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Preface

During the last decade, life sciences have experienced a major shift from analytical
to integrative approaches that can be globally defined as Systems Biology. In this

overall new landscape, the importance of complex systems and whole-system

approaches has become paramount.

The volume that you have in your hands represents the collective effort of a

group of dedicated and accomplished researchers in the nascent field of systems

biology. Although a rather recent renaissant research endeavor, systems biology

has a long ancestry that goes back as far as Newton, Leibniz, Mendel, Poincaré,

Bernard, Wiener, and von Bertalanffy, amongst many others. The roots are not only

strong but diverse; they encompass mathematics, computer science, physiology,

genetics, engineering, and biology.

Cells, organisms, and ecosystems consist of a large number of usually nonlinearly

interacting parts that exhibit complex behavior while exchanging matter and energy

with their environment. Systems biology represents a holistic approach for analyses

of structural and functional interactions between components rather than individual

elements. Vast data gathering from -omics technologies (i.e., gen-, transcript-, prote-,

and metabol-omics), together with the growing capability of generating computa-

tional models, have allowed for a massive integration and interpretation of new

information. Noninvasive imaging technologies used together with intracellular

probes are increasing our ability to monitor the spatiotemporal dynamics of cellular,

metabolic, and signaling processes in living systems. As such, systems biology can

integrate multiple spatial and temporal scales and has the potential to allow new

insights into fundamental mechanisms involved in, e.g., human health and disease.

Cellular mass–energy transformations comprise networks ofmetabolic and trans-

port processes represented by the metabolome and fluxome, which account for the

complete set of metabolites and fluxes in a cell. The information-carrying networks

include the genome, transcriptome, and proteome that represent the whole set of

genes, transcripts, and proteins, respectively, present in a cell. Signaling networks

mediate between the genome–transcriptome–proteome and metabolome–fluxome

and, as such, play the crucial role of influencing the unfolding of cell function in

space and time.
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Network is a central concept to systems biology. The study of network

properties, and how these control the behavior of cells and organisms, constitutes

a main focus of systems biology. A major unsolved biological problem is to

understand how a cell works and what goes wrong in pathology. However, in

order to achieve this goal we need to unravel how the mass–energy and information

networks of the cell interact with each other while being modulated (activated or

repressed) by signaling networks to produce a certain phenotype or (patho)physio-

logical response. This novel perspective constitutes a distinctive feature of this

volume, thus allowing it to differ from previously published books on systems

biology.

If information is organized data (and we have a plethora), knowledge organized
information, and wisdom organized knowledge, then systems biology is at the

interphase between information and knowledge. We are learning to think and act

systemically, to organize catalogs of data into meaningful information, and to distil

knowledge from that learning process. To what kind of new wisdom is this

emerging knowledge leading us? Although we are far from being there yet, a few

lessons have been learned along the way.

Certainly, life is more complex and far-reaching than our genes, at least by the

numbers. This is one of the first lessons gleaned from sequencing the genome of

species with diverse lineage and evolutionary paths: the number of genes and core

proteomes does not correlate with their apparent complexity. For example, the basic

proteome of the human genome is not much larger than that of the fly and the worm,

but human complexity is. Therefore, where does complexity lie? If diversity and

number of functions cannot be directly connected to genes, then we have at least

two possibilities. One is that genes are subjected to some combinatorial process that

elevates exponentially their numbers (e.g., by alternative splicing), coding diver-

sity, and functional outcomes. Another is the spatiotemporal unfolding of gene

expression that, in interaction with the environment, modifies and is modified in a

combinatorial manner to give rise to multiple functions. The unfolding in space and

time of gene expression would proceed as presciently suggested by the philosopher-

scientist Evelyn Fox Keller who wrote, right at the turn of this century, these words

referring to developmental genetics:

. . .we could describe the fertilized egg as a massively parallel and multilayered processor in

which both programs (or networks) and data are distributed throughout the cell. The roles of

data and program here are relative, for what counts as data for one program is often the

output of a second program, and the output of the first is data for yet another program, or

even for the very program that provided its own initial data. For some developmental

stages, the DNA might be seen as encoding programs or switches that process the data

provided by gradients of transcription activators. Or, alternatively, one might say that DNA

sequences provide data for the machinery of transcription activation (some of which is

acquired directly from the cytoplasm of the egg). In later developmental stages, the

products of transcription serve as data for splicing machines, translation machines, and

so on. In turn, the output from these processes make up the very machinery or programs

needed to process the data in the first place.

More than a decade later we could translate these ideas into the more precise

concept about iteratively interacting networks of mass–energy, information, and

vi Preface



signaling, which is precisely the subject of this book. A basic principle of living

systems is worth noting at this point: unicellular or multicellular organisms make

themselves. This essential defining property of living systems, in general, demands

a circular causality in which these different networks are both input and output data,

i.e., they provide metabolite precursors, second messengers, and transcriptional

factors, and they are supplied with substrates, effectors, and signals—as suggested

by Fox Keller’s quotation. In these circular loops lies the self-determination of the

living, and from their nonlinear dynamics involving feed-back and feed-forward

autocatalysis and other interactions, with their potential for self-organization and

emergent novelties, results the diversity and distinctiveness of life. According to

this perspective then, we should probably look much more into the dynamics of

how these different networks evolve and interact in time and space in order to find

the unique complexity of yeast, mice, flies, worm, or humans.

The book comprises 13 chapters: the first two introductory and the remaining

ones organized in four blocks devoted to the systems biology of signaling networks,

cellular structures and fluxes, organ function, and microorganisms.

Chapter 1 explores the historical roots of the twenty-first century approach to

systems biology tracing from its origins in dynamics and the invention of differen-

tial calculus, physiology, self-organized systems, biochemistry, bioenergetics, and

molecular biology to the currently accepted networks approach. Chapter 2 gives an

overview of the three types of networks involved in the interactive unfolding of the

spatiotemporal organization of living systems: mass–energy, information, and

signaling. Chapter 3 describes a quantitative approach to signaling from the per-

spective of metabolic control analysis. Chapter 4 addresses the novel regulatory

features bestowed by microRNAs to the mass–energy transducing networks.

Chapter 5 analyzes (from a combined experimental–computational approach) the

energetic and redox behavior of mitochondrial networks, along with the signaling

role of reactive oxygen species. Chapter 6 highlights the role of adenylate kinase in

metabolic AMP-dependent signaling involved in cellular sensing of energetic status

and the response to stress. Chapters 7–9 address from different viewpoints the

systems biology of the organization in space and time of cellular macromolecular

structures and its impact on fluxes through mass–energy networks. Chapters 10 and

11 describe systems organization across and between different temporal and spatial

scales from the molecular to the organ levels, namely, as applied to the heart.

Chapters 12 and 13 approach the systems biology of network organization from two

different angles; in the case of yeast the overall temporal organization of

mass–energy, information, and signaling networks exhibited by this unicellular

eukaryote in self-synchronized chemostat cultures is presented and analyzed, as

the sole model example of in vivo deconvolution of the time structure of a living

system at present available, whereas Chap. 13 reviews systems biology approaches

as applied to the engineering of mass–energy transforming networks.

Miguel A. Aon

Valdur Saks

Uwe Schlattner
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Chapter 1

From Physiology, Genomes, Systems, and

Self-Organization to Systems Biology: The

Historical Roots of a Twenty-First Century

Approach to Complexity

M.A. Aon, D. Lloyd, and V. Saks

Abstract Systems Biology represents a new paradigm aiming at a whole organism-

level understanding of biological phenomena, emphasizing interconnections and

functional interrelationships rather than component parts. Historically, the roots of

Systems Biology are multiple and of a diverse nature, comprising theoretical and

conceptual developments, mathematical and modeling tools, and comprehensive

analytical methodologies aimed at listing molecular components.

As a systemic approach, modern Systems Biology is deeply rooted in Integrative

Physiology from which it inherits two big foundational principles: (1) a

non-reductionist, integrative, view and (2) the capability of defining the context

within which genes and their mutations will find meaning.

1.1 From Integrative Physiology to Systems Biology

Yet, biological questions do not end in the gene at all: they start there. (Ball 2004)

(. . .) physiology, or whatever we wish to call that part of the science of the logic of life that
deals with bodily function and mechanism, will not only continue to exist as an identifiable

body of knowledge: it will be indispensable to the proper interpretation of molecular

biology itself. (Noble and Boyd 1993)
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The French physiologist Claude Bernard in his classical: “L’introduction a

l’étude de la médicine expérimentale” (1865) stated that the control of the environ-

ment in which molecules function is at least as important as the identification of the

organic molecules themselves, if not more. In an incisive essay, published almost

20 years ago, Noble and Boyd (1993) put forward the following three aims with

which Physiology should be concerned, beyond merely determining the

mechanisms of living systems: (1) integrative questions of order and control;

(2) self-organization, in order to link how such order may have emerged; and

(3) make this challenge exciting and possible. This is precisely what has happened,

and in the meantime the emergence of System Biology emphasizes interconnections

and relationships rather than component parts.

To describe a biological system we need to know the structure, the pattern of

organization, and the function (Capra 1996; Kitano 2002a). The first refers to a

catalog of individual components (e.g., proteins, genes, transcriptional factors), the

second insert as to how the components are wired or linked between them (e.g.,

topological relationships, feedbacks), and third how the ensemble works (e.g.,

functional interrelationships, fluxes, response to stimuli, growth, division).

The analytical phase of biology has led to a detailed picture of the biochemistry

of living systems and produced wiring diagrams connecting chemical components

and processes such as metabolic, signaling, and genetic regulatory pathways.

Integration of those processes to understand properties arising from their interaction

(e.g., robustness, resilience, adaptation) and ensuing dynamics from collective

behavior have become a main focus of Systems Biology(Noble 2006; Saks

et al. 2009).

Systems Biology started to emerge as a distinct field with the advent of high

throughput, -omics technologies, i.e., gen-, transcript-, prote-, and metabol-omics.

Massive data gathering from -omics technologies, together with the capability for

generating computational models, have made possible the massive integration and

interpretation of information. High throughput technologies combined with the

growing facility for constructing mathematical models of complicated systems

constitute the core of Systems Biology. As such, Systems Biology has the potential

to allow us gaining insights into not only the fundamental nature of health and

disease but also with their control and regulation.

1.2 Dynamics, the Invention of Calculus, and

the Impossibility of Prediction

Newton is considered the inventor of the science of dynamics, and he shares with

Leibniz the invention of differential calculus (Gleick 2003; Mitchell 2009). Born

the year after Galileo—who had launched the scientific revolution—died, Newton

introduced the laws of motion that laid out the foundations of dynamics. These

laws—constant motion, inertial mass, and equal and opposite forces—that apply to

4 M.A. Aon et al.



objects on earth and in heavens as well, gave rise to the notion of a “clockwork

universe.” This led Laplace to assert that given Newton’s laws and the current

position and velocity of every particle in the universe, it would be possible to

predict everything for all time.

Poincaré, one of the most influential figures in the development of the modern field

of dynamical systems theory, described a sensitive dependence to initial conditions in

dealing with the “three body problem”—the motion of a third planet orbiting in the

gravitational field of two massive planets (Poincare 1892). This finding rendered

prediction impossible from knowledge of the situation at an initial moment to deter-

mine the situation at a succeeding moment. Otherwise stated: “. . .even if we knew the

laws ofmotion perfectly, two different sets of initial conditions. . .even if they differ in
a minuscule way, can sometimes produce greatly different results in the subsequent

motion of the system” (Mitchell 2009). The discovery of chaos in two metaphorical

models applied to meteorology (Lorenz 1963) and population dynamics (May 1974),

and two different mathematical approaches—differential continuous and difference

discrete equations, respectively—[see (Gleick 1988) and (May 2001) for historical

accounts] introduced the notion that irregular dynamic behavior can be produced from

purely deterministic equations. Thus, the intrinsic dynamics of a system can produce

chaotic behavior independently of external noise. The existence of chaotic behavior

with its extreme sensitivity to initial conditions limits long-term predictability in the

real world.

The power of using mathematical modeling based on differential calculus was

shown in two papers published in 1952 by Turing and Hodgkin & Huxley (Hodgkin

and Huxley 1952; Turing 1952). Turing employed a theoretical system of nonlinear

differential equations representing reaction-diffusion of chemical species

(“morphogens” because he was trying to simulate morphogenesis). With this

system Turing attempted to simulate symmetry breaking, or the appearance of

spatial structures, from an initially homogeneous situation. This class of “concep-

tual modeling” contrasts with the approach adopted by Hodgkin and Huxley (1952)

in which they modeled electrical propagation from their own experimental data

obtained in a giant nerve fiber to account for conduction and excitation in quantita-

tive terms. The “mechanistic modeling” approach of Hodgkin and Huxley is an

earlier predecessor of the experimental–computational synergy described in the

present book. These two works had a long-lasting influence in the field of mathe-

matical modeling applied to biological systems.

1.3 From Multiple Interacting Elements to

Self-Organization

Systems Biology aims at “system-level understanding of biological systems”

(Kitano 2002b). It represents an approach to unravel interrelations between

components in “multi-scale dynamic complex systems formed by interacting

macromolecules and metabolites, cells, organs, and organisms” (Vidal 2009).

1 From Physiology, Genomes, Systems, and Self-Organization to Systems. . . 5



One of the fundamental problems addressed by Systems Biology is about the

relation between the whole and its component parts in a system. This problem,

that pervades the history of “systems thinking” in biology (Haken 1978; Nicolis and

Prigogine 1977; Von Bertalanffy 1950), begs the central question of how macro-

scopic behavior arises from the interaction between the elementary components of a

system. It represents a connecting thread that different generations of scientists

have formulated and attempted to solve in their own conceptual and methodological

ways with the technologies available at the time (Junker 2008; Skyttner 2007;

Yates 1987).

The notion that variation in any element affects all the others bringing about

changes in the whole system is one of the foundations of systemic thinking.

However, interactions in a biological system are directed and selective: this result

in organization obeying certain spatial and temporal constraints. For example, in

cellular systems molecular components exist either individually or as macromolec-

ular associations or entire structures such as cytoskeleton, membranes, or

organelles. Interactions are at different degrees of organization and can be

visualized at structural or morphological levels assessed on molecular or macro-

scopic scales. However, biological interactions are not random and in organized

systems they follow certain topological properties, i.e., more or less and preferen-

tially connected to each other. For example, molecular–macromolecular functional

interactions are ruled by thermodynamics and stereo-specificity. Finally, function

in biological systems is a dynamic process resulting from interactions between

structurally arranged components under defined topological configurations.

Dynamic organization is the realm where complexity manifests as a key trait of

biological systems. As a matter of fact, biological systems are complex because

they exhibit nontrivial emergent and self-organizing behaviors (Mitchell 2009).

Emergent, self-organized behavior results in macroscopic structures that can be

either permanent (e.g., cytoskeleton) or transient (e.g., Ca2+ waves), and have

functional consequences. Indeed, macroscopically self-organized structures are

dissipative [“dissipative structures”: (Nicolis and Prigogine 1977)], i.e., they are

maintained by a continuous flow of matter and energy. Dissipative structures

emerge as complexity increases from cells to organisms and ecosystems that are

thermodynamically open, thus subjected to a constant flux of exchange of matter

(e.g., substrates in cells) and energy (e.g., sunlight in ecosystems such as forests) far

from thermodynamic equilibrium. Therefore, emergent macroscopic properties do

not result merely from static structures, but rather from dynamic interactions

occurring both within the system and between the system and its environment

(Jantsch 1980).

A remarkable example of the latter is given by the adaptation of an organism’s

behavior to its environment that depends upon biological rhythm generation. The

role of biological clocks in adapting cyclic physiology to geophysical time was

highlighted by Sweeney and Hastings (1960). Timing exerted by oscillatory

mechanisms is foundational of autonomous periodicity, playing a pervasive role

in the timekeeping and coordination of biological rhythms (Glass 2001; Lloyd

1992). Winfree (1967) pioneered the analysis of synchronization among coupled

6 M.A. Aon et al.



oscillators in a network, later refined by Kuramoto (1984) [reviewed in (Strogatz

2003)].Considering idealized systems of nearly identical weakly coupled sinusoidal

oscillators, Winfree found that below a certain threshold of coupling, each oscilla-

tor runs at its own frequency, thus behaving incoherently until a further increase in

coupling overcomes the threshold for synchronization (Winfree 1967, 2002). This

synchronization event was characterized as the analog of a phase transition, reveal-

ing an insightful connection between nonlinear dynamics and statistical physics

(Strogatz 2003).

1.4 Dynamics in Developing Systems

Feedback is a prominent source of nonlinear behavior, and biological systems

exhibit both negative and positive types of feedback. The central importance of

negative feedback as a control device in biological systems was formulated by

Wiener (1948). The discovery of negative feedback devices in a variety of

biological systems revealed the universality and simplicity of this control mecha-

nism, whereby a process generates conditions which discourage the continuation of

that process. End-product inhibition [later renamed “allosteric” inhibition by

Monod and Jacob (1961)] is a prominent example of the latter; Umbarger (1956)

and Pardee and Yates (1956) showed that the end product in the biosynthesis of

isoleucine or pyrimidine inhibited the pathway. Feedback control was highlighted

as a mechanism of avoiding behavioral extremes, echoing the concept of constancy

of the milieu intérieur by Claude Bernard [1865; 1927 translation by Green

(Bernard 1927)] and Walter Cannon’s (1932) notion of homeostasis. Long before

the discovery of feedback inhibition, Max Delbruck had introduced a mathematical

model of mutually inhibiting chemical reactions (Delbruck 1949). By such a system

of cross-feedback, two independent metabolic pathways can switch between stable

steady states under unaltered environmental conditions or as a response to the

stimulus of transient perturbations.

Positive feedbacks like autocatalysis are also ubiquitous in biology; their

importance as a source of instability giving rise to bifurcation and nonlinear

behavior was put forward by Turing (1952) in the context of morphogenesis.

Turing’s pioneer work demonstrated that an autocatalytic reaction occurring in

an initially uniform or isotropic field, when coupled to the transport of matter

through diffusion, can produce symmetry breaking visualized as spatial patterns.

This work was ground breaking because it explained that stable spatial

structures could arise—without assuming a preexistent pattern—through self-

organization arising from bifurcations in the dynamics. This work opened the

way to a reaction-diffusion theory of pattern formation (Meinhardt 1982) rather

than its original goal “to account for the main phenomena of morphogenesis”

(Turing 1952). Later on, Wolpert (1969) proposed “positional information” to

account for the mechanisms by which cells seem to know where they are. In

order to differentiate, cells interpret their position according to the concentration

1 From Physiology, Genomes, Systems, and Self-Organization to Systems. . . 7



of a morphogen in a gradient. Wolpert’s concept of positional information

became important thanks to studies of Nusslein-Volhard and Wieshaus when

they first identified the genes required for the formation of the body plan of the

Drosophila embryo, and then showed how these genes were involved in mor-

phogenesis. A main finding was that even before fertilization a pattern, formed

by the differential distribution of specific proteins and mRNA molecules, is

already established. As a consequence of differential rates of transcription,

gradients in the concentrations of the new mRNA molecules and proteins are

generated. Position along the antero-posterior axis of the Drosophila body plan

is determined by a cascade of events that is initiated by the initial localization of

bicoid mRNA or with the gradient of bicoid protein to which that localization

gives rise (Driever and Nusslein-Volhard 1988a). These authors stated that the

bicoid protein has the properties of a morphogen that autonomously determines

position in the anterior half of the embryo (Driever and Nusslein-Volhard

1988b). This discovery enabled the combination of three keywords: diffusion,

gradient, and morphogen since the distribution of the bicoid protein—a morpho-

gen—is made at a source and both diffuses and is broken down, thereby

generating a gradient.

Another big achievement in the field of developmental dynamics was given by

the realization that the mammalian genome does not undergo irreversible change in

the course of development. Initially, Gurdon (Gurdon et al. 1979) showed that at

least in frogs the nucleus of a fully differentiated cell can be reprogrammed when

transferred into an enucleated zygote. The sheep, Dolly, was the first mammal to be

cloned by transferring the nucleus of an adult cell into an enucleated oocyte of

another of the same species (Wilmut et al. 1997).

1.5 Metabolism—Epigenetics—Genetics: Waddington

and the Epigenetic Landscape

Life requires both nucleic acid and a metabolic system for self-maintenance. The

emergence of living systems as we know them could have come about as a result of

a symbiotic fusion between a rapidly changing set of self-reproducing but error

prone nucleic acid molecules and a more conservative autocatalytic metabolic

system specializing in self-maintenance [Dyson (1985), quoted by Fox Keller

(2000)]. Along this line of reasoning, early on Waddington (1957) had already

introduced the concept of “epigenetic landscape” to describe cellular differentiation

beyond genetic inheritance. Metaphorically, the “epigenetic landscape” can be

visualized as “a mountainous terrain whose shape is determined by . . . the influence
of genes. . .The valleys represent possible pathways along which the development

of an organism could in principle take place. A ball rolls down the landscape, and

the path it follows indicates the actual developmental process in a particular

embryo” (Saunders and Kubal 1989). The epigenetic landscape illustrates the fact

that isolated genes will have little effect on the shape of the landscape, which will
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depend more on the underlying dense gene interactive network. The outcome of a

developmental process (represented by the rolling ball) depends on its dynamic

trajectory, and its path through the different valleys (i.e., differentiation states) can

arise from bifurcations. Morgan (1934) had previously noted that different groups

of genes will come into action as development proceeds.

Waddington (1957) stressed the important implications of time in biology,

distinguishing the biochemical (metabolic), developmental (epigenetic), and evo-

lutionary, as the three realms in which time plays a central role in biology. Later,

Goodwin (1963) adopts the metabolic, epigenetic, and genetic systems as basic

categories for defining a system (e.g., cell) with respect to its environment.

The concept of epigenesis is a precursor of what is now known as “epigenetics,”

a whole new research field. Historically, the term “epigenetics” was used to

describe events that could not be explained by genetic principles. Originally,

Waddington defined epigenetics as “the branch of biology which studies the causal

interactions between genes and their products, which bring the phenotype into

being” [Waddington (1942), quoted in Goldberg et al. (2007)]. Consequently, a

phenotypic effect or an organism following a developmental path is not only

brought about by genetic variation but also by the environment.

Today, we know that in addition to primary DNA sequence information, much of

the information regarding when and where to initiate transcription is stored in

covalent modifications of DNA and its associated proteins. Modifications along

the chromatin involve DNA cytosine methylation and hydroxymethylation, and

acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation of the

lysine and/or arginine residues of histones are thought to determine the genome

accessibility to transcriptional machinery (Lu and Thompson 2012). Recent data

indicate that information about a cell’s metabolic state is also integrated into the

regulation of epigenetics and transcription; cells constantly adjust their metabolic

state in response to extracellular signaling and/or nutrient availability. One of the

challenges is to visualize how levels of metabolites that control chromatin modifiers

in space and time, translate a dynamic metabolic state into a histone map (Katada

et al. 2012).

1.6 The Core of the Living: Biochemistry and Genomes

The elucidation of the basic biochemistry of living systems and the recognition of

its similarity across kingdoms and phyla represent major achievements of the

twentieth century research in biology. The description of metabolic pathways,

mechanisms of energy transduction and of genetic transmission, replication, regu-

lation, and expression stand out as main ones.

The pathways utilized by cells to break down carbohydrates and other substrates

like lipids, roughly divided into glycolysis, respiration, and β-oxidation, were
already known to biochemists by the 1950s. Respiration includes the complete

breakdown of the two carbon unit acetyl-CoA into carbon dioxide—discovered by
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Krebs (1953; Krebs and Johnson 1937)—and the transfer of electron from NADH

to molecular O2 through the respiratory chain to produce water—pioneered by the

discovery of cytochromes that changed their spectroscopic properties in the pres-

ence of O2 (Keilin 1929).

Lipmann (1941) proposed that ATP is the universal carrier of biological energy

when the phosphate bond energy released from its hydrolysis is used to drive most

biochemical reactions that require energy. However, missing from this picture was

the regeneration of ATP that involves the phosphorylation of ADP with energy

provided by the oxidative breakdown of foodstuffs, hence “oxidative phosphoryla-

tion.” This riddle was solved by the “chemiosmotic hypothesis.” As postulated by

Mitchell (1961), the “chemiosmotic hypothesis” proposed that the energy released

by respiration is used by the respiratory enzymes to transport protons across the

mitochondrial membranes building up a proton motive force (pmf) composed of an

electric potential and an osmotic component (Mitchell 1961). This pmf is used by

the ATP synthase to phosphorylate ADP [see (Weber 2005), for a useful historical

and epistemological account]. The system is self-regulated by the availability of

ADP (Chance and Williams 1956).

The fact that DNA is the carrier of biological specificity in bacteria was

demonstrated directly by Avery et al. (1944) and Hershey and Chase (1952).

Watson and Crick (1953) introduced the double helix model of the DNA thus

providing a mechanism for self-replication and fidelity; complementary base-

pairing ensured both replication and conservation. However, “indications that

the cell was involved in the maintenance of genetic stability had begun to emerge

from studies of radiation damage in bacteria and bacterial viruses (phages),

especially from the discovery that certain kinds of damage could be spontaneously

reversed” (Fox Keller 2000).

The association of the sequence of bases in the DNA and a protein came after the

direct demonstration of the synthesis of a polymer string of the amino acid

phenylalanine from a uniform stretch of nucleic acid consisting of a single nucleo-

tide (uridine) (Nirenberg and Matthaei 1961). The central dogma was born; “DNA

makes RNA, RNA makes protein, and proteins make us” (Crick 1957).

In 1961, Jacob and Monod introduced the concept of genetic program, extending
their success, and in analyzing the operon as a mechanism of regulation of enzyme

synthesis in Escherichia coli (Jacob and Monod 1961). This provided a more

general description of the role of genes in embryonic development (Fox Keller

2002). These investigations led to the proposal of “structural” and “regulatory”

genes thereby locating in the genome the program as a means of controlling its own

execution, i.e., structural genes and regulatory elements are coordinated by the

product of a regulatory gene. At present, the genome sequencing of more than

350 species, including Homo sapiens, and the informational content of genes and

proteins systematized in databases constitute a fertile field for data mining and the

ground work for exploring genetic interrelationships within and between species

and their evolutionary meaning.
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1.7 Scaling: A Fundamental Concept in Systems Biology

Size is a crucial biological property. As the size and complexity of a biological

system increases, the relationship among its different components and processes

must be adjusted over a wide a range of scales so that the organism can continue to

function (Brown et al. 2000). Otherwise stated, the organism must remain self-

similar. Self-similarity is a main attribute of fractals—a concept introduced by

Mandelbrot (1977)—therefore the relationships among variables from different

processes can be described by a fractal dimension or a power function. Geometri-

cally, fractals can be regarded as structures exhibiting scaling in space: this is

because their mass as a function of size, or their density as a function of distance,

behave as a power law. If a variable changes according to a power law when the

parameter on which it depends is growing linearly, we say it scales, and the

corresponding exponent is called scaling exponent, b:

Y ¼ YoM
b (1.1)

where Y can be a dependent variable, e.g., metabolic rate; M is some independent

variable, e.g., body mass, while Yo is a normalization constant (Brown et al. 2000).

If b ¼ 1, the relationship represented by (1.1) is called isometric, whereas when

b 6¼ 1 is called allometric—a term coined by Julian Huxley (1932). An important

allometric relationship in biology is the existing between metabolic rate and body

mass, first demonstrated by Kleiber (1932). Instead of the expected b ¼ 2/3

according to the surface law (i.e., surface to volume area), Kleiber showed that

b ¼ ¾ (i.e., 0.75 instead of 0.67), meaning that the amount of calories dissipated by

a warm-blooded animal each day scales to the ¾ of its mass (Whitfield 2006).

Scaling not only applies to spatial organization but to temporal organization as

well. The dynamics of a biological system—visualized through time series of its

variables (e.g., membrane potential, metabolites concentration)—exhibits fractal

characteristics. In this case, short-term fluctuations are intrinsically related to the

long-term trends through statistical fractals. On these bases, we can say that scaling

reflects the interaction between the multiple levels of organization exhibited by

cells and organisms, thus linking the spatial and temporal aspects of their organiza-

tion. The discovery of chaotic dynamics by Lorenz (1963) and criticality in phase

transitions by Wilson (1983) enabled the realization that scaling is a common

fundamental and foundational concept of chaos and criticality as it is with fractals.

1.8 Networks

The concept of networks is basic for understanding biological organization. Specifi-

cally, networks enable address of the problems of collective behavior and large-scale

response to stimuli and perturbations exhibited by biological systems (Alon 2007;

Barabasi and Oltvai 2004). Scaling and topological and dynamical organization of
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networks are intimately related concepts. Networks exhibit scale-free topologies and

dynamics. Topologically, networks are scale free because most of the nodes in a

network will have only a few links and these will be held together by a small number

of nodes exhibiting high connectivity (Barabasi 2003). Dynamically, the scale-free

character of networks manifests as diverse frequencies across multiple and highly

dependent temporal scales (Aon et al. 2012; Lloyd et al. 2012).

The present topological view of networks evolved from multiply and randomly

interacting elements in a system (Erdos and Renyi 1960) to “small worlds” (Watts

and Strogatz 1998) to “scale-free” networks (Barabasi 2003). From the classical

work of Erdos and Renyi based on random graphs, in which every node is linked to

other node irrespective of their nature and connectivity, the “small world” concept

introduced the notion that real networks as disparate as the neural network of the

worm Caenorhabditis elegans, or those of power grids exhibit high clustering (i.e.,

densely connected subgraphs) and short path lengths. Barabasi and collaborators

presented the view that nodes in a network are held together by a small number of

nodes exhibiting high connectivity, rather than most of the nodes having the same

number of links as in “random” networks (Barabasi and Albert 1999; Barabasi and

Oltvai 2004). The “scale-free” organization of networks expresses the fact that the

ratio of highly connected nodes or “hubs” to weakly connected ones remains the

same irrespective of the total number of links in the network (Albert and Barabasi

2002; Helms 2008). Mechanistically, it has been proposed that the scale-free

topology of networks is based on growth and preferential attachment (Albert and

Barabasi 2002; Barabasi 2003).

The networks approach was introduced into biochemistry as metabolic control

analysis (MCA). Independently developed in the second half of the past century by

Kacser and Burns (1973) and Heinrich and Rapoport (1974), MCA represents an

experimental approach with mathematical bases founded on the kinetics of enzy-

matic and transport networks in cells and tissues. MCA deals with networks of

reactions of any topology and complexity to quantifying the control exerted by

each process on systemic and local levels (Fell 1997; Westerhoff et al. 2009).

Metabolic flux analysis (MFA), also called flux balance analysis, represents another

methodological approach to the study of reaction networks (Savinell and Palsson

1992a, b). Developed in the 1990s MFA is based on stoichiometric modeling and

accounts for mass–energy relationships among metabolic network components.

1.9 Systems Biology: A Twenty First Century

Approach to Complexity

Our potential to address and solve increasingly complex problems in fundamental

and applied research has expanded enormously. The following developments

underscore our possibilities to address increasingly complex behavior in complex

systems (Aon et al. 2012; Cortassa et al. 2012):
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• The ability and the computational power to mathematically model very compli-

cated systems, and analyze their control and regulation, as well as predict

changes in qualitative behavior

• An arsenal of theoretical tools (each with its own plethora of methods)

• High throughput technologies that allow simultaneous monitoring of an enor-

mous number of variables

• Automation and accessibility of databases by newly developing methods of

bioinformatics

• Powerful imaging methods and online monitoring systems that provide the

means of studying living systems at high spatial and temporal resolution of

several variables simultaneously

• The possibility of employing detailed enough bottom-up mathematical models

that may help rationalize the use of key integrative variables, such as the

membrane potential of cardiomyocytes or neurons, in top-down conceptual

models with a few state variables.

A Complex Systems Approach integrating Systems Biology with nonlinear

dynamic systems analysis, using the concepts and analytical tools of chaos, fractals,

critical phenomena, and networks has been proposed (Aon and Cortassa 2009). This

approximation is needed because the focus of the integrative physiological

approach applied to biology and medicine is shifting toward studies of the

properties of complex networks of reactions and processes of different nature,

and how these control the behavior of cells and organisms in health and disease

(Cortassa et al. 2012; Lloyd and Rossi 2008; Saks et al. 2007, 2012).

The mass–energy transformation networks, comprising metabolic and trans-

port processes (e.g., metabolic pathways, electrochemical gradients), give rise to

the metabolome and fluxome, which account for the whole set of metabolites and

fluxes, respectively, sustained by the cell. The information-carrying networks

include the genome, transcriptome, and proteome, which account for the whole

set of genes, transcripts, and proteins, respectively, possessed by the cell.

Signaling networks modulate (activating or repressing) the interactions between

information and mass–energy transducing networks, thus mediating between the

genome–transcriptome–proteome and metabolome–fluxome. As such, signaling

networks pervade the whole cellular network playing the crucial role of

influencing the unfolding of its function in space and time. The output of

signaling networks consists of concentration levels of intracellular metabolites

(e.g., second messengers such as cAMP, AMP, phosphoinositides, reactive

oxygen, or nitrogen species), ions, proteins or small peptides, growth factors,

and transcriptional factors.

The underlying difficulty of the question of how the mass–energy and informa-

tion networks of the cell interact with each other to produce a certain phenotype

arises from the dual role of, e.g., metabolites or transcriptional factors; they are at the
same time a result of the mass–energy or information networks while being active
components of the signaling networks that will activate or repress the networks that
produced them (see Chap. 2). The presence of these loops, in which the components
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are both cause and effect, together with their self-organizing properties, constitute

the most consistent defining trait of living systems and the source of their inherent

complexity (Cortassa et al. 2012). Indeed, it is increasingly recognized that the

regulatory state of a cell or tissue, as driven by transcription factors and signaling

pathways, can impose itself upon the dynamics of metabolic state, but the

reciprocal—the feedback of metabolic state on regulatory state—must be equally

true (Katada et al. 2012; Lu and Thompson 2012; McKnight 2010). Along this vein,

one of the main undertakings of this book is to understand how the components and

dynamics of signaling networks affect and is affected by the other cellular

mass–energy and information networks in health and disease to produce a certain

phenotype or a cellular response under defined physiological conditions.
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Chapter 2

Complex Systems Biology of Networks:

The Riddle and the Challenge

Miguel A. Aon

Abstract There is no direct relationship between metabolite, mRNA, protein,

and gene; the expression of a gene is not necessarily correlated with the abun-

dance of the corresponding protein product, and the activity of a protein may

depend on posttranslational modifications, e.g., phosphorylation, redox-modulation/

modification, and acetylation. It is believed that the diverse nature and outcomes of

networks composed of genes, transcripts, proteins, and metabolites remain an

obstacle for tracing the flux from genes to proteins in order to be able to capture

or explain developmental programs or the underlying mechanisms of a disease.

A different approach is needed to address this problem, and accordingly an alter-

native view based on the dynamic integration of three different kinds of networks,

mass–energy, information, and signaling, is proposed and developed in this chapter.

From this perspective, the spatio-temporal expression of mass–energy transforma-

tion and information-carrying networks is modulated by signaling networks

associated with fundamental cellular processes such as cell division, differentiation,

and autophagy. The dynamic network of reaction fluxes (i.e., the fluxome)

represents the ultimate integrative outcome of the whole process. This

approach—which accounts for the basic biological fact that cells and organisms

make themselves—can only be realized by networks connected by overall cyclic

topologies. Thereby, the output of mass–energy/information networks, composed

of proteins, transcriptional factors, metabolites, is at the same time input for

signaling networks which output activates or represses those same networks that

produced them.

(. . .) If the genes are “essentially the same,” what then is it that makes one organism a fly

and another a mouse, a chimp, or a human? The answer, it seems, is to be found in the

structure of gene networks—in the way in which genes are connected to other genes by the

complex regulatory mechanisms that, in their interactions, determine when and where a

particular gene will be expressed. But unlike the sequence of the genome, this regulatory
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circuitry is not fixed: it is dynamic rather than static, a structure that is itself changing over

the course of the developmental cycle. It is just this dynamic system that I am calling the

developmental program.” (Fox Keller 2000)

If regulatory state (transcription factors, signaling pathways, etc.) is accepted to control

metabolic state, is it not also unconditionally certain that metabolic state will reciprocally

control the regulatorystate itself? Understanding this reciprocity, and digging to the bottom

of it, is where the future lies (McKnight 2010)

Cell function can be visualized as the outcome resulting from the unfolding

in space and time of three different kind of interacting networks: mass–energy,

information, and signaling (Fig. 2.1). Mass–energy transformation networks
comprise metabolic and transport processes, e.g., metabolic pathways and electro-

chemical gradients, that give rise to the metabolome. Information-carrying networks
include the genome, transcriptome, and proteome, which account for the whole

set of genes, transcripts, proteins, and their posttranslational modifications,

respectively. Signaling networks, distinct in composition, dynamics, and topology,

modulate by activating or repressing the function in space and time of the

mass–energy/information networks to which they relate, e.g., metabolome, genome.

The overall outcome of this process is the phenotype represented by the fluxome,

which accounts for the whole set of fluxes sustained by a diverse range of processes

Mass-Energy transforma�on Metabolome

FLUXOME

Informa�on carrying-transforma�on 

Genome

Transcriptome

Proteome & PTMs

NETWORKS

Signaling

Fig. 2.1 The fluxome and the overall integration of mass–energy/information and signaling

networks. Signaling networks connect and modulate the mass–energy–information networks.

The fluxome represents the complete ensemble of fluxes in a cell, and as such it provides a true

dynamic picture of the phenotype because it captures, in response to the environment, the

metabolome (mass–energy) in its functional interactions with the information (genome,

transcriptome, proteome, and posttranslational modifications, PTMs) and signaling networks

(Cortassa et al. 2012). As a result of this integration between several cellular processes, the

fluxome represents a unique phenotypic signature of cells (Cascante and Marin 2008).

The double sense of the arrows denote reciprocal interactions and an overall cyclic topology and

connectivity that results in circular causality. Thus, an output from a network (metabolome, e.g.,

ROS or AMP:ATP ratio) is the input of the next network (signaling, e.g., AMPK network), which

after processing will feedback on the same network that produced the initial triggers (e.g., ROS,

AMP), thus modulating their levels.
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associated with vital cellular functions such as division, differentiation, autophagy,

apoptosis/necrosis, or the response to key environmental signals such as starva-

tion or hypoxia. As such, the fluxome provides a true dynamic picture of the

phenotype thereby constituting a unique phenotypic signature of cells (Cascante

and Marin 2008) while integrating a myriad of cellular processes. In the mouse, for

example, there are only ~600 metabolites (i.e., low-molecular-weight intermediates)

(Griffin 2006), when as there are ~10,000 proteins, and ~22,000 protein-encoding

genes (Cortassa et al. 2012). Thus, an unique advantage of fluxomics over genomics

and proteomics is that the former is based on information from metabolites,

which are far fewer than genes or proteins (Gherardini and Helmer-Citterich 2013;

Raamsdonk et al. 2001).

The riddle is schematized in Fig. 2.1 and can be summarized as follows.

Transcriptional factors, proteins, and metabolites are, at the same time, the products

of mass–energy/information networks and their modulators by participating in the

signaling networks that activate or repress the same networks that produced them.

The presence of these control loops, in which network components are both cause

and effect, together with their self-organizing properties sustained by a continuous

exchange of energy and matter with the environment, is where the riddle of the

unique complexity of the living state lies.

2.1 Signaling Networks: Connecting and Modulating

the Mass–Energy-Information Networks

Information (e.g., gene, mRNA, and protein circuits) and signaling (e.g., AMPK,

MAPK) networks can be clearly distinguished, by the following differences (Kiel

et al. 2010):

• Signaling systems operate rapidly (ms to min) whereas transcriptional responses

are slow, ranging from minutes (prokaryotes) to hours (eukaryotes)

• Subcellular localization plays an important role in signaling

• Protein structure and folding are involved in signaling (Mitrea and Kriwacki

2013); these processes are less predictable than DNA conformational changes

present in information networks

• Genetic circuits tend to be noisy because they involve fewer molecules com-

pared with signaling pathways, which usually involve larger number of molecu-

lar steps and thus tend to be less stochastic

• Amplification cascades occur in signaling thus spontaneous activation is avoided

through negative feedback regulation or duplicated triggering signal.

Time-dependent regulation is of utmost importance for cellular responses,

resulting from sudden, transient changes in environmental conditions. The earliest

cellular response to an external cue usually consists in the activation of upstream
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