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Preface

Flow, mass, and heat transport processes in nature and geosphere are highly (if not
even most) complex. There is an increasing demand in studying and predicting such
kind of problems in an environmental and geohydrodynamic context. This demand
naturally results from the growing human influence on the environmental and
natural resources with their constraints and consequences. Men are also looking for
new technologies of exploiting geothermal energy and storing fluids in reservoirs.
Industries are developing new materials with improved properties for which a
greater understanding of flow and energy transport is required. Among all of these
applications, a very important subclass of processes occurs in structures which
are categorized as porous and fractured media. Those structures exist in many
natural and man-made systems having length scales differing by several orders of
magnitude. Lengths range from pore and fracture scales in the order of micrometers
and millimeters, textile and tissue materials measuring tens of millimeters, the
diameter of wells in the order of tens of centimeters, the thickness of aquifer layers
and geologic strata in the order of meters to tens of meters, the distances between
wells and thicknesses of aquifer systems with tens to hundreds of meters, and the
extent of reservoirs and subsurface fields up to tens or even hundreds of kilometers.
Heterogeneities and parameter contrasts have to be encountered in all these length
scales.

To understand the processes, to make them predictable and controllable, we
need models. Models are abstractions of the real systems. However, abstractions
are not to be considered as our resort and insufficiency in finding a description for
all phenomena and influences. They represent a necessary and appropriate level of
reduction and idealization where the (most) important processes are emphasized
and the subordinate processes are dropped. This is the way (and obviously the only
way) to find causal relationships and to set up predictive tools. We don’t need a
second perfect copy of nature; we have it already in the form of our experiments
and observations made at the real system.

The construction of the model is the first and very important step in a modeling
process. It is termed as model conceptualization which covers the description
of the system’s composition, the physical and physicochemical phenomena, and
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viii Preface

the relevant properties of the medium in which they occur. Obviously, such a
description includes assumptions and simplifications which are subjectively selected
by the modeler and, consequently, it reflects his understanding and faculty of the
matter in a specific scope of interest. Accordingly, a model as a simplified version
of reality is subjective, and nonunique models exist in dependence on the level
of assumptions, contexts of intended applications, and the state of knowledge.
Fortunately, at present model conceptualization can be based on an advanced and
general framework of physics and rational thermodynamics, allowing us to objectify
the modeling approach for a large range of applications. However, this requires that
the modeler is conversant with these conceptual steps and understands the basic
physical/thermodynamic principles of the model in order to, at least, examine the
physical background of the model with its assumptions and limitations. Nowadays
there is a desire to develop models (family of models) which cover a wide range of
applications.

The second step in modeling is the mathematical representation of the conceptual
model in the form of numerical schemes and discrete solution techniques. There are
many ways to do that. However, for satisfying also the requirements of a wide range
of applications as stated above for the conceptual working step, one of the best
choices is the finite element method (FEM). The FEM is very general and useful
for practical applications. Its geometric flexibility and the ability to accurately
apply the appropriate boundary conditions on complex domains make the FEM
superior to other numerical strategies, such as finite difference methods (FDMs)
or finite volume methods (FVMs). The understanding of the actually used spatial
and temporal discretization techniques is necessary for modelers who practically
solve flow and transport problems and interpret the numerical results with respect
to accuracy and reliability of the achieved simulation results.

The third (and final) step of modeling is the computational realization of the
model (family of models) in the form of an appropriately developed simulation
software. The graphical interface of such a simulation code represents the ‘working
shell’ for the modeler dealing with the preparation of the input data and the
execution and the evaluation of the computational results of a model. Since the
software interface is the only visible and operational part of the modeling process,
it can be seductive for a common or novice user to exclusively apply the software
as a black box, widely ignoring the theoretical modeling basis. There is indeed a
potential danger for an uncritical use of modern software. Here, a graphically very
sophisticated computation can create the false impression that the quality of the
numerical solution is comparable to the quality of the graphical presentation. (But
the reverse of this statement is also not true: A crude graphical presentation does not
necessarily indicate proper solutions.)

From the above it becomes obvious that the modeling of flow and transport
processes encountered in porous and fractured media has, at least, three important
faces: the conceptual, the numerical, and the software/application aspect. An “ideal”
modeler should have best knowledge of all of these three subjects. But this book is
not primarily addressed to such a type of a “perfect” modeler (if ever it exists), but I
think, at least, both the basic concepts and the practical aspects should be reasonably
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well known and understood by engineers, applied scientists, and practitioners who
use or intend to use models for simulating flow and transport processes in porous
and fractured media.

This book is written, on the one hand, for expert modelers in this field to make
the theoretical basis more understandable. On the other hand, it is also written for
novices and practitioners who make contact with the matter as a software user for the
first time and (hopefully) intend to improve their understanding and knowledge of
the modeling basis. As the title of the book could indicate, the book is not intended
as a user’s guide, at least in the common sense, which would mainly emphasize
software functionalities and handling. On the other hand, “real” modeling, if going
into practice, should necessarily be concrete and the modeler has to decide for
a specific software package (sometimes more than one). The software, which is
related to this book, is FEFLOW® [125].

FEFLOW is an acronym of finite element subsurface FLOW simulation system
and solves the governing flow, mass, and heat transport equations in porous
and fractured media by a multidimensional FEM for complex geometric and
parametric situations including variable fluid density, variable saturation, free
surface(s), multispecies reaction kinetics, non-isothermal flow, and multidiffusive
(thermohaline) effects. It is capable of handling a wide spectrum of problems
ranging from theoretical studies to practical real-site applications. To master all of
these supported problem classes and model options, a large degree of experience and
detailed information are needed. FEFLOW comprises theoretical work, modeling
experience, and simulation practice from a period of about 40 years (Table 1). In
this light, the main objective of this book is to share this achieved level of modeling
with all required details of the physical and numerical background with the reader.
The FEFLOW book is a theoretical textbook and a reference guidance for modeling
in one piece — in one hand. The theoretical basis of modeling is thoroughly described
but will not stand alone; it becomes really accessible and applicable with FEFLOW.
That is what I advocate and actually provide with this book: modeling that works.

The book is intended to put advanced theoretical and numerical methods into
the hands of modeling practitioners for porous and fractured media. It starts with a
more general theory for all relevant flow and transport phenomena on the basis of
the continuum approach, systematically develops the basic framework for important
classes of problems (e.g., multiphase/multispecies flow and transport phenomena,
unsaturated-saturated problems, free-surface groundwater flows, aquifer-averaged
equations), introduces finite element techniques for solving the basic 3D and 2D bal-
ance equations, in detail discusses advanced numerical algorithms for the resulting
nonlinear and linear problems (e.g., adaptive techniques, variable switching strategy,
upwinding schemes), and completes with a number of benchmarks, applications,
and exercises to illustrate the different types of problems and ways to tackle
them successfully (e.g., flow and seepage problems, unsaturated-saturated flow,
advective-diffusion transport, saltwater intrusion, geothermal and thermohaline
flow). All examples can be rerun, modified, and extended by using FEFLOW.

The chapters of the book can formally be grouped into two major parts: physical
basis and numerical basis with benchmarks and applications. The book is not meant
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Table 1 Major historical stages of FEFLOW development

Year/period Issue

1979 Birth and first manifestation [128] based on the finite element predecessor
program FINEL developed since 1973 [126, 127, 142]

1979-1986 Version 1. FORTRAN research-oriented batch program; implementations for

mainframes IBM 370, EC 1055, BESM-6 with punch card input and
hardcopy printed output; limited pre- and postprocessing; FEFLOW already
provided an extended finite element library (quadrilaterals and triangles of
linear, quadratic, or cubic type) and was able to compute 2D transient
groundwater flow and transport problems [129]. Effort in modeling
variable-density flow problems was initiated [130, 133]

1987-1990 Version 2. First interactive prototype for SUN workstations and ATARI ST
microcomputer. The code was completely rewritten from FORTRAN into C.
FEFLOW became the first fully interactive and graphics-based finite element
simulator in groundwater [134]

1990-1992 Version 3. Starting commercial development. X Window System and OSF/Motif
GUI implementation, installations on various UNIX graphics workstation
platforms (e.g., SGI, SUN, IBM, HP, Sony, DG, DEC). Extension to 3D
(1992). FEFLOW became a registered trademark (1992)

19922001 Version 4. Considerable software extension, among others: thermohaline
transport modeling (1993), 3D visualization tools and GIS interfacing
(1995), adaptive meshing and data store manager (1996), unsaturated flow
modeling (1997), MS Windows 95/NT installation (1997), IFM
programming interface (1998), and integration of parameter estimator PEST
and nonlinear dispersion (2000). In the extensions of the code
object-oriented programming with C++ became increasingly present

2002-2009 Version 5. Further advances: discrete feature elements and extended possibilities
for unsaturated flow (2002); fast TRIANGLE [475] mesh generator,
algebraic multigrid (SAMG) [499] equation solver (2003); multispecies
transport, reaction kinetics editor, transient pathline computations, FEFLOW
Explorer for 3D visualization and animation (2005); 64-bit technology,
variable-density multispecies multidiffusive transport, new mesh generator
GRIDBUILDER [369], scatter plots, expression editor for sink/sources
(2006); and borehole heat exchanger simulation, spline interpolation,
improved parallelization (2008)

2009-2012 Version 6. New Qt-based graphical interface replaced the classic X11 and
OSF/Motif GUI providing a modern and powerful environment for modeling
and simulation available for both MS Windows and LINUX operation
systems. GUI, data management, and part of the computational finite
element kernel were transformed to a rigorous object-oriented architecture
based on C++

2012—... Version 6.1. Completion of the new object-oriented software architecture with
Qt-based GUI. 3D sterioscopic graphics available. Improvements in parallel
computing and high performance in large data treatment and simulation

to be read from front to back. The first part can also be of interest for those
readers who wish to learn more about continuum mechanics for flow and transport
phenomena in porous and fractured media. Others could primarily be interested
in the finite element method with the embodied numerical algorithms. However,
I assume most readers will start up with a software play and will hopefully be more
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interested in the basics later on (as the inductive way of learning — “from the surface
into the ground”). To support this approach, I endeavor to present the subject in a
complete and unified manner. At the beginning of the book, the preliminary chapter
will summarize all important notations, definitions, and fundamental algebra used
throughout the text.

I hope the book will be useful for both students and practitioners in engineering
and geosciences as well as in other fields where porous-media flow dynamics and
computational methods are of specific concern. I suppose that the reader already
possesses (or approaches) an advanced degree in engineering or applied sciences
and has an interest in geohydrodynamic flow modeling. I assume that the reader is
somewhat versed in physical/mechanical principles and numerical mathematics.

Berlin, Germany Hans-Jorg G. Diersch
March 2013
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