

Grundlehren der
mathematischen Wissenschaften 349
A Series of Comprehensive Studies in Mathematics

Series editors

M. Berger P. de la Harpe
N.J. Hitchin A. Kupiainen
G. Lebeau F.-H. Lin S. Mori
B.C. Ngô M. Ratner D. Serre
N.J.A. Sloane A.M. Vershik M. Waldschmidt

Editor-in-Chief

A. Chenciner J. Coates S.R.S. Varadhan

For further volumes:
www.springer.com/series/138

http://www.springer.com/series/138

Peter Bürgisser � Felipe Cucker

Condition

The Geometry of Numerical Algorithms

Peter Bürgisser
Institut für Mathematik
Technische Universität Berlin
Berlin, Germany

Felipe Cucker
Department of Mathematics
City University of Hong Kong
Hong Kong, Hong Kong SAR

ISSN 0072-7830 Grundlehren der mathematischen Wissenschaften
ISBN 978-3-642-38895-8 ISBN 978-3-642-38896-5 (eBook)
DOI 10.1007/978-3-642-38896-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946090

Mathematics Subject Classification (2010): 15A12, 52A22, 60D05, 65-02, 65F22, 65F35, 65G50,
65H04, 65H10, 65H20, 90-02, 90C05, 90C31, 90C51, 90C60, 68Q25, 68W40, 68Q87

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Dedicated to the memory of

Walter Bürgisser and Gritta Bürgisser-Glogau

and of

Federico Cucker and Rosemary Farkas
in love and gratitude

Preface

Motivation A combined search at Mathscinet and Zentralblatt shows
more than 800 articles with the expression “condition number” in their title. It is
reasonable to assume that the number of articles dealing with conditioning, in one
way or another, is a substantial multiple of this quantity. This is not surprising. The
occurrence of condition numbers in the accuracy analysis of numerical algorithms
is pervasive, and its origins are tied to those of the digital computer. Indeed, the
expression “condition number” itself was first introduced in 1948, in a paper by Alan
M. Turing in which he studied the propagation of errors for linear equation solving
with the then nascent computing machinery [221]. The same subject occupied John
von Neumann and Herman H. Goldstine, who independently found results similar
to those of Turing [226]. Ever since then, condition numbers have played a leading
role in the study of both accuracy and complexity of numerical algorithms.

To the best of our knowledge, and in stark contrast to this prominence, there is no
book on the subject of conditioning. Admittedly, most books on numerical analysis
have a section or chapter devoted to it. But their emphasis is on algorithms, and the
links between these algorithms and the condition of their data are not pursued be-
yond some basic level (for instance, they contain almost no instances of probabilistic
analysis of algorithms via such analysis for the relevant condition numbers).

Our goal in writing this book has been to fill this gap. We have attempted to
provide a unified view of conditioning by making condition numbers the primary
object of study and by emphasizing the many aspects of condition numbers in their
relation to numerical algorithms.

Structure The book is divided into three parts, which approximately correspond
to themes of conditioning in linear algebra, linear programming, and polynomial
equation solving, respectively. The increase in technical requirements for these sub-
jects is reflected in the different paces for their expositions. Part I proceeds leisurely
and can be used for a semester course at the undergraduate level. The tempo in-
creases in Part II and reaches its peak in Part III with the exposition of the recent
advances in and partial solutions to the 17th of the problems proposed by Steve
Smale for the mathematicians of the 21st century, a set of results in which condi-
tioning plays a paramount role [27, 28, 46].

vii

viii Preface

As in a symphonic poem, these changes in cadence underlie a narration in which,
as mentioned above, condition numbers are the main character. We introduce them,
along with the cast of secondary characters making up the dramatis personae of this
narration, in the Overture preceding Part I.

We mentioned above that Part I can be used for a semester course at the under-
graduate level. Part II (with some minimal background from Part I) can be used as
an undergraduate course as well (though a notch more advanced). Briefly stated, it is
a “condition-based” exposition of linear programming that, unlike more elementary
accounts based on the simplex algorithm, sets the grounds for similar expositions of
convex programming. Part III is also a course on its own, now on computation with
polynomial systems, but it is rather at the graduate level.

Overlapping with the primary division of the book into its three parts there is
another taxonomy. Most of the results in this book deal with condition numbers of
specific problems. Yet there are also a few discussions and general results applying
either to condition numbers in general or to large classes of them. These discussions
are in most of the Overture, the two Intermezzi between parts, Sects. 6.1, 6.8, 9.5,
and 14.3, and Chaps. 20 and 21. Even though few, these pages draft a general theory
of condition, and most of the remainder of the book can be seen as worked examples
and applications of this theory.

The last structural attribute we want to mention derives from the technical char-
acteristics of our subject, which prominently features probability estimates and, in
Part III, demands some nonelementary geometry. A possible course of action in our
writing could have been to act like Plato and deny access to our edifice to all those
not familiar with geometry (and, in our case, probabilistic analysis). We proceeded
differently. Most of the involved work in probability takes the form of estimates—
of either distributions’ tails or expectations—for random variables in a very specific
context. We therefore included within the book a Crash Course on Probability pro-
viding a description of this context and the tools we use to compute these estimates.
It goes without saying that probability theory is vast, and alternative choices in its
toolkit could have been used as well. A penchant for brevity, however, prevented
us to include these alternatives. The course is supplied in installments, six in to-
tal, and contains the proofs of most of its results. Geometry requirements are of a
more heterogeneous nature, and consequently, we have dealt with them differently.
Some subjects, such as Euclidean and spherical convexity, and the basic properties
of projective spaces, are described in detail within the text. But we could not do so
with the basic notions of algebraic, differential, and integral geometry. We therefore
collected these notions in an appendix, providing only a few proofs.

Peter Bürgisser
Felipe Cucker

Paderborn, Germany
Hong Kong, Hong Kong SAR
May 2013

Acknowledgements

A substantial part of the material in this book formed the core of several grad-
uate courses taught by PB at the University of Paderborn. Part of the material
was also used in a graduate course at the Fields Institute held in the fall of 2009.
We thank all the participants of these courses for valuable feedback. In particular,
Dennis Amelunxen, Christian Ikenmeyer, Stefan Mengel, Thomas Rothvoss, Peter
Scheiblechner, Sebastian Schrage, and Martin Ziegler, who attended the courses in
Paderborn, had no compassion in pointing to the lecturer the various forms of typos,
redundancies, inaccuracies, and plain mathematical mistakes that kept popping up
in the early drafts of this book used as the course’s main source. We thank Dennis
Amelunxen for producing a first LATEX version of the lectures in Paderborn, which
formed the initial basis of the book. In addition, Dennis was invaluable in producing
the TikZ files for the figures occurring in the book.

Also, Diego Armentano, Dennis Cheung, Martin Lotz, and Javier Peña read var-
ious chapters and have been pivotal in shaping the current form of these chapters.
We have pointed out in the Notes the places where their input is most notable.

Finally, we want to emphasize that our viewpoint about conditioning and its cen-
tral role in the foundations of numerical analysis evolved from hours of conversa-
tions and exchange of ideas with a large group of friends working in similar topics.
Among them it is impossible not to mention Carlos Beltrán, Lenore Blum, Irenée
Briquel, Jean-Pierre Dedieu, Alan Edelman, Raphael Hauser, Gregorio Malajovich,
Luis Miguel Pardo, Jim Renegar, Vera Roshchina, Michael Shub, Steve Smale, Hen-
ryk Woźniakowski, and Mario Wschebor. We are greatly indebted to all of them.

The financial support of the German Research Foundation (individual grants BU
1371/2-1 and 1371/2-2) and the GRF (grant CityU 100810) is gratefully acknowl-
edged. We also thank the Fields Institute in Toronto for hospitality and financial
support during the thematic program on the Foundations of Computational Mathe-
matics in the fall of 2009, where a larger part of this monograph took definite form.

We thank the staff at Springer-Verlag in Basel and Heidelberg for their help and
David Kramer for the outstanding editing work he did on our manuscript.

Finally, we are grateful to our families for their support, patience, and under-
standing of the commitment necessary to carry out such a project while working on
different continents.

ix

Contents

Part I Condition in Linear Algebra (Adagio)

1 Normwise Condition of Linear Equation Solving 3
1.1 Vector and Matrix Norms . 4
1.2 Turing’s Condition Number . 6
1.3 Condition and Distance to Ill-posedness 10
1.4 An Alternative Characterization of Condition 11
1.5 The Singular Value Decomposition 12
1.6 Least Squares and the Moore–Penrose Inverse 17

2 Probabilistic Analysis . 21
2.1 A Crash Course on Integration 22
2.2 A Crash Course on Probability: I 27

2.2.1 Basic Facts . 28
2.2.2 Gaussian Distributions . 33
2.2.3 The χ2 Distribution . 35
2.2.4 Uniform Distributions on Spheres 38
2.2.5 Expectations of Nonnegative Random Variables 39
2.2.6 Caps and Tubes in Spheres 41
2.2.7 Average and Smoothed Analyses 46

2.3 Probabilistic Analysis of Cwi (A, x) 48
2.4 Probabilistic Analysis of κrs(A) 50

2.4.1 Preconditioning . 51
2.4.2 Average Analysis . 53
2.4.3 Uniform Smoothed Analysis 55

2.5 Additional Considerations . 56
2.5.1 Probabilistic Analysis for Other Norms 56
2.5.2 Probabilistic Analysis for Gaussian Distributions 57

3 Error Analysis of Triangular Linear Systems 59
3.1 Random Triangular Matrices Are Ill-conditioned 60

xi

xii Contents

3.2 Backward Analysis of Triangular Linear Systems 64
3.3 Componentwise Condition of Random Sparse Matrices 65

3.3.1 Componentwise Condition Numbers 65
3.3.2 Determinant Computation 67
3.3.3 Matrix Inversion . 71
3.3.4 Solving Linear Equations 72

3.4 Error Bounds for Triangular Linear Systems 73
3.5 Additional Considerations . 73

3.5.1 On Norms and Mixed Condition Numbers 73
3.5.2 On the Underlying Probability Measure 74

4 Probabilistic Analysis of Rectangular Matrices 77
4.1 A Crash Course on Probability: II 78

4.1.1 Large Deviations . 79
4.1.2 Random Gaussian Matrices 81
4.1.3 A Bound on the Expected Spectral Norm 84

4.2 Tail Bounds for κ(A) . 86
4.2.1 Tail Bounds for ‖A†‖ . 87
4.2.2 Proof of Theorem 4.16 . 91

4.3 Expectations: Proof of Theorem 4.2 92
4.4 Complex Matrices . 93

5 Condition Numbers and Iterative Algorithms 101
5.1 The Cost of Computing: A Primer in Complexity 102
5.2 The Method of Steepest Descent 103
5.3 The Method of Conjugate Gradients 107
5.4 Conjugate Gradient on Random Data 116

Intermezzo I: Condition of Structured Data 119

Part II Condition in Linear Optimization (Andante)

6 A Condition Number for Polyhedral Conic Systems 123
6.1 Condition and Continuity . 123
6.2 Basic Facts on Convexity . 125

6.2.1 Convex Sets . 125
6.2.2 Polyhedra . 128

6.3 The Polyhedral Cone Feasibility Problem 129
6.4 The GCC Condition Number and Distance to Ill-posedness 134
6.5 The GCC Condition Number and Spherical Caps 136
6.6 The GCC Condition Number and Images of Balls 140
6.7 The GCC Condition Number and Well-Conditioned Solutions . . . 142
6.8 Condition of Solutions and Condition Numbers 143
6.9 The Perceptron Algorithm for Feasible Cones 144

7 The Ellipsoid Method . 147
7.1 A Few Facts About Ellipsoids . 147
7.2 The Ellipsoid Method . 150

Contents xiii

7.3 Polyhedral Conic Systems with Integer Coefficients 153

8 Linear Programs and Their Solution Sets 155
8.1 Linear Programs and Duality . 155
8.2 The Geometry of Solution Sets 160
8.3 The Combinatorics of Solution Sets 162
8.4 Ill-posedness and Degeneracy . 166

8.4.1 Degeneracy . 166
8.4.2 A Brief Discussion on Ill-posedness 168

9 Interior-Point Methods . 173
9.1 Primal–Dual Interior-Point Methods: Basic Ideas 173
9.2 Existence and Uniqueness of the Central Path 177
9.3 Analysis of IPM for Linear Programming 180
9.4 Condition-Based Analysis of IPM for PCFP 184

9.4.1 Reformulation . 184
9.4.2 Algorithmic Solution . 186
9.4.3 Analysis . 188

9.5 Finite Precision for Decision and Counting Problems 190

10 The Linear Programming Feasibility Problem 193
10.1 A Condition Number for Polyhedral Feasibility 193
10.2 Deciding Feasibility of Primal–Dual Pairs 195

11 Condition and Linear Programming Optimization 201
11.1 The Condition Number K(d) . 202
11.2 K(d) and Optimal Solutions . 208
11.3 Computing the Optimal Basis . 211

11.3.1 An Interior-Point Algorithm 212
11.3.2 A Reduction to Polyhedral Feasibility Problems 214

11.4 Optimizers and Optimal Bases: The Condition Viewpoint 219
11.5 Approximating the Optimal Value 221

12 Average Analysis of the RCC Condition Number 223
12.1 Proof of Theorem 12.1 . 225

12.1.1 The Group Gn and Its Action 225
12.1.2 Probabilities . 229

13 Probabilistic Analyses of the GCC Condition Number 233
13.1 The Probability of Primal and Dual Feasibility 235
13.2 Spherical Convexity . 238
13.3 A Bound on the Volume of Tubes 240
13.4 Two Essential Reductions . 241
13.5 A Crash Course on Probability: III 245
13.6 Average Analysis . 248
13.7 Smoothed Analysis . 252

Intermezzo II: The Condition of the Condition 255

xiv Contents

Part III Condition in Polynomial Equation Solving (Allegro con brio)

14 A Geometric Framework for Condition Numbers 261
14.1 Condition Numbers Revisited . 261

14.1.1 Complex Zeros of Univariate Polynomials 263
14.1.2 A Geometric Framework 265
14.1.3 Linear Equation Solving 267

14.2 Complex Projective Space . 269
14.2.1 Projective Space as a Complex Manifold 269
14.2.2 Distances in Projective Space 271

14.3 Condition Measures on Manifolds 275
14.3.1 Eigenvalues and Eigenvectors 276
14.3.2 Computation of the Kernel 280

15 Homotopy Continuation and Newton’s Method 283
15.1 Homotopy Methods . 283
15.2 Newton’s Method . 286

16 Homogeneous Polynomial Systems 295
16.1 A Unitarily Invariant Inner Product 297
16.2 A Unitarily Invariant Condition Number 300
16.3 Orthogonal Decompositions of Hd 304
16.4 A Condition Number Theorem 307
16.5 Bézout’s Theorem . 310
16.6 A Projective Newton’s Method 313
16.7 A Higher Derivative Estimate . 321
16.8 A Lipschitz Estimate for the Condition Number 325

17 Smale’s 17th Problem: I . 331
17.1 The Adaptive Linear Homotopy for Hd 332
17.2 Interlude: Randomization . 340

17.2.1 Randomized Algorithms 340
17.2.2 A Las Vegas Homotopy Method 342

17.3 A Crash Course on Probability: IV 343
17.4 Normal Jacobians of Projections 346
17.5 The Standard Distribution on the Solution Variety 350
17.6 Beltrán–Pardo Randomization . 353
17.7 Analysis of Algorithm LV . 356
17.8 Average Analysis of μnorm, μav, and μmax 361

18 Smale’s 17th Problem: II . 367
18.1 The Main Technical Result . 368

18.1.1 Outline of the Proof . 368
18.1.2 Normal Jacobians of Linearizations 371
18.1.3 Induced Probability Distributions 374

18.2 Smoothed Analysis of LV . 377
18.3 Condition-Based Analysis of LV 378
18.4 A Near-Solution to Smale’s 17th Problem 381

Contents xv

18.4.1 A Deterministic Homotopy Continuation 381
18.4.2 An Elimination Procedure for Zero-Finding 383
18.4.3 Some Inequalities of Combinatorial Numbers 387

19 Real Polynomial Systems . 391
19.1 Homogeneous Systems with Real Coefficients 392
19.2 On the Condition for Real Zero-Counting 393
19.3 Smale’s α-Theory . 396
19.4 An Algorithm for Real Zero-Counting 405

19.4.1 Grids and Graphs . 405
19.4.2 Proof of Theorem 19.1 . 408

19.5 On the Average Number of Real Zeros 413
19.6 Feasibility of Underdetermined and Semialgebraic Systems 414

20 Probabilistic Analysis of Conic Condition Numbers:
I. The Complex Case . 419
20.1 The Basic Idea . 421
20.2 Volume of Tubes Around Linear Subspaces 422
20.3 Volume of Algebraic Varieties . 425
20.4 A Crash Course on Probability: V 426
20.5 Proof of Theorem 20.1 . 428
20.6 Applications . 432

20.6.1 Linear Equation-Solving 432
20.6.2 Eigenvalue Computations 433
20.6.3 Complex Polynomial Systems 436

21 Probabilistic Analysis of Conic Condition Numbers:
II. The Real Case . 439
21.1 On the Volume of Tubes . 440

21.1.1 Curvature Integrals . 441
21.1.2 Weyl’s Tube Formula . 443

21.2 A Crash Course on Probability: VI 446
21.3 Bounding Integrals of Curvature 448
21.4 Proof of Theorem 21.1 . 450

21.4.1 The Smooth Case . 450
21.4.2 The General Case . 452
21.4.3 Proof of Theorem 21.1 . 454

21.5 An Application . 455
21.6 Tubes Around Convex Sets . 455

21.6.1 Integrals of Curvature for Boundaries of Convex Sets . . . 455
21.6.2 Proof of Theorem 13.18 458

21.7 Conic Condition Numbers and Structured Data 459
21.8 Smoothed Analysis for Adversarial Distributions 460

Appendix . 467
A.1 Big Oh, Little Oh, and Other Comparisons 467
A.2 Differential Geometry . 468

xvi Contents

A.2.1 Submanifolds of Rn . 469
A.2.2 Abstract Smooth Manifolds 471
A.2.3 Integration on Manifolds 473
A.2.4 Sard’s Theorem and Transversality 475
A.2.5 Riemannian Metrics . 477
A.2.6 Orthogonal and Unitary Groups 479
A.2.7 Curvature of Hypersurfaces 479

A.3 Algebraic Geometry . 481
A.3.1 Varieties . 481
A.3.2 Dimension and Regular Points 483
A.3.3 Elimination Theory . 486
A.3.4 Degree . 487
A.3.5 Resultant and Discriminant 490
A.3.6 Volumes of Complex Projective Varieties 491

A.4 Integral Geometry . 496
A.4.1 Poincaré’s Formula . 496
A.4.2 The Principal Kinematic Formula 500

Notes . 503

Coda: Open Problems . 521
P.1 Probabilistic Analysis of Growth Factors 521
P.2 Eigenvalue Problem . 522
P.3 Smale’s 9th Problem . 524
P.4 Smoothed Analysis of RCC Condition Number 524
P.5 Improved Average Analysis of Grassmann Condition 525
P.6 Smoothed Analysis of Grassmann Condition 525
P.7 Robustness of Condition Numbers 525
P.8 Average Complexity of IPMs for Linear Programming 526
P.9 Smale’s 17th Problem . 526
P.10 The Shub–Smale Starting System 526
P.11 Equivariant Morse Function . 527
P.12 Good Starting Pairs in One Variable 527
P.13 Approximating Condition Geodesics 528
P.14 Self-Convexity of μnorm in Higher Degrees 528
P.15 Structured Systems of Polynomial Equations 529
P.16 Systems with Singularities . 529
P.17 Conic Condition Numbers of Real Problems

with High Codimension of Ill-posedness 529
P.18 Feasibility of Real Polynomial Systems 530

Bibliography . 531

Notation . 543

. . . Concepts . 547

. . . and the People Who Crafted Them . 553

Overture: On the Condition of Numerical
Problems

O.1 The Size of Errors

Since none of the numbers we take out from logarithmic or trigonometric ta-
bles admit of absolute precision, but are all to a certain extent approximate
only, the results of all calculations performed by the aid of these numbers
can only be approximately true. [. . .] It may happen, that in special cases
the effect of the errors of the tables is so augmented that we may be obliged
to reject a method, otherwise the best, and substitute another in its place.

Carl Friedrich Gauss, Theoria Motus

The heroes of numerical mathematics (Euler, Gauss, Lagrange, . . .) developed a
good number of the algorithmic procedures which constitute the essence of numer-
ical analysis. At the core of these advances was the invention of calculus. And un-
derlying the latter, the field of real numbers.

The dawn of the digital computer, in the decade of the 1940s, allowed the execu-
tion of these procedures on increasingly large data, an advance that, however, made
even more patent the fact that real numbers cannot be encoded with a finite number
of bits and therefore that computers had to work with approximations only. With the
increased length of computations, the systematic rounding of all occurring quanti-
ties could now accumulate to a greater extent. Occasionally, as already remarked by
Gauss, the errors affecting the outcome of a computation were so big as to make it
irrelevant.

Expressions like “the error is big” lead to the question, how does one measure
an error? To approach this question, let us first assume that the object whose error
we are considering is a single number x encoding a quantity that may take values
on an open real interval. An error of magnitude 1 may yield another real number
x̃ with value either x − 1 or x + 1. Intuitively, this will be harmless or devastating
depending on the magnitude of x itself. Thus, for x = 106, the error above is hardly
noticeable, but for x = 10−3, it certainly is (and may even change basic features of

xvii

xviii Overture: On the Condition of Numerical Problems

x such as being positive). A relative measure of the error appears to convey more
meaning. We therefore define1

RelError(x)= |x̃ − x|
|x| .

Note that this expression is well defined only when x �= 0.
How does this measure extend to elements x ∈R

m? We want to consider relative
errors as well, but how does one relativize? There are essentially two ways:

Componentwise: Here we look at the relative error in each component, taking as
error for x the maximum of them. That is, for x ∈ R

m such that xi �= 0 for i =
1, . . . ,m, we define

RelError(x)= max
i≤m

RelError(xi).

Normwise: Endowing R
m with a norm allows one to mimic, for x �= 0, the defini-

tion for the scalar case. We obtain

RelError(x)= ‖x̃ − x‖
‖x‖ .

Needless to say, the normwise measure depends on the choice of the norm.

O.2 The Cost of Erring

How do round-off errors affect computations? The answer to this question depends
on a number of factors: the problem being solved, the data at hand, the algorithm
used, the machine precision (as well as other features of the computer’s arithmetic).
While it is possible to consider all these factors together, a number of idealiza-
tions leading to the consideration of simpler versions of our question appears as a
reasonable—if not necessary—course of action. The notion of condition is the re-
sult of some of these idealizations. More specifically, assume that the problem being
solved can be described by a function

ϕ :D ⊆R
m →R

q,

where D is an open subset of Rm. Assume as well that the computation of ϕ is per-
formed by an algorithm with infinite precision (that is, there are no round-off errors
during the execution of this algorithm). All errors in the computed value arise as a
consequence of possible errors in reading the input (which we will call perturba-
tions). Our question above then takes the following form:

How large is the output error with respect to the input perturbation?

1To be completely precise, we should write RelError(x, x̃). In all what follows, however, to simplify
notation, we will omit the perturbation x̃ and write simply RelError(x).

O.2 The Cost of Erring xix

The condition number of input a ∈D (with respect to problem ϕ) is, roughly speak-
ing, the worst possible magnification of the output error with respect to a small input
perturbation. More formally,

condϕ(a)= lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)
. (O.1)

This expression defines the condition number as a limit. For small values of δ we
can consider the approximation

condϕ(a)≈ sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)

and, for practical purposes, the approximate bound

RelError
(
ϕ(a)

)
� condϕ(a)RelError(a), (O.2)

or yet, using “little oh” notation2 for RelError(a)→ 0,

RelError
(
ϕ(a)

)≤ condϕ(a)RelError(a)+ o
(
RelError(a)

)
. (O.3)

Expression (O.1) defines a family of condition numbers for the pair (ϕ, a). Errors
can be measured either componentwise or normwise, and in the latter case, there is a
good number of norms to choose from. The choice of normwise or componentwise
measures for the errors has given rise to three kinds of condition numbers (condi-
tion numbers for normwise perturbations and componentwise output errors are not
considered in the literature).

We will generically denote normwise condition numbers by condϕ(a), mixed con-
dition numbers by Mϕ(a), and componentwise condition numbers by Cwϕ(a). We
may skip the superscript ϕ if it is clear from the context. In the case of component-
wise condition numbers one may be interested in considering the relative error for
each of the output components separately. Thus, for j ≤ q one defines

Cwϕ
j (a)= lim

δ→0
sup

RelError(a)≤δ

RelError(ϕ(a)j)

RelError(a)
,

and one has Cwϕ(a)= maxj≤q Cwϕ
j (a).

2A short description of the little oh and other asymptotic notations is in the Appendix, Sect. A.1.

xx Overture: On the Condition of Numerical Problems

The consideration of a normwise, mixed, or componentwise condition number
will be determined by the characteristics of the situation at hand. To illustrate this,
let’s look at data perturbation. The two main reasons to consider such perturbations
are inaccurate data reading and backward-error analysis.

In the first case the idea is simple. We are given data that we know to be inac-
curate. This may be because we obtained it by measurements with finite precision
(e.g., when an object is weighed, the weight is displayed with a few digits only) or
because our data are the result of an inaccurate computation.

The idea of backward-error analysis is less simple (but very elegant). For a prob-
lem ϕ we may have many algorithms that solve it. While all of them ideally compute
ϕ when endowed with infinite precision, under the presence of errors they will com-
pute only approximations of this function. At times, for a problem ϕ and a finite-
precision algorithm Aϕ solving it, it is possible to show that for all a ∈ D there
exists e ∈R

m with a + e ∈D satisfying

(∗) Aϕ(a)= ϕ(a + e), and

(∗∗) e is small with respect to a.

In this situation—to which we refer by saying that Aϕ is backward-stable—
information on how small exactly e is (i.e., how large RelError(a) is) together with
the condition number of a directly yields bounds on the error of the computed quan-
tity Aϕ(a). For instance, if (∗∗) above takes the form

‖e‖ ≤m310−6‖a‖,
we will deduce, using (O.2), that

∥∥Aϕ(a)− ϕ(a)
∥∥� condϕ(a)m310−6

∥∥ϕ(a)
∥∥. (O.4)

No matter whether due to inaccurate data reading or because of a backward-
error analysis, we will measure the perturbation of a in accordance with the situ-
ation at hand. If, for instance, we are reading data in a way that each component
ai satisfies RelError(ai) ≤ 5 × 10−8, we will measure perturbations in a compo-
nentwise manner. If, in contrast, a backward-error analysis yields an e satisfying
‖e‖ ≤m3‖a‖10−6, we will have to measure perturbations in a normwise manner.

While we may have more freedom in the way we measure the output error, there
are situations in which a given choice seems to impose itself. Such a situation could
arise when the outcome of the computation at hand is going to be the data of an-
other computation. If perturbations of the latter are measured, say, componentwise,
we will be interested in doing the same with the output error of the former. A striking
example in which error analysis can be only appropriately explained using compo-
nentwise conditioning is the solution of triangular systems of equations. We will
return to this issue in Chap. 3.

At this point it is perhaps convenient to emphasize a distinction between condi-
tion and (backward) stability. Given a problem ϕ, the former is a property of the
input only. That is, it is independent on the possible algorithms used to compute ϕ.

O.3 Finite-Precision Arithmetic and Loss of Precision xxi

In contrast, backward stability, at least in the sense defined above, is a property of
an algorithm Aϕ computing ϕ that holds for all data a ∈D (and is therefore inde-
pendent of particular data instances).

Expressions like (O.4) are known as forward-error analyses, and algorithms Aϕ

yielding a small value of ‖Aϕ(a)−ϕ(a)‖
‖ϕ(a)‖ are said to be forward-stable. It is impor-

tant to mention that while backward-error analyses immediately yield forward-error
bounds, some problems do not admit backward-error analysis, and therefore, their
error analysis must be carried forward.

It is time to have a closer look at the way errors are produced in a computer.

O.3 Finite-Precision Arithmetic and Loss of Precision

O.3.1 Precision . . .

Although the details of computer arithmetic may vary with computers and software
implementations, the basic idea was agreed upon shortly after the dawn of digital
computers. It consisted in fixing positive integers β ≥ 2 (the basis of the representa-
tion), t (its precision), and e0, and approximating nonzero real numbers by rational
numbers of the form

z=±m

βt
βe

with m ∈ {1, . . . , βt } and e ∈ {−e0, . . . , e0}. The fraction m
βt is called the mantissa

of z and the integer e its exponent. The condition |e| ≤ e0 sets limits on how big (and
how small) z may be. Although these limits may give rise to situations in which (the
absolute value of) the number to be represented is too large (overflow) or too small
(underflow) for the possible values of z, the value of e0 in most implementations is
large enough to make these phenomena rare in practice. Idealizing a bit, we may
assume e0 =∞.

As an example, taking β = 10 and t = 12, we can approximate

π8 ≈ 0.948853101607× 104.

The relative error in this approximation is bounded by 1.1 × 10−12. Note that t is
the number of correct digits of the approximation. Actually, for any real number x,
by appropriately rounding and truncating an expansion of x we can obtain a number

x̃ as above satisfying x̃ = x(1 + δ) with |δ| ≤ β−t+1

2 . That is,

RelError(x)≤ β−t+1

2
.

More generally, whenever a real number x is approximated by x̃ satisfying an in-

xxii Overture: On the Condition of Numerical Problems

equality like the one above, we say that x̃ approximates x with t correct digits.3

Leaving aside the details such as the choice of basis and the particular way a
real number is truncated to obtain a number as described above, we may summa-
rize the main features of computer arithmetic (recall that we assume e0 =∞) by
stating the existence of a subset F ⊂ R containing 0 (the floating-point numbers),
a rounding map round : R→ F, and a round-off unit (also called machine epsilon)
0 < εmach < 1, satisfying the following properties:

(a) For any x ∈ F, round(x)= x. In particular round(0)= 0.
(b) For any x ∈R, round(x)= x(1 + δ) with |δ| ≤ εmach.

Furthermore, one can take εmach = β−t+1

2 and therefore | logβ εmach| = t − logβ
β
2 .

Arithmetic operations on F are defined following the scheme

x ◦̃ y = round(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /} and therefore

◦̃ : F× F→ F.

It follows from (b) above that for any x, y ∈ F we have

x ◦̃ y = (x ◦ y)(1 + δ), |δ| ≤ εmach.

Other operations may also be considered. Thus, a floating-point version √̃ of the
square root would similarly satisfy

√̃
x =√

x(1 + δ), |δ| ≤ εmach.

When combining many operations in floating-point arithmetic, expressions such as
(1+δ) above naturally appear. To simplify round-off analyses it is useful to consider
the quantities, for k ≥ 1 and kεmach < 1,

γk := kεmach

1 − kεmach
(O.5)

and to denote by θk any number satisfying |θk| ≤ γk . In this sense, θk represents
a set of numbers, and different occurrences of θk in a proof may denote different
numbers. Note that

γk ≤ (k + 1)εmach if k(k + 1)≤ ε−1
mach. (O.6)

The proof of the following proposition can be found in Chap. 3 of [121].

Proposition O.1 The following relations hold (assuming all quantities are well de-
fined):

3This notion reflects the intuitive idea of significant figures modulo carry differences. The number
0.9999 approximates 1 with a precision t = 10−4. Yet their first significant digits are different.

O.3 Finite-Precision Arithmetic and Loss of Precision xxiii

(a) (1 + θk)(1 + θj)= 1 + θk+j ,
(b)

1 + θk

1 + θj
=
{

1 + θk+j if j ≤ k,

1 + θk+2j if j > k,

(c) γkγj ≤ γmin{k,j} if max{kεmach, jεmach} ≤ 1/2,
(d) iγk ≤ γik ,
(e) γk + εmach ≤ γk+1,
(f) γk + γj + γkγj ≤ γk+j . �

O.3.2 . . . and the Way We Lose It

In computing an arithmetic expression q with a round-off algorithm, errors will
accumulate, and we will obtain another quantity, which we denote by fl(q). We will
also write Error(q)= |q − fl(q)|, so that RelError(q)= Error(q)

|q| .
Assume now that q is computed with a real-number algorithm A executed using

floating-point arithmetic from data a (a formal model for real-number algorithms
was given in [37]). No matter how precise the representation we are given of the
entries of a, these entries will be rounded to t digits. Hence t (or, being roughly the
same, | logβ εmach|) is the precision of our data. On the other hand, the number of
correct digits in fl(q) is approximately −logβRelError(q). Therefore, the value

LoP(q) := logβ

RelError(q)

εmach
= | logβ εmach| −

∣∣logβ RelError(q)
∣∣

quantifies the loss of precision in the computation of q . To extend this notion to
the computation of vectors v = (v1, . . . , vq) ∈ R

q , we need to fix a measure for the
precision of the computed fl(e)= (fl(v1), . . . , fl(vq)): componentwise or normwise.

In the componentwise case, we have

−logβRelError(e)=−logβ max
i≤q

|fl(vi)− vi |
|vi | = min

i≤q

(
−logβ

|fl(vi)− vi |
|vi |

)
,

so that the precision of v is the smallest of the precisions of its components.
For the normwise measure, we take the precision of v to be

−logβRelError(e)=−logβ

‖fl(e)− v‖
‖v‖ .

This choice has both the pros and cons of viewing v as a whole and not as the
aggregation of its components.

For both the componentwise and the normwise measures we can consider εmach

as a measure of the worst possible relative error RelError(a) when we read data a

with round-off unit εmach, since in both cases

max
|ãi−ai |≤εmach|ai |

RelError(a)= εmach.

xxiv Overture: On the Condition of Numerical Problems

Hence, | logβ εmach| represents in both cases the precision of the data. We therefore
define the loss of precision in the computation of ϕ(a) to be

LoP
(
ϕ(a)

) := logβ

RelError(ϕ(a))

εmach
= | logβ εmach| + logβ RelError

(
ϕ(a)

)
. (O.7)

Remark O.2 By associating RelError(a) ≈ εmach, we may view the logarithm of a
condition number logβ condϕ(a) as a measure of the worst possible loss of precision
in a computation of ϕ(a) in which the only error occurs in reading the data.

To close this section we prove a result putting together—and making precise—a
number of issues dealt with so far. For data a ∈ D ⊆ R

m we call m the size of a

and we write size(a) = m. Occasionally, this size is a function of a few integers,
the dimensions of a, the set of which we denote by dims(a). For instance, a p × q

matrix has dimensions p and q and size pq .

Theorem O.3 Let Aϕ be a finite-precision algorithm with round-off unit εmach com-
puting a function ϕ : D ⊆ R

m → R
q . Assume Aϕ satisfies the following backward

bound: for all a ∈D there exists ã ∈D such that

Aϕ(a)= ϕ(ã)

and

RelError(a)≤ f
(
dims(a)

)
εmach + o(εmach)

for some positive function f , and where the “little oh” is for εmach → 0. Then the
computed Aϕ(a) satisfies the forward bound

RelError
(
ϕ(a)

)≤ f
(
dims(a)

)
condϕ(a)εmach + o(εmach),

and the loss of precision in the computation (in base β) is bounded as

LoP
(
ϕ(a)

)≤ logβ f
(
dims(a)

)+ logβ condϕ(a)+ o(1).

Here condϕ refers to the condition number defined in (O.1) with the same measures
(normwise or componentwise) for RelError(a) and RelError(ϕ(a)) as those in the
backward and forward bounds above, respectively.

Proof The forward bound immediately follows from the backward bound and (O.3).
For the loss of precision we have

logβ RelError
(
ϕ(a)

) ≤ logβ f
(
dims(a)

)
condϕ(a)εmach

(
1 + o(1)

)

≤ logβ f
(
dims(a)

)+ logβ condϕ(a)− | logβ εmach| + o(1),

from which the statement follows. �

O.4 An Example: Matrix–Vector Multiplication xxv

O.4 An Example: Matrix–Vector Multiplication

It is perhaps time to illustrate the notions introduced so far by analyzing a simple
problem, namely, matrix–vector multiplication. We begin with a (componentwise)
backward stability analysis.

Proposition O.4 There is a finite-precision algorithm A that with input A ∈R
m×n

and x ∈ R
n, computes the product Ax. If εmach(�log2 n� + 2)2 < 1, then the com-

puted vector fl(Ax) satisfies fl(Ax)= Ãx with

|ãij − aij | ≤
(�log2 n� + 2

)
εmach|aij |.

Proof Let b=Ax. For i = 1, . . . ,m we have

bi = ai1x1 + ai2x2 + · · · + ainxn.

For the first product on the right-hand side we have fl(ai1x1) = ai1x1(1 + δ)

with |δ| ≤ εmach ≤ εmach
1−εmach

= γ1. That is, fl(ai1x1) = ai1x1(1 + θ1) and similarly
fl(ai2x2)= ai2x2(1 + θ1). Note that the two occurrences of θ1 here denote two dif-
ferent quantities. Hence, using Proposition O.1,

fl(ai1x1 + ai2x2) =
(
ai1x1(1 + θ1)+ ai2x2(1 + θ1)

)
(1 + θ1)

= ai1x1(1 + θ2)+ ai2x2(1 + θ2).

By the same reasoning, fl(ai3x3 +ai4x4)= ai3x3(1+ θ2)+ai4x4(1+ θ2), and there-
fore

fl(ai1x1 + ai2x2 + ai3x3 + ai4x4)

= (
ai1x1(1 + θ2)+ ai2x2(1 + θ2)+ ai3x3(1 + θ2)+ ai4x4(1 + θ2)

)
(1 + θ1)

= ai1x1(1 + θ3)+ ai2x2(1 + θ3)+ ai3x3(1 + θ3)+ ai4x4(1 + θ3).

Continuing in this way, we obtain

fl(bi)= ãi1x1 + ãi2x2 + · · · + ãinxn

with ãij = aij (1 + θ�log2 n�+1). The result follows from the estimate (O.6), setting
k = �log2 n� + 1. �

Remark O.5 Note that the algorithm computing Ax is implicitly given in the proof
of Proposition O.4. This algorithm uses a balanced treelike structure for the sums.
The order of the sums cannot be arbitrarily altered: the operations +̃ and ·̃ are
nonassociative.

We next estimate the componentwise condition number of matrix–vector mul-
tiplication. In doing so, we note that in the backward analysis of Proposition O.4,

xxvi Overture: On the Condition of Numerical Problems

only the entries of A are perturbed. Those of x are not. This feature allows one to
consider the condition of data (A,x) for perturbations of A only. Such a situation is
common and also arises when data are structured (e.g., unit upper-triangular matri-
ces have zeros below the diagonal and ones on the diagonal) or contain entries that
are known to be integers.

Proposition O.6 The componentwise condition numbers Cwi (A, x) of matrix–
vector multiplication, for perturbations of A only, satisfy

Cwi (A, x)≤ ∣∣sec(ai, x)
∣∣,

where ai denotes the ith row of A and sec(ai, x) = 1
cos(ai ,x)

denotes the secant of
the angle it makes with x (we assume ai, x �= 0).

Proof Let Ã = A + E be a perturbation of A with E = (eij). By definition,
|eij | ≤ RelError(A)|aij | for all i, j , whence ‖ei‖ ≤ RelError(A)‖ai‖ for all i (here
‖ ‖ denotes the Euclidean norm in R

n). We obtain

RelError
(
(Ax)i

)= |eT
i x|

|aT
i x|

≤ ‖ei‖‖x‖
|aT

i x|
≤ RelError(A)

‖ai‖‖x‖
|aT

i x|
.

This implies that

Cwi (A, x)= lim
δ→0

sup
RelError(A)≤δ

RelError((Ax)i)

RelError(A)

≤ ‖ai‖‖x‖
|aT

i x|
= 1

| cos(ai, x)| =
∣∣sec(ai, x)

∣∣. �

A bound for the loss of precision in the componentwise context follows.

Corollary O.7 In the componentwise setting, for all i such that bi = (Ax)i �= 0,

RelError(bi) ≤
∣∣sec(ai, x)

∣∣(�log2 n� + 2
)
εmach + o(εmach),

LoP(bi) ≤ logβ

∣∣sec(ai, x)
∣∣+ logβ

(�log2 n� + 2
)+ o(1),

provided log2 n≤ ε
−1/2
mach + 3.

Proof Immediate from Propositions O.4 and O.6 and Theorem O.3. �

The corollary above states that if we are working with | logβ εmach| bits of pre-
cision, we compute a vector fl(Ax) whose nonzero entries have, approximately, at
least

| logβ εmach| − logβ

∣∣sec(ai, x)
∣∣− logβ log2 n

O.4 An Example: Matrix–Vector Multiplication xxvii

bits of precision. (The required bound on n is extremely weak and will be satisfied
in all cases of interest.) This is a satisfying result. One may, nevertheless, wonder
about the (absolute) error for the zero components of Ax. In this case, a normwise
analysis may be more appropriate.

To proceed with a normwise analysis we first need to choose a norm in the space
of m× n matrices. For simplicity, we choose

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

It is well known that

‖A‖∞ = max
i≤n

‖ai‖1. (O.8)

Now note that it follows from Proposition O.4 that the perturbation Ã in its statement
satisfies, for n not too large,

‖Ã−A‖∞ ≤ (�log2 n� + 2
)
εmach. (O.9)

Therefore, we do have a normwise backward-error analysis. In addition, a normwise
version of Proposition O.6 can be easily obtained.

Proposition O.8 The normwise condition number cond(A,x) of matrix–vector
multiplication, for perturbations on A only, satisfies, for Ax �= 0,

cond(A,x)= ‖A‖∞‖x‖∞
‖Ax‖∞ .

Proof We have

cond(A,x) = lim
δ→0

sup
RelError(A)≤δ

RelError(Ax)

RelError(A)

= lim
δ→0

sup
‖Ã−A‖∞≤δ‖A‖∞

‖Ãx −Ax‖∞
‖Ax‖∞

‖A‖∞
‖Ã−A‖∞

≤ ‖A‖∞‖x‖∞
‖Ax‖∞ .

Actually, equality holds. In order to see this, assume, without loss of generality, that
‖x‖∞ = |x1|. Set Ã= A+E, where e11 = δ and eij = 0 otherwise. Then we have
‖Ãx −Ax‖∞ = ‖Ex‖∞ = δ|x1| = ‖E‖∞‖x‖∞ = ‖Ã−A‖∞‖x‖∞. �

Again, a bound for the loss of precision immediately follows.

Corollary O.9 In the normwise setting, when Ax �= 0,

LoP(Ax)≤ logβ

(‖A‖∞‖x‖∞
‖Ax‖∞

)
+ logβ

(�log2 n� + 2
)+ o(1),

provided log2 n≤ ε
−1/2
mach + 3.

xxviii Overture: On the Condition of Numerical Problems

Proof It is an immediate consequence of (O.9), Proposition O.8, and Theo-
rem O.3. �

Remark O.10 If m = n and A is invertible, it is possible to give a bound on the
normwise condition that is independent of x. Using that x = A−1Ax, we de-
duce ‖x‖∞ ≤ ‖A−1‖∞‖Ax‖∞ and therefore, by Proposition O.8, cond(A,x) ≤
‖A−1‖∞‖A‖∞. A number of readers may find this expression familiar.

O.5 The Many Faces of Condition

The previous sections attempted to introduce condition numbers by retracing the
way these numbers were introduced: as a way of measuring the effect of data per-
turbations. The expression “condition number” was first used by Turing [221] to
denote a condition number for linear equation solving, independently introduced by
him and by von Neumann and Goldstine [226] in the late 1940s. Expressions like
“ill-conditioned set [of equations]” to denote systems with a large condition number
were also introduced in [221].

Conditioning, however, was eventually related to issues in computation other
than error-propagation analysis and this fact—together with the original role of con-
ditioning in error analysis—triggered research on different aspects of the subject.
We briefly describe some of them in what follows.

O.5.1 Condition and Complexity

In contrast with direct methods (such as Gaussian elimination), the number of
times that a certain basic procedure is repeated in iterative methods is not data-
independent. In the analysis of this dependence on the data at hand it was early
realized that, quite often, one could express it using its condition number. That is,
the number of iterations the algorithm Aϕ would perform with data a ∈ R

m could
be bounded by a function of m, condϕ(a), and—in the case of an algorithm comput-
ing an ε-approximation of the desired solution—the accuracy ε. A very satisfying
bound for the number of iterations # iterations(Aϕ(a)) of algorithm Aϕ would have
the form

iterations
(
Aϕ(a)

)≤
(
m+ log condϕ(a)+ log

(
1

ε

))O(a)

, (O.10)

and a less satisfying (but often still acceptable) bound would have log condϕ(a)

replaced by condϕ(a) and/or log(1
ε
) replaced by 1

ε
. We will encounter several in-

stances of this condition-based complexity analysis in the coming chapters.

O.5 The Many Faces of Condition xxix

O.5.2 Computing Condition Numbers

Irrespective of whether relative errors are measured normwise or componentwise,
the expression (O.1) defining the condition number of a (for the problem ϕ) is hardly
usable. Not surprisingly then, one of the main lines of research regarding condition
numbers has focused on finding equivalent expressions for condϕ(a) that would
be directly computable or, if this appears to be out of reach, tight enough bounds
with this property. We have done so for the problem of matrix–vector multiplication
in Propositions O.6 and O.8 (for the componentwise and normwise cases, respec-
tively). In fact, in many examples the condition number can be succinctly expressed
in terms of the norm of a derivative, which facilitates its analysis (cf. Sect. 14.1).

O.5.3 Condition of Random Data

How many iterations does an iterative algorithm need to perform to compute ϕ(a)?
To answer this question we need condϕ(a). And to compute condϕ(a) we would
like a simple expression like those in Propositions O.6 and O.8. A second look
at these expressions, however, shows that they seem to require ϕ(a), the quantity
in which we were interested in the first place. For in the componentwise case, we
need to compute sec(ai, x)—and hence aT

i x—for i = 1, . . . , n, and in the normwise
case the expression ‖Ax‖∞ speaks for itself. Worst of all, this is not an isolated
situation. We will see that the condition number of a matrix A with respect to matrix
inversion is expressed in terms of A−1 (or some norm of this inverse) and that a
similar phenomenon occurs for each of the problems we consider. So, even though
we do not formalize this situation as a mathematical statement, we can informally
describe it by saying that the computation of a condition number condϕ(a) is never
easier than the computation of ϕ(a). The most elaborate reasoning around this issue
was done by Renegar [164].

A similar problem appears with perturbation considerations. If we are given only
a perturbation ã of data a, how can we know how accurate ϕ(ã) is? Even assuming
that we can compute condϕ accurately and fast, the most we could do is to compute
condϕ(ã), not condϕ(a).

There are a number of ways in which this seemingly circular situation can be
broken. Instead of attempting to make a list of them (an exercise that can only result
in boredom), we next describe a way out pioneered by John von Neumann (e.g.,
in [108]) and strongly advocated by Steve Smale in [201]. It consists in randomizing
the data (i.e., in assuming a probabilistic distribution D in R

m) and considering the
tail

Prob
a∼D

{
condϕ(a)≥ t

}

or the expected value (for q ≥ 1)

E
a∼D

(
logq condϕ(a)

)
.

xxx Overture: On the Condition of Numerical Problems

The former, together with a bound as in (O.10), would allow one to bound the prob-
ability that Aϕ needs more than a given number of iterations. The latter, taking q to
be the constant in the O(a) notation, would make it possible to estimate the expected
number of iterations. Furthermore, the latter again, now with q = 1, can be used to
obtain an estimate of the average loss of precision for a problem ϕ (together with a
backward stable algorithm Aϕ if we are working with finite-precision arithmetic).

For instance, for the example that formed the substance of Sect. O.4, we will
prove for a matrix A ∈R

m×n with standard Gaussian entries that

E
(
logβ Cwi (A)

)≤ 1

2
logβ n+ 2.

In light of Corollary O.7, this bound implies that the expected loss of precision in
the computation of (Ax)i is at most 1

2 logβ n+ logβ log2 n+O(1).
The probabilistic analysis proposed by von Neumann and Smale relies on the

assumption of “evenly spread random data.” A different approach was recently pro-
posed that relies instead on the assumption of “nonrandom data affected by random
noise.” We will develop both approaches in this book.

O.5.4 Ill-posedness and Condition

Let us return once more to the example of matrix–vector multiplication. If A and
x are such that Ax = 0, then the denominator in ‖A‖∞‖x‖∞

‖Ax‖∞ is zero, and we can
define cond(A,x)=∞. This reflects the fact that no matter how small the absolute
error in computing Ax, the relative error will be infinite. The quest for any relative
precision is, in this case, a battle lost in advance. It is only fair to refer to instances
like this with a name that betrays this hopelessness. We say that a is ill-posed for
ϕ when condϕ(a) =∞. Again, one omits the reference to ϕ when the problem is
clear from the context, but it goes without saying that the notion of ill-posedness,
like that of condition, is with respect to a problem. It also depends on the way we
measure errors. For instance, in our example, Cw(A,x) =∞ if and only if there
exists i ≤ n such that aT

i x = 0, while for cond(A,x) to be infinity, it is necessary
(and sufficient) that Ax = 0.

The subset of Rm of ill-posed inputs is denoted by Σϕ (or simply by Σ), and
it has played a distinguished role in many developments in conditioning. To see
why, let us return (yes, once again) to matrix–vector multiplication, say in the com-
ponentwise setting. Recall that we are considering x as fixed (i.e., not subject to
perturbations). In this situation we take Σ ⊂R

n×m to be the set of matrices A such
that Cw(A,x)=∞. We have Σ =⋃

i≤n Σi with

Σi =
{
A ∈R

n×m | Cwi (A, x)=∞}= {
A ∈R

n×m | aT
i x = 0

}
.

O.5 The Many Faces of Condition xxxi

Now recall Cwi (A, x)≤ 1
| cos(ai ,x)| . If we denote by āi the orthogonal projection of

ai on the space x⊥ = {y ∈R
m | yTx = 0}, then

1

| cos(ai, x)| =
‖ai‖

‖ai − āi‖ ,

and it follows that

Cwi (A, x)≤ ‖ai‖
dist(A,Σi)

. (O.11)

That is, componentwise, the condition number of (A,x) is bounded by the inverse
of the relativized distance from A to ill-posedness.

This is not an isolated phenomenon. On the contrary, it is a common occurrence
that condition numbers can be expressed as, or at least bounded by, the inverse of a
relativized distance to ill-posedness. We will actually meet this theme repeatedly in
this book.

