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Preface

The concept of quantum fluid—a fluid whose properties are governed by the laws
of quantum mechanics—dates back to 1926, when Madelung introduced the hydro-
dynamic formulation of the Schrödinger equation. This, along with the prediction
of Bose-Einstein condensation (BEC) for a non-interacting gas made by Einstein in
1924, and the discovery of superfluidity in liquid helium, achieved independently by
Kapitza and Allen in 1937, can be considered the early milestones of this fashinating
field.

Remarkably, though the role of Bose-Einstein condensation in the superfluid be-
haviour of helium was soon recognized by London in 1938, it took seventy year
before its first direct observation. In fact, it was only in 1995 that the groups of
Cornell, Weiman, and Ketterle achieved to cool a sample of atomic gases down to
temperatures of the orders of few hundreds of nanokelvins, below the critical tem-
perature for BEC. These landmark experiments have produced a tremendous impact
in the experimental and theoretical research in the field of quantum fluids. In fact,
thanks to the fact that interacting Bose-Einstein condensates (BECs) are genuine su-
perfluids and that they can be controlled and manipulated with high precision, they
have made possible to investigate thorougly many of the manifestation of superflu-
idity, as quantized vortices, absence of viscosity, reduction of the moment of inertia,
occurrence of persistent currents, to mention a few.

Very recently, in 2006, following a pioneering proposal by Imamoglou (1996),
BEC was observed in a solid state system: polaritons in semiconductor microcavi-
ties, which are composite bosons arising from the strong coupling between excitons
and photons. Due to their very light mass, several orders of magnitude smaller than
the free electron mass, polaritons can exhibit Bose-Einstein condensation at higher
temperature and lower densities compared to atomic condensates. On the other hand,
polaritons constitute a new type of quantum fluid with specific characteristics com-
ing from its intrinsic dissipative and non-equilibrium nature.

The main objective of this book is to take a snapshot of the state of the art of this
fast moving field with a special emphasis on the hot-topics and new trends. Bringing
together the contributions of some of the most active specialists of the two areas
(atomic and polaritonic quantum fluids), we expect that this work could facilitate
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vi Preface

the exchanges and the collaborations between these two communities working on
subjects with very strong analogies. The book is organized in two distinct parts,
preceded by a general introduction; the first part is focussed on polariton quantum
fluids and the second one is dedicated to the atomic BEC.

In the introductory chapter, M. Wouters gives an overview of the physics of
the Bose-Einstein condensates of ultracold atoms and polaritons underlining their
analogies and differences. This chapter reviews the main achievements and dis-
cusses the current trends of both fields.

Chapter 2 by N.G. Berloff and J. Keeling deals with the central problem of
the universal description for the non-equilibrium polariton condensates. A spe-
cial attention is paid to the theoretical framework describing the pattern forma-
tion in such systems. Different equations characterizing various regimes of the dy-
namics of exciton-polariton condensates are reviewed: the Gross-Pitaevskii equa-
tion which models the weakly interacting condensates at equilibrium, the complex
Ginsburg-Landau equation which describes the behaviour of the systems in pres-
ence of symmetry-breaking instabilities and finally the complex Swift-Hohenberg
equation. The authors also show how these equations can be derived from a generic
laser model based on Maxwell-Bloch equations.

In Chap. 3, A. Kavokin develops a general theory for the bosonic spin trans-
port that can be applied to different condensed matter systems like indirect excitons
in coupled quantum wells and exciton-polaritons in semiconductor microcavities.
The relevance of this approach to the emerging field of Spin-optronics in which the
spin currents are carried by neutral bosonic particles is discussed and fascinating
perspectives like spin-superfluidity are addressed.

Chapters 4 and 5 are focussed on the theoretical description of the properties
of the spinor polariton condensates with a special emphasis on the occurrence of
topological excitations in these fluids. In Chap. 4 by Y.G. Rubo, a review of the spin-
dependent properties of the multi-component polariton condensates is presented.
Special attention is devoted to describe the effect of applied magnetic fields on the
polarization properties of the condensate; fractional vortices are discussed and the
spin texture of the half-vortices in presence of the longitudinal-transverse splitting
is discussed in detail. In Chap. 5, H. Flayac, D.D. Solnyshkov and G. Malpuech first
discuss in detail the specific behaviour of a flowing spinor polariton allowing for
the generation of a new kind of topological excitations: the oblique half solitons.
In the second part of the chapter the authors show that these systems are extremely
promising to study exotic entities analogue to the astrophysical black holes and
wormholes.

Chapters 6 and 7 deal with experimental studies of hydrodynamics of polari-
ton quantum fluids. In Chap. 6, B. Deveaud, G. Nardin, G. Grosso and Y. Léger
describe the behaviour of a flowing polariton quantum fluid perturbed by the in-
teraction with a potential barrier: this experimental configuration is well suited to
investigate the onset of quantum turbulence in a quantum fluid. The variations of
the phase and density of the fluid are measured with a picosecond resolution al-
lowing for the observation of the nucleation of quantized vortices and the decay of
dark solitons into vortex streets. In Chap. 7, D. Ballarini, A. Amo, M. de Giorgi
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and D. Sanvitto review the first observations of superfluidity in a polariton fluid:
the most relevant manifestations of the superfluid behaviour of these systems are
discussed, namely the friction-less motion with the consequent scattering suppres-
sion in the Landau picture and the establishment of persistent currents in the case
of rotating condensates. Moreover, the authors discuss the interesting regime of the
superfluidity breakdown when the polariton fluid hits a spatially extended obstacle
that can be natural or created in a controlled way by mean of well suited optical
beams. Vortex nucleation, vortex trapping as well as the formation of oblique dark
solitons are analysed in detail. In the last part of the chapter the authors show that
the strong non-linearities of the polariton systems, together with their specific prop-
agation properties can be exploited to develop a new class of optoelectronic devices
for the classical and quantum information processing.

Chapters 8 and 9 are focussed on the properties of polariton condensates confined
in low dimensional structures. In Chap. 8, N.Y. Kim, Y. Yamamoto, S. Utsunomiya,
K. Kusudo, S. Höfling and A. Forchel discuss the properties of exciton-polaritons
condensates in artificial traps and lattices geometries in various dimensions (0D,
1D and 2D). They show how coherent π -state with p-wave order in one dimen-
sional condensate array and d-orbital state in two dimensional square lattices can be
obtained. The authors point out the interest of preparing high-orbital condensates
to probe quantum phase transitions and to implement quantum emulation applica-
tions. In Chap. 9, J. Bloch reviews the recent experiments performed with polariton
condensates in low-dimensional microstructures. The propagation properties of po-
lariton condensates confined in 1D microwires, together with the possibility to ma-
nipulate and control these condensates by optical means, are discussed in detail. In
the second part of the chapter, the author shows how the study of polariton conden-
sates in fully confined geometries, obtained in single or coupled micropillars, allows
gaining a deep physical insight in the nature of interactions inside the condensate
as well as with the environment. In the final part of the chapter, the interesting per-
spectives opened by the confined polariton condensates for the implementation of
devices with new functionalities are briefly reviewed.

While the previous chapters are mainly focussed on the polariton quantum flu-
ids in GaAs-based microstructures where a cryogenic temperature (4K) is needed,
Chaps. 10 and 11 explore the possibilities opened by other materials to achieve
polariton condensates at room temperature. Chapter 10 by J. Levrat, G. Rossbach,
R. Butté and N. Grandjean presents the recent observation of the polariton conden-
sation at room temperature (340 K) in GaN-based planar microcavities and analyses
in detail the threshold of the polariton condensation phase transition as a function
of the temperature and detuning. The role of the spin-anisotropy in the polariton-
polariton interactions and its impact on the polarization properties of the conden-
sate are comprehensively discussed. In Chap. 11, F. Médard, A. Trichet, Z. Chen,
L.S. Dang and M. Richard present the recent progresses towards polariton condensa-
tion at room temperature in large band-gap nanostructures, namely ZnO nanowires.
The unusually large Rabi splitting observed in these systems allows achieving stable
polariton at room temperature, strongly decoupled from thermal fluctuations coming
from lattice vibrations. Despite this behaviour, the authors show several experimen-
tal indications of polariton quantum degeneracy at room temperature.
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Chapter 12, by F. Piazza, L.A. Collins, and A. Smerzi, opens the second part of
the book, dedicated to the properties of quantum fluids made by ultracold atoms.
In this chapter the authors discuss the dynamics of superfluid dilute Bose-Einstein
condensates in the regime where the flow velocity reaches a critical value above
which stationary currents are impossible. They present results for two- and three-
dimensional BECs in two different geometries: a torus and a waveguide configu-
ration, and also discuss the behavior of the critical current, establishing a general
criterion for the breakdown of stationary superfluid flows.

Chapters 13 and 14 are devoted to turbolence effects in atomic BECs, that are par-
ticularly appealing as quantized vortices can be directly visualized and the interac-
tion parameters can be controlled by Feshbach resonances. In Chap. 13, M. Tsubota
and K. Kasamatsu review recent important topics in quantized vortices and quan-
tum turbulence in atomic BECs, providing an overview of the dynamics of quantized
vortices, hydrodynamic instability, and quantum turbulence. In Chap. 14, V.S. Bag-
nato et al. discuss their recent observations of quantum turbolence with a condensate
of 87Rb.

In Chap. 15, Y. Castin and A. Sinatra discuss the coherence of a three-
dimensional spatially homogeneous Bose-condensed gas, initially prepared at finite
temperature and then evolving as an isolated interacting system. They review dif-
ferent theoretical approaches, as the number-conserving Bogoliubov approach that
allows to describe the system as a weakly interacting gas of quasi-particles, and the
kinetic equations describing the Beliaev-Landau processes for the quasi-particles.
They show that the variance of the condensate phase-change at long times is the sum
of a ballistic term and a diffusive term, with temperature and interaction dependent
coefficients, and discuss their scaling behaviors in the thermodynamic limit.

Chapter 16, by R.P. Smith and Z. Hadzibabic, review the role of interactions
in Bose-Einstein condensation, covering both theory and experiments. They focus
on harmonically trapped ultracold atomic gases, but also discuss how these results
relate to the uniform-system case, which may be relevant for other experimental
systems, and for theory in general. Despite the fact that the phase transition to a
Bose-Einstein condensate can occur in an ideal gas, interactions are necessary for
any system to reach thermal equilibrium and so are required for condensation to
occur in finite time. The authors discuss this point clarifying the effects of interac-
tions both on the mechanism of condensation and on the critical temperature, and
then review the conditions for measuring the equilibrium thermodynamics. They
also discuss the non-equilibrium phenomena that occur when these conditions are
controllably violated by tuning the interparticle-interaction strength.

In Chap. 17, T. Mukaiyama and M. Ueda provide an overview of theories and
experiments on the thermodynamics of Fermi gases at unitarity, where the scattering
length diverges, that is characterized by a universal behavior.

Finally, in Chap. 18, G. Barontini and H. Ott introduce the scanning elec-
tron microscopy (SEM), that represents one of the most promising techniques for
probing and manipulating ultracold atomic systems with extremely high resolu-
tion and precision. Thanks to its extremely high resolution, below 100 nm, and
to the single-atom sensitivity, the SEM method permits the observation of in-situ
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profiles of trapped Bose-Einstein condensates and of ultracold clouds in one- and
two-dimensional optical lattices. Moreover, the single lattice sites can be selectively
addressed and manipulated in order to create arbitrary patterns of occupied sites.

We hope this book will be a useful introduction to a wide audience of researchers
who wish to approach the physics of quantum fluids and be updated on the last fasci-
nating achievements in this cutting-edge research field. Last but not least, we would
like to thank all the contributors for their effort in making this project possible.

Alberto Bramati
Michele Modugno

Paris, France
Bilbao, Spain
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Chapter 1
Quantum Fluids of Exciton-Polaritons
and Ultracold Atoms

Michiel Wouters

Abstract We give an overview of the physics of quantum degenerate Bose gases of
ultracold atoms and of exciton polaritons in microcavities. The physical systems are
described and the main experimentally accessible observables are outlined. We give
a schematic overview of recent trends in both fields.

1.1 Introduction

The physics of the quantum Bose gases took off from the theoretical side, when
Einstein predicted that the bosonic statistics induces a phase transition in a nonin-
teracting gas at low temperatures, when the interparticle distance is comparable to
the de Broglie wave length [39]. Below the transition temperature, the gas enters
the Bose-Einstein (BE) condensed phase, where a macroscopic number of parti-
cles occupies the lowest momentum state, leading to the coherence of the phase
over macroscopic distances. The first physical example of this type of transition
was superfluid Helium. Due to the strong interactions between the Helium atoms
however, its theoretical description is complicate and the connection to the ideal
Bose gas is not so direct. Still the macroscopic phase coherence and superfluidity
are not qualitatively altered by the strength of interactions, so that the ideal Bose gas
remains conceptually a good starting point to understand the remarkable behavior
of superfluid Helium. It was in this context that Bogoliubov analyzed the effect of
weak interactions and Pitaevskii constructed the classical theory for inhomogeneous
Bose-Einstein condensates.

A physical realization of the weakly interacting Bose gas was lacking for many
years. The condition of weak interactions nR3

e � 1 is only satisfied when the in-
terparticle distance (n−1/3) is much larger than the range of the interactions (Re).
No gases satisfy this condition at thermodynamic equilibrium. Several ideas were
pursued to create metastable quantum gases that are in the weakly interacting limit.
Both excitons in semiconductors and very dilute atomic gases were conceived to
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be good candidates to achieve this goal. The first successful realization was ob-
tained with dilute atoms in 1995 [13]. The condensation of excitons on the other
hand proved to be much harder due to the complicated solid state environment. By
coupling the exciton to a cavity photon, polariton quasi-particles are created. Be-
cause of their much lighter mass as compared to the exciton, they are much easier to
condense in the ground state. Unambiguous proof hereof was obtained in 2006 [28].

The ultracold dilute atomic gases have turned out a very flexible system, and
can be used as emulators for a wide variety of quantum systems and the field has
witnessed a vigorous expansion. It is beyond the scope of the present introduction
to cover this field. We will rather restrict ourselves to the physics of bosonic atoms
in the regime of weak interactions. On the polariton side, the relative simplicity of
the experiments has allowed for many milestone experiments to be performed in a
relatively short time. The field being still much smaller than the cold atom one, we
will cover relatively more of the polariton physics.

1.2 The Systems

In the following sections, we will start with short separate introductions to the mi-
crocavity and cold atom systems to describe their specific features.

1.2.1 The Microcavity Polariton System

1.2.1.1 Microcavity Polariton Properties

A microcavity is a solid state Fabri-Perrot cavity with a distance between the mir-
rors of the order of one micron. The mirrors are flat so that the photon modes have
a conserved momentum in the directions parallel to the mirror plane, making them
a two-dimensional (2D) system. At small momenta, their dispersion is in good ap-
proximation quadratic ωC(k)= ω0

C + k2/2mC , where the effective mass is four or-
ders of magnitude smaller than the free electron mass mC = 10−4me . The resonance
frequency ω0

C is in the electron volt range, the typical energy scale of electronic tran-
sitions. The mirrors are usually Distributed Bragg reflectors (DBRs) with a quality
factor of the order of 10.000, yielding photon line widths in the 0.1 meV range,
corresponding to a few ps life time [15].

When a material is placed between the mirrors, that has an electronic transition
in resonance with the optical mode, the electronic excitations couple to the light.
Of particular interest is the coupling to an excitonic transition (bound electron hole
pair) in the material, illustrated in Fig. 1.1(a). When a photon creates an exciton,
the center of mass momentum of the exciton is equal to the photon momentum. The
relative wave function of the exciton being fixed, the coupling between a photon
and exciton at momentum k can be seen as the coupling in a two-level system. In



1 Quantum Fluids of Exciton-Polaritons and Ultracold Atoms 3

Fig. 1.1 (a) Overview of the microcavity polariton system. A cavity photon is strongly coupled
to an exciton transition in an embedded quantum well. (b) The dispersion of the upper (green) and
lower (blue) polaritons, compared to the bare exciton and photon dispersions (dashed lines). (c),
(d), (e) comparison of the different excitation schemes: resonant (c), parametric (d) and nonreso-
nant (e)

second quantization, this coupling can be described by a term in the Hamiltonian of
the form

HR = ΩR

2

∑

k

ψ
†
C(k)ψX(k)+ h.c. (1.1)

where the coupling parameter ΩR is the Rabi frequency and ψC annihilates a cavity
photon. The operator ψC describes the annihilation of an exciton (electron-hole
pair). To enhance the binding energy, the exciton is usually confined in a quantum
well. The eigenstates of the full linear Hamiltonian H = H0 + HR , with the free
Hamiltonian

H0 =
∑

k

[
ωC(k)ψ

†
C(k)ψC(k)+ εX ψ

†
X(k)ψX(k)

]
, (1.2)

can be obtained by diagonalizing it at fixed k. The dispersion of the quasi-particles,
the so-called lower and upper polaritons, is shown in Fig. 1.1(b). The splitting be-
tween upper and lower polariton was first experimentally seen by Weisbuch et al.
in 1992 [56]. Note that in (1.2), we have neglected the momentum dependence of
the exciton energy, which is well justified since its mass is around four orders of
magnitude heavier than the cavity photon.

The coupling between excitons and photons is determined by the Rabi frequency
ΩR , that is of the order of a few meV in GaAs up to 50 meV in GaN (discussed in
Chap. 10), 130 meV in ZnO (see Chap. 11) and even higher in organic materials [1].
A larger Rabi frequency makes the polaritons more robust with respect to temper-
ature. Experiments with GaAs microcavities are conducted at cryogenic tempera-
tures around 10 K, where polaritons in GaN (see Chap. 10) and organic materials
can be observed at room temperature. Many experiments are however conducted
with GaAs microcavities, because the growth technology for this material is much
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more advanced thanks to its use in commercial opto-electronic applications. Much
progress has however been made in the fabrication of GaN microcavities and many
of the pioneering experiments on polariton condensation have been conducted on a
CdTe microcavity [28, 33, 42].

The microcavities are structurally identical to Vertical Cavity Surface Emitting
Lasers (VCSELs). The only difference is that their excitonic resonance is carefully
tuned to the cavity photon. The most important consequence hereof is that unlike
photons, the polaritons interact significantly with each other. Indeed, the excitons
consist of electrons and holes and their (exchange dominated) interaction is re-
sponsible for the polariton-polariton interactions [11]. It is theoretically modeled
by adding the interaction term

HI = g

2

∫
dxψ

†
X(x)ψ

†
X(x)ψX(x)ψX(x) (1.3)

to the Hamiltonian. Its approximation by a contact interaction is well justified, be-
cause the range of the exciton-exciton interaction potential is of the order of 10 nm,
where the polariton physics takes place on the µm length scale.

On resonance, the polariton is half exciton and half photon, so that the effective
polariton-polariton interaction is gLP = g/4. The relevant dimensionless coupling
constant that characterizes the strength of interactions in a 2D gas of particles with
mass m is g̃ =mg/�2 [7]. This means that even though the excitons are in a regime
of strong interactions g̃ = mXg/�

2 ∼ 1, the polaritons are in a weakly interacting
regime. For example in GaAs microcavities, the dimensionless interaction constant
is of the order of g̃ =mLP g/�

2 ≈ 0.01.
A second major difference with the bare exciton gas concerns the role of disorder.

A certain degree of disorder due to growth fluctuations is inevitable. Fluctuations in
the quantum well width result in an inhomogeneous effective potential for the exci-
tons, with a correlation length on the nm scale and gives a inhomogeneous linewidth
in the order of one meV. It however turns out that when the Rabi frequency is larger
than this inhomogeneous broadening, the polariton modes are quite insensitive to
the excitonic disorder [45]. The major source of disorder acting on the polaritons
comes from the fluctuation in the distance between the two DBR mirrors. A mono-
layer fluctuation gives an energy shift of the order of 0.5 meV, which is of the same
order of magnitude as the other polariton energy scales.

Controllable manipulation of the potential acting on the polaritons is possible by
a variety of techniques, that are discussed in Chap. 8. Among the most successful
strategies of creating potentials acting on the polaritons are etching (see Chaps. 8
and 9), stress induced traps [4], surface acoustic waves [10] and controlled variation
of the DBR thickness (see Chap. 6).

So far, we have simplified the discussion by neglecting the polarization degree
of freedom of the polaritons [47]. The photon however has two polarization states.
In GaAs for example, there are four exciton polarization states. The photon only
couples to the mz =±1 excitons. The other two states with mz =±2 are not coupled
to the light because of angular momentum conservation. They are dark and do not
form polaritons.
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The single particle polariton eigenstates have a well defined linear polarization
due to the splitting of both the photon and exciton linear polarization states. For
what concerns the polariton-polariton interactions however, the conservation of an-
gular momentum in collisions results in the conservation of the circularly polarized
states. The interactions turn out to be anisotropic: the interactions between cocir-
cular polarized polaritons is larger than between countercircularly polarized ones:
g↑↑ � |g↑↓|. This is due to the fact that the dominant contribution comes from
the Pauli exclusion principle (exchange interaction). For countercircularly polarized
excitons, both electron and hole spins are however different, so that the exchange
contribution vanishes. The interactions due to higher order terms have been found
to be negative g↑↓ < 0 [31, 54].

Discussions on the spin physics of polaritons can be found in Chaps. 3 and 4.

1.2.1.2 Experiments with Polaritons

In its ground state, the microcavity is empty. Polaritons can be injected by means of
optical or electrical injection. The polariton life time is mainly limited by the finite
photon life time. In state of the art microcavities, it is around 10 ps, which is of the
order of the other time scales of their dynamics and thus presents a severe limita-
tion. Therefore, polaritons are often continuously injected in order to compensate for
these losses. Two different optical injection schemes should be distinguished. The
first excitation scheme is resonant excitation (see Fig. 1.1(c)): A laser is tuned to the
polariton frequency at a given wave vector. The second scheme is nonresonant ex-
citation (see Fig. 1.1(e)). In this latter case, the laser is tuned to an energy above the
polariton energy. High energy excitons or free electron-hole pairs are formed, that
subsequently relax to the bottom of the lower polariton branch. Electrical excitation
has a similar effect.

An important difference between the resonant and nonresonant excitation
schemes concerns the U(1) phase symmetry of the polariton field. In the case of
resonant excitation, the coupling of the external laser amplitude FL to the micro-
cavity adds a term to the Hamiltonian

HL = FLe
−iωLtΨ †(kL)+ h.c. (1.4)

that explicitly breaks the U(1) symmetry. The phase of the polariton field is deter-
mined by the phase of the laser and in particular its spatial and temporal coherence
is determined by the coherence properties of the laser light. Under nonresonant ex-
citation on the other hand, the U(1) symmetry is not explicitly broken and polariton
coherence can spontaneously form. Various models to describe this symmetry bro-
ken nonequilibrium state are discussed in Chap. 2.

An excitation scheme that is intermediate between resonant and nonresonant ex-
citation is the so-called parametric excitation [25, 51]. The lower polariton branch is
excited resonantly at an energy above the ground state carefully chosen so that po-
laritons can scatter into the ground state (signal) and an excited state (idler) through
a single collision. The parametric scheme is illustrated in Fig. 1.1(d). Where under
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parametric excitation, the phase of the pumped mode is fixed by the laser, the signal
phase is chosen spontaneously, because only the sum of signal and idler phases is
fixed φs+φi = 2φp . Therefore, the spontaneous formation of coherence is observed
when the density of polaritons in the signal mode is increased.

Finally, under pulsed resonant excitation, the polariton phase is only fixed as long
as the laser pulse excites the microcavity and is free to evolve afterwards. The main
limitation of this scheme is, as we mentioned earlier, the finite polariton life time
that makes the density drop on the same time scale as the other time scales that are
involved in the dynamics.

1.2.2 The Cold Atom System

Similar to polaritons, also the dilute clouds of ultracold alkali atoms are not in their
ground state, which is the solid phase. The relaxation to a solid however needs
three-body interactions, which are very slow at low densities and the gas phase is
metastable with a life time that can be of the order of one minute. This is much
longer than the time needed to reach thermal equilibrium and much longer than the
typical time scales of the dynamics. It is therefore a good approximation to neglect
the finite life time of the trapped atoms.

Since the realization of Bose-Einstein condensation, the field of ultracold atoms
has witnessed an explosive growth. Nowadays, many experiments are performed on
atoms of bosonic and fermionic [21] statistics, that can be combined with ions [61]
and strongly coupled to light [8]. The scope of this chapter is limited to point out
some aspects of the physics of ultracold bosonic gases. More extensive reviews of
their properties can be found in several text books on the subject [38, 39]. Due to
the three-body losses, the maximum density of the atoms is around n= 1014 cm−3.
This means that the typical interatomic spacing is similar to the polariton spacing of
around 1 micron. Quantum degeneracy is reached when the de Broglie wavelength
reaches this value. Due to the much heavier atomic mass, the temperature require-
ment for the atoms is much more severe and of the order of 100 nK, eight orders of
magnitude smaller than in the polariton case. Thanks to the excellent isolation of the
atomic clouds from any environment, these ultralow temperatures can however be
routinely achieved. While the BEC phase transition does not rely on the interactions
between the atoms, the transition temperature is affected by atomic interactions (see
Chap. 16).

Spin conservation laws in the collisions of atoms make that for several combina-
tions of hyperfine states, the number of atoms in each state is conserved. Mixtures of
a well defined number of atoms in each hyperfine state can thus be prepared, which
allows to study atomic gases with tunable effective spin.

Interactions between ultracold atoms have a range that is of the order of 10 nm,
much shorter than their spacing. The interaction can thus be well approximated by



1 Quantum Fluids of Exciton-Polaritons and Ultracold Atoms 7

a contact interaction, that reads in three dimensions (omitting technicalities con-
cerning their regularization)

V (x)= 4π�
2asc

m
δ(r), (1.5)

where asc is the scattering length, that is typically of the order of the range of the
interactions. Making use of so-called Feshbach resonances, the scattering length
can be tuned at will. Both positive and negative signs for the scattering length can
be reached. In absolute value, it can be tuned from zero to values larger than the
interparticle spacing. In the latter regime, the atomic gas enters a very controlled
strongly interacting regime.

An alternative route to the regime of strong interactions in bosons is by using op-
tical lattices. These are periodic potentials generated by standing laser fields. They
allow to realize a tunable bosonic Hubbard model, where the dramatic effects of
interactions between bosonic particles were first evidenced in the superfluid to Mott
insulator phase transition [22].

Interactions can be meaningfully compared between 2D polariton gases and 2D
atomic clouds. The latter can be created by applying a standing laser field that con-
fines the cloud in one dimension only. In experiments on the 2D Bose gas, the inter-
action strength is tunable and takes values in the range g̃ = 10−2–0.3 [12, 24, 26].
As discussed above, Microcavity polariton in GaAs microcavities are in the lower
values of this range.

The coupling of ultracold gases to cavity photons has been achieved as well,
making for a systems that is at first sight strongly analogous to the microcavity
one. For example, in Ref. [8], a BEC was placed inside an optical cavity, that was
tuned to an electronic transition of the atoms, a situation very similar to the quantum
well embedded in a microcavity. An important difference between the two cases is
the dimensionality of the photon. Where it has in the semiconductor case the same
dimensionality as the exciton, in the atomic case, the photon is zero-dimensional
where the condensate is 3D. A second ingredient that causes an important differ-
ence, where the motion of the Ga and As atoms is negligible for the crystalline
solid state materials, the atoms move while they interact with the light, leading to
optomechanical effects [8].

1.3 Observables

1.3.1 Microcavities

The measurement of the polariton state inside the microcavity is straightforward,
thanks to the one-to-one correspondence between the microcavity polaritons and
the light that is transmitted through the microcavity mirrors [46]. Using standard
optical techniques, the polariton density can be measured in real space n(x) or in
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momentum space n(k). Using a spectrometer, the energy spectrum is readily ob-
tained, resulting in images of n(x,ω) or n(k,ω). When a streak camera is used, the
time evolution of the density can be monitored with a ps resolution.

By interfering the light that is emitted at different positions, the spatial coher-
ence g(1)(x1,x2)= 〈ψ+(x1)ψ(x2)〉/√n(x1)n(x2) can be measured [28]. From the
interferrograms, also the average phase difference between different regions in the
condensate can be extracted. This has allowed to evidence the existence of quan-
tized vortices in polariton condensates [32]. This interference technique to visualize
vortices has been first used for atomic condensates by Inouye et al. [27].

It is important to point out that all the measurements of polariton gases are per-
formed over times that are very long as compared to the polariton life time. For a
steady state measurement, this means that actually a long time average is recorded.
In practice, the cw experiments are performed with long pulses. A typical mea-
surement takes a time that is long with respect to the pulse duration and thus av-
erages over many realizations of the condensate. For the observation of vortices,
this means that only an average phase profile is measured, that completely misses
moving vortices. For pulsed experiments where the time evolution is followed, the
measurements record the average over multiple realizations of the dynamics. Again,
the particular trajectory of a single realization cannot be followed.

1.3.2 Ultracold Atoms

The main observable of ultracold atoms is the density: the atomic (column) den-
sity can be imaged through its absorption of laser light. It has turned out that from
the density, combined with an engineered evolution of the system before recording
it, an enormous wealth of information can be derived. The clearcut observation of
BEC in 1995 was a density measurement performed a certain time after the trap
was switched off. The free expansion maps approximately the momentum to the
distance and thus gives a good estimate of the momentum distribution. A further
analysis shows that the mapping of distance to momentum is modified by the inter-
actions during the early stages of the expansion. Note that in the polariton case, the
momentum distribution is also obtained by a kind of free expansion of the emitted
photons. There however, interactions are always negligible, because the propagation
takes fully place outside of the microcavity, where photon-photon interactions are
absent.

Also from the in situ measurements of the atomic clouds, important informa-
tion can be extracted. By using high resolution optical [48] or scanning electron
microscopy (SEM) techniques, the atomic density profiles can be measured with a
resolution that is better than the interparticle distance and the lattice spacing of opti-
cal lattices. Thanks to the single atom sensitivity, also higher order correlations can
be measured. This technique will be described in Chap. 18.

A crucial difference between the measurements of ultracold atoms and polari-
tons is that in the case of the ultracold atoms information is obtained from a single
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shot measurement. A picture of a single realization of the ensemble of atoms is
taken. This is relevant for phase measurements. Two atomic clouds can be made to
interfere with each other and a particular realization of an experiment will always
show interference fringes, irrespective of whether the phases of the two clouds are
related or not. This makes it straightforward to observe spontaneous vortices [24].
The presence of a vortex is signaled by a fork like dislocation in the interference
pattern between the condensate and a reference condensate. By repeating such an
experiment many times, the probability distribution for the number of vortices can
be measured.

Spectral information on the Bose gases can be extracted by applying time-
dependent laser fields. An example is Bragg spectroscopy [50]. In this type of ex-
periments, two lasers with frequency difference 
ω and wave vector difference 
k

are applied to the gas. A large response of the atoms is observed when (
k,
ω)

coincides with a resonance in the structure factor. Another example is modulation
spectroscopy, where the standing laser field that creates an optical lattice is modu-
lated [52]. The excitation frequency and spectrum turns out to be a precise probe for
the properties of the quantum fluid.

For the measurement of temporal coherence, Ramsey type experiments can be
used. A proposal for the measurement of the temporal coherence of atomic conden-
sates is discussed in Chap. 15.

1.4 Physical Properties

1.4.1 Condensate Shape

In contrast to conventional condensed matter systems such as the electron gas or
superfluid Helium, both the ultracold atoms and polariton gases are strongly in-
homogeneous. The overall trapping potential acting on cold atoms is usually well
approximated by a quadratic potential. In the polariton case, not only trapping poten-
tials can be present, but also the excitation that injects particles is inhomogeneous.
The physical consequences of the inhomogeneity are very different for systems at
thermodynamic equilibrium and for nonequilibrium gases.

In the case of cold atoms in equilibrium, the effect of a shallow quadratic trapping
potential can in good approximation be described in the local density approximation.
This means that the gas can be treated locally as homogeneous at a given chemical
potential μ(r). This chemical potential varies in space as μ(r)= μ0−Vext(r), where
Vext is the trapping potential. What at first sight could seem to be a complication,
actually turns out to be a convenience: one has access to a range of chemical poten-
tials in a single experiment. Measuring the local density, it is possible to extract the
equation of state μ(n), from which thermodynamic quantities such as the pressure
and phase space density can be extracted. A discussion on this method in the context
of the unitary Fermi gas is given in Chap. 17.


