind of unknown we need to determine by means of an
equation. For example, I can wonder what quantity of money x I have spent during
the last 3 days. I can check that my bank balance today is y and I know that 3 days
ago my balance was z, so I deduce that x is a variable that must satisfy x C y D z.
We say x is a variable because it takes different values if I just change the quantities
y or z. In contrast, random variables refer to something we cannot determine or
solve through an equation. Imagine that I ask you how many litres of rainwater
will fall in your city tomorrow. We know the weather is (at least to some extent)
unpredictable so at practice it is impossible to build an equation to provide an exact
answer to this. In general, we continually find in our daily lives examples of such
random events. Sometimes randomness may be introduced through fluctuations (we
know that the train we have to take tomorrow will arrive approximately at 9:45, but
we cannot predict the arrival time with an accuracy in seconds) or through some
level of unpredictability (as in the case of weather), or both. So, we see that random
variables must be interpreted in terms of statements like ‘the probability that this
will occur is : : :’. In other words, one should keep in mind that a random variable
does not represent a quantity, but rather a function.

V. Méndez et al., Stochastic Foundations in Movement Ecology,
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4 1 Elements of Probability Theory

More rigorously, a random or stochastic variable X is by definition a mathe-
matical object characterized by a set ˝ (called range) which contains the possible
outcomes x D x1; x2; : : : ; xn of the variableX , and a functionPX.x/ which assigns
a probability to each element from ˝ . We use here capital letters to denote random
variables and small letters to denote their actual values. To be well-defined, the
function PX.x/ must satisfy two conditions:

1. Positivity: PX.x/ � 0 in the whole range˝ .
2. Normalization:

P
x PX.x/ D 1, where the sum extends over the whole range˝ .

Assume that ˝ contains a finite number of possible outcomes (i.e. n is finite). For
example, if X represents the answer to the question ‘Will it rain tomorrow?’ or
‘How many days will rain this week?’ there are only two possible outcomes in the
first case, or seven in the second case. Then, we will say that the stochastic variable
X is discrete, and a probability pi can be assigned to each of the possible outcomes,
so the probability distribution PX.x/ can be written as

PX.x/ D

8
<̂

:̂

p1 if x D x1
:::

pn if x D xn:

(1.1)

On the contrary, when we ask ‘How many litres of rainwater will it rain tomorrow?’
then ˝ involves a continuous interval of possible outcomes (from 0 to almost
infinity, at practice). Then we call X a continuous random variable (this is the case
we will mostly use throughout this book) and then PX.x/ is often termed as the
probability density function (PDF) of X . The word density here is not accidental,
but expresses the fact that PX.x/ will only represent a probability (in the colloquial
sense of the word) as long as this function is integrated over an interval (because the
probability to have a specific value e.g. 3:1415786 is simply 0). This is, if we define
an interval .a; b/ contained within ˝ , then the integral

Z b

a

PX.x/dx (1.2)

gives us the probability that the outcome lies within that interval. Similarly, the
normalization condition expressed above takes the form, for the specific case of
continuous variables,

R
˝
PX.x/dx D 1. Note that this condition does not preclude

PX.x/ from taking values above 1 (in contrast with the discrete case, where
PX.x/ � 1 is required). Again, this is because the PDF is not defined as a
probability but as a probability density.
For continuous variables one typically defines the probability distribution function
as the probability to find X in the interval .�1; x�. From our comments above, this
yields

P.X � x/ D
Z x

�1
PX.x/dx: (1.3)
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In some contexts,P.X � x/ is better known as the cumulative distribution function.
This function and the PDF are closely connected, since the latter is just the derivative
of the former

PX.x/ D @

@x
P.X � x/: (1.4)

From the positivity condition PX.x/ � 0, we find that P.X � x/ must be a
monotonically increasing function of x and has the limiting values P.X � �1/ D
0 and P.X � C1/ D 1:

Let us mention now some simple (but fundamental) facts about random variables.
If X and Y are random variables, the linear combination aX C bY is random, and
the product XY or the quotient X=Y (provided Y ¤ 0) are also random variables.
More in general, we can state that if f is a function of one (or several) random
variables, then f is also a random variable. This is important since we often wish
to find the PDF not for the random variable X itself but for some new transformed
variable Y D f .X/. If the function f is invertible with inverseX D g.Y /, then the
PDF for the new variable PY .y/ is given in terms of the PDF for the old variable
PX.x/ as

PY .y/ D PX.x D g.y//

ˇ
ˇ
ˇ
ˇ
dg.y/

dy

ˇ
ˇ
ˇ
ˇ : (1.5)

The Example 1.1 shows how this idea would apply at practice. Also, a case of
particular interest is the sum of random variables, that is useful for example to treat
the joint action of many subsystems. This case will be explored in Sect. 1.6.

Example 1.1. Imagine we can deduce (experimentally, or however) that the
instantaneous velocity V of a group of individuals (say microorganisms, or
animals) is a random variable distributed according to a Gaussian distribution,
this is,

PV .v/ D 1

�
p
2�

e� v2

2�2 (1.6)

where � is a positive constant, and one can check that the normalization con-
dition

R
PV .v/dv D 1 is fulfilled. From this we can obtain the corresponding

PDF for the instantaneous kinetic energy E . If we use the definition of the
kinetic energy (ek D mv2=2) and invert it (v D p

2ek=m) we will apply
Eq. (1.5) to obtain

PE.ek/ D dv

dek
PV

�
v D

p
2ek=m

�
D 1

�
p
2�

1p
2mek

e� ek
m�2 : (1.7)
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1.2 Moments and the Characteristic Function

If we can determine the PDF PX.x/ of a random variable X , then we have got all
the statistical information about it. However, one might think that information is
easier to capture through quantities (not through functions), and for many specific
purposes this is probably true. At practice, it is possible to translate the information
contained in the PDF into quantities: the moments. The moment of order n of the
random variable X is defined by

hXni D
Z

˝

xnPX.x/dx: (1.8)

Some of the moments have special names. The first-order moment hXi is called the
mean value, the average or the expectation value of X . Also

�2 � hX2i � hXi2

is called the variance or dispersion, which is the square of the standard deviation � .
Each one of the moments has only “partial” information about the properties of the
random variable. For example, the first moment (mean value) gives the position of
the “center of mass” of the PDF; this should not be confused with other quantities
as the most probable value (which corresponds to the maximum of the PDF) or the
median (which corresponds to the specific value x for whichP.X � x/ D 0:5). The
second moment tells us how the values are distributed around the mean value, the
third moment picks up any skewness (or asymmetry) in the PDF, and the fourth
moment provides information about the peakness of the distribution around the
mean value. All these ideas can be easily summarized through a visual comparison
of PDF’s with different moment values (see Fig. 1.1).

Not all the PDF’s, however, have finite moments. This happens when the integral
in (1.8) does not converge; in such situations one must be very careful with some
mathematical considerations. Some examples of this situation are the Lorentz or the
Lévy distribution, which are discussed (among other) in the Sect. 1.3. We can also
show that there is an equivalence between the statistical information of the PDF and
the statistical information provided by the whole set of moments (from n D 1 to
1). For this purpose we introduce the characteristic function G.k/ of a random
variable X with PDF PX.x/ as the complex function

G.k/ D heikxi D
Z

˝

eikxPX.x/dx: (1.9)

The relation between the characteristic function and the moments becomes evident
by using the Taylor series expansion (see Appendix A.1) for the exponential
function

eikx D
1X

nD0

.ikx/n

nŠ
:
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Fig. 1.1 Visual effects from changing the values of the first (up), second (middle) and third
(bottom) order moments of a general PDF

Introducing this into (1.9) yields

G.k/ D
1X

nD0

.ik/n

nŠ
hXni (1.10)

according to the definition (1.8). The series expansion in (1.10) is meaningful only
if the higher-order moments are small so that the series converges. In the case
˝ D .�1;1/ then G.k/ can be regarded as the Fourier transform of PX.x/ (see
Appendix A.3) and the PDF can be obtained from the characteristic function by the
inverse Fourier transform

PX.x/ D 1

2�

Z 1

�1
e�ikxG.k/dk:
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Furthermore, if we know the characteristic function we can obtain the nth-order
moment by differentiating

hXni D lim
k!0

.�i/n
dn

dkn
G.k/; (1.11)

as can be checked by introducing now this expression into (1.10). This finally shows
the information equivalence between the characteristic function, the PDF and its
moments. Since the correspondence between a function and its Fourier transform is
biunivocal (in mathematical language, we would say that the Fourier transform is
a bijective mapping) then the information they contain is exactly the same, and by
extension the moments also fully contain this information.

1.3 Well-Known Probability Distributions

In this section we will review some common examples of probability distributions
one can typically find in the literature and that will appear throughout this book.

1.3.1 Normal Distribution

A continuous random variable is said to follow a normal distribution (also called
Gaussian distribution) if its PDF has the form

PX.x/ D 1

�
p
2�

e� .x�hXi
/2

2�2 (1.12)

or the characteristic function

G.k/ D
Z 1

�1
eikxPX.x/dx D eikhXi�k2�2=2: (1.13)

The PDF has finite moments which can be exactly computed. For the specific case
hXi D 0, for example, they take the simple form

hXni D
Z 1

�1
xnPX.x/dx D 2n=2�np

�
�

�
nC 1

2

�

(1.14)

for n even, or hXni D 0 if n is odd. Here � .�/ represents the Gamma function and
we typically assume that the range of the random variable covers the whole real
axis.
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The Gaussian distribution is of special importance because it is a stable PDF .
This means that a linear combination aX C bY of two random Gaussian variables
X and Y is also a random Gaussian variable. This property has fundamental
consequences, as will be discussed in deeper detail in Sect. 1.5 and in forthcoming
chapters.

Remark 1.1 (Lower-order moments of the general Gaussian distribution).

hXi D
Z 1

�1
xPX.x/dx (1.15)

hX2i D
Z 1

�1
x2PX.x/dx D �2 C hXi2 (1.16)

hX3i D
Z 1

�1
x3PX.x/dx D hXi3 C 3�2hXi (1.17)

hX4i D
Z 1

�1
x4PX.x/dx D hXi4 C 6�2hXi2 C 3�4: (1.18)

1.3.2 Exponential Distribution

An exponential distribution is characterized by the PDF

PX.x/ D �e��x (1.19)

provided that the random variableX is definite positive. In case the random variable
could also take negative values then (1.19) would read

PX.x/ D �

2
e��jxj (1.20)

which has the following characteristic function

G.k/ D �2

�2 C k2
: (1.21)
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The moments of this distribution are also finite and are feasible analytically.
Assuming again that the range of the variable extends on the positive part of the
real axis we obtain

hXni D � .nC 1/

�n
: (1.22)

The use of exponential distributions is widespread in many areas of physics and
natural sciences (for example, in statistical mechanics or in population dynamics).
This is because it satisfies a very interesting property. If X is an exponentially
distributed variable that represents the time duration of a random event, then the
probability that the event will occur in the interval .x; x C dx/ (measured after a
time x in which we know that the event has not occurred yet) is a constant equal
to the parameter � appearing in (1.19), independently of the value of x. This is
equivalent to say that the process is memoryless, since the instantaneous probability
that a random event will occur is always controlled by a fixed rate � (this will be
rigorously proved in Example 1.2).

1.3.3 Uniform Distribution

The uniform (or flat) distribution assigns the same probability density to any of
the elements within the range ˝ . So, provided the range of a random variable is
defined by the continuous interval .x1; x2/we will say that this variable is uniformly
distributed if

PX.x/ D
(

1
x2�x1 ; x1 � x � x2

0; otherwise
(1.23)

or if it has the following characteristic function

G.k/ D eikx2 � eikx1

ik.x2 � x1/ : (1.24)

As in the previous cases, the moments of arbitrary order can be explicitly found in
this case. They read, from the definition (1.8),

hXni D 1

nC 1

xnC1
2 � xnC1

1

x2 � x1 : (1.25)
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1.3.4 Cauchy Distribution

The PDF of the Cauchy (or Lorentz) distribution is

PX.x/ D 1

�

�

x2 C �2
: (1.26)

Its characteristic function has to be calculated by contour integration to get

G.k/ D e�� jkj: (1.27)

It is easy to check that if one tries to compute the moments of this distribution

hXni D �

�

Z 1

�1
xn

x2 C �2
dx; (1.28)

then one finds that the integrand behaves as � xn�2 in the limit x ! 1. The
integral then obviously diverges for any n � 1, so we conclude that all the moments
(including the average value) of this distribution are divergent. In principle this
would preclude the Cauchy distribution from being used in real processes in nature,
where average values are finite. This problem is typically overcome by redefining
the range of the random variable to a finite interval .a; b/ where a and b would
represent respectively the minimum and the maximum value of the random variable
which is physically, or biologically, attainable. This idea will be further explored in
forthcoming chapters.

1.3.5 Lévy Distribution

A symmetric (in x) Lévy distribution PX.x; ˛/ is a stable PDF with characteristic
function given by

G.k; ˛/ D e�ajkj˛ (1.29)

with 0 < ˛ < 2. The Gaussian distribution corresponds to the particular case ˛ D 2,
a D �2=2; also, the Cauchy distribution is recovered for ˛ D 1. The inverse Fourier
transform of (1.29) yields, in the asymptotic limit jxj ! 1,

PX.x; ˛/ � a

jxj1C˛ : (1.30)

The moments of this distribution are all divergent, too. Again, if we use the
definition (1.8)

hXni D
Z 1

�1
xnPX.x; ˛/dx
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we observe that the integrand goes as � xn�1�˛ for large x, which leads to a
divergent integral for n � 1 if ˛ takes the values specified in (1.29). Then a similar
discussion to that provided for the Cauchy distribution holds.

1.3.6 Dirac Delta Distribution

The Dirac Delta PDF is very useful in different contexts, for example when
we intend to analyse a discrete random variable in a context typically built for
continuous variables. This distribution follows the expression

PX.x/ D ı.x � x0/ (1.31)

where ı.�/ represents the Dirac Delta function, whose characteristic function is
G.k/ D eikx0 (see Appendix A.2 for further details on Dirac Delta function). The
value of this function equals zero everywhere except at the point where the argument
of the function vanishes (in the case (1.31) this would occur for x D x0). At this
point the function diverges (it tends to C1), but the divergence is such that the
condition

Z

˝

ı.x � x0/dx D 1 (1.32)

holds, provided that x0 2 ˝ . So that, a Dirac Delta distribution satisfies the
normalization condition like any other PDF. Another relevant condition of the Dirac
Delta function is

Z

˝

f .x/ı.x � x0/dx D f .x0/; (1.33)

with f .�/ an arbitrary function. From this one can easily derive the expression for
the n-order moments of the Dirac Delta PDF:

hXni D xn0 (1.34)

1.3.7 Poisson Distribution

In contrast with the previous examples discussed, the Poisson probability distri-
bution is defined for discrete random variables. The probability that the random
variable takes the value x is

P.X D x/ D e�� �x

xŠ
: (1.35)
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All the moments of the Poisson distribution are finite. Their expression can be
determined from its characteristic function

G.k/ D e�.e
ik�1/ (1.36)

through (1.11). The Poisson distribution is closely related to the exponential
distribution discussed above in this section. Consider a set of identical random
events and assume that the PDF determining the duration of a single event is
exponentially distributed. In that case, the probability that a number x of these
events occur within an interval of duration x is given by (1.35), as we shall
formally prove in Sect. 2.4.3. A classical example of this is the radioactive decay.
Any particle of a radioactive sample has a probability to desintegrate, and this
probability is governed by an exponential PDF. Then, the probability that a number
x of desintegrations have occurred after a time x is determined by a Poisson
distribution. Another well-known example of the usage of Poisson distributions is
on the algorithms of generation of stochastic trajectories for reaction processes, for
instance in the Gillespie algorithm [1].

1.3.8 Binomial Distribution

Consider a random variable X with only two possible outcomes; the first one is
assigned a probability p, and the other one a probability 1 � p. One can think, for
instance, that we toss a tricked coin so the probability is not the same for each face.
The probability that the first outcome has appeared x times after N trials (this is,
after N tosses) is given by

P.X D x/ D NŠ

xŠ.N � x/Šp
x.1 � p/N�x (1.37)

with x D 0; 1; � � � ; N . This is known as the binomial distribution. The moments
of this PDF can also be exactly computed; however, as in the case of the Poisson
distribution they cannot be explicitly written in a simple form. Instead, one
can provide the corresponding characteristic function by computing the Fourier
transform of (1.37)

G.k/ D �
1 � p C peik

�N
(1.38)

and the moments could be now evaluated from (1.11). So, for example

hXi D lim
k!0

.�i/
dG.k/

dk
D lim

k!0
pN eik

�
1� p C peik

�N�1 D pN: (1.39)


