
Environmental Engineering

Information
Technology in
Environmental
Engineering

Burkhardt Funk
Peter Niemeyer
Jorge Marx Gómez Editors

Selected Contributions to the Sixth
International Conference on Information
Technologies in Environmental
Engineering (ITEE2013)

Environmental Science and Engineering

Environmental Engineering

Series Editors

Ulrich Förstner, Hamburg, Germany
Robert J. Murphy, Tampa FL, USA
W. H. Rulkens, Wageningen, The Netherlands

For further volumes:
http://www.springer.com/series/3172

http://www.springer.com/series/3172

Burkhardt Funk • Peter Niemeyer
Jorge Marx Gómez
Editors

Information Technology
in Environmental
Engineering

Selected Contributions to the Sixth
International Conference on Information
Technologies in Environmental Engineering
(ITEE2013)

123

Editors
Burkhardt Funk
Peter Niemeyer
Institute of Electronic Business Processes
Lüneburg
Germany

Jorge Marx Gómez
Department für Informatik Abt.

Wirtschaftsinformatik I
Universität Oldenburg
Oldenburg
Germany

ISSN 1431-2492
ISBN 978-3-642-36010-7 ISBN 978-3-642-36011-4 (eBook)
DOI 10.1007/978-3-642-36011-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947063

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Enabling a sustainable development requires interdisciplinary approaches where
computer science can provide the infrastructure for environmental data collection,
analysis, simulation, decision support, reporting, and collaboration.

During the past decade methods and technologies at the interface of environ-
mental engineering and information technology made important contributions to
the transformation of organizations and processes toward sustainability. Material
Flow Management systems, Tools for measuring environmental footprints, and
smart grids are well-known examples for innovations in this area.

Since 2003, the conference series Information Technology in Environmental
Engineering (ITEE) has established a platform for discussing the progress in the
field. During the 6th ITEE 2013 conference practitioners and scientist met at the
Leuphana University Lüneburg (Germany) to discuss recent developments,
promising ideas, and new challenges in information management for supporting
sustainability efforts.

Besides the special focus of this year’s conference on information technology
as an enabler for green logistics, the authors of the accepted papers cover a wide
spectrum of topics from the perspective of different stakeholder groups. This
includes topics such as big data, sponsored search advertising, mobile applications,
energy consumption, and tools for collaboration.

This conference would not have been possible without many helping hands. We
would like to thank all authors and participants of the conference for their con-
tributions. We greatly appreciate the commitment and support of the program
committee, namely Witold Abramowicz, Hans-Knud Arndt, Ioannis N. Athana-
siadis, João Porto de Albuquerque, Jan Froese, Paulina Golinska, Lorenz M. Hilty,
Horst Junker, Kostas Karatzas, Corinna V. Lang, Pericles A. Mitkas, Andreas
Möller, Matjaž Mulej, Alexandra Pehlken, Andrea-Emilio Rizzoli, Adenilso da
Silva Simão, Frank Teuteberg, Rüdiger Zarnekow. Last but not least, we want to
thank the Leuphana team (Martina Darda, Karin Dening-Bratfisch, Madlen
Schmaltz, and Norbert Tschritter) for helping at all stages of the conference.

Burkhardt Funk
Peter Niemeyer

Jorge Marx Gómez

v

Contents

Part I Research Paper

Influence of Environmental Protection Requirements
on Object-Oriented Software Design . 3
Marat Abilov and Jorge Marx Gómez

Impact of Design on the Sustainability of Mobile Applications 13
Hans-Knud Arndt, Bartosz Dziubaczyk and Matthias Mokosch

Investigating the Promotional Effect of Green Signals in Sponsored
Search Advertising Using Bayesian Parameter Estimation 25
Tobias Blask

DialogueMaps: Supporting Interactive Transdisciplinary Dialogues
with a Web-Based Tool for Multi-layer Knowledge Maps 39
Paul Drews and Arno Sagawe

The Role of ICT in Green Logistics:
A Systematic Literature Review . 53
Volker Frehe and Frank Teuteberg

Green Big Data: A Green IT/Green IS Perspective on Big Data 67
Thomas Hansmann, Burkhardt Funk and Peter Niemeyer

Conceptualizing the Quantification of the Carbon Footprint
of IT-Services . 77
Daniel Grimm, Björn Schödwell, Koray Erek and Ruediger Zarnekow

Using Key Performance Indicators and Multi-Criteria Decision
Analysis to Compare the Sustainability of Mobility 93
Sven Kölpin, Daniel Stamer and Benjamin Wagner vom Berg

vii

http://dx.doi.org/10.1007/978-3-642-36011-4_1
http://dx.doi.org/10.1007/978-3-642-36011-4_1
http://dx.doi.org/10.1007/978-3-642-36011-4_2
http://dx.doi.org/10.1007/978-3-642-36011-4_3
http://dx.doi.org/10.1007/978-3-642-36011-4_3
http://dx.doi.org/10.1007/978-3-642-36011-4_4
http://dx.doi.org/10.1007/978-3-642-36011-4_4
http://dx.doi.org/10.1007/978-3-642-36011-4_5
http://dx.doi.org/10.1007/978-3-642-36011-4_5
http://dx.doi.org/10.1007/978-3-642-36011-4_6
http://dx.doi.org/10.1007/978-3-642-36011-4_7
http://dx.doi.org/10.1007/978-3-642-36011-4_7
http://dx.doi.org/10.1007/978-3-642-36011-4_8
http://dx.doi.org/10.1007/978-3-642-36011-4_8

Developing a Maturity Assessment Model for IT-Supported
Energy Management . 105
Christian Manthey and Thomas Pietsch

Accounting and Modeling as Design Metaphors for CEMIS 119
Andreas Moeller

Operational Integration of EMIS and ERP Systems 131
Florian Nottorf and Andreas Mastel

Enterprise Architectures for Addressing Sustainability Silos 141
Brenda Scholtz, Anthea Connolley and Andre Calitz

Municipalities and Sustainable Tourism: Challenges, Requirements
and Added Value . 155
Andreas Solsbach and Barbara Rapp

The Green Product Lifecycle and Services: Is There a Gap? 167
Timo R. H. von der Dovenmühle and Klaas Schmidt

Part II Logistic Workshop

Service Quality Versus Sustainability:
A New Conflict of Objectives . 179
Wolf-Rüdiger Bretzke

A Standardisation of the Calculation of CO2(e) Emissions Along
Supply Chains: Challenges and Requirements Beyond EN 16258 191
Verena Charlotte Ehrler and Saskia Seidel

Information and Process Requirements for Electric Mobility in
Last-Mile-Logistics . 201
Matthias Klumpp, Christian Witte and Stephan Zelewski

Key Factors for Measurement of CO2 Emissions 209
Indah Lengkong and Jens Froese

Environmental Impacts in the Liner Shipping Industry 223
Simone Ziegler

viii Contents

http://dx.doi.org/10.1007/978-3-642-36011-4_9
http://dx.doi.org/10.1007/978-3-642-36011-4_9
http://dx.doi.org/10.1007/978-3-642-36011-4_10
http://dx.doi.org/10.1007/978-3-642-36011-4_11
http://dx.doi.org/10.1007/978-3-642-36011-4_12
http://dx.doi.org/10.1007/978-3-642-36011-4_13
http://dx.doi.org/10.1007/978-3-642-36011-4_13
http://dx.doi.org/10.1007/978-3-642-36011-4_14
http://dx.doi.org/10.1007/978-3-642-36011-4_15
http://dx.doi.org/10.1007/978-3-642-36011-4_15
http://dx.doi.org/10.1007/978-3-642-36011-4_16
http://dx.doi.org/10.1007/978-3-642-36011-4_16
http://dx.doi.org/10.1007/978-3-642-36011-4_16
http://dx.doi.org/10.1007/978-3-642-36011-4_17
http://dx.doi.org/10.1007/978-3-642-36011-4_17
http://dx.doi.org/10.1007/978-3-642-36011-4_18
http://dx.doi.org/10.1007/978-3-642-36011-4_18
http://dx.doi.org/10.1007/978-3-642-36011-4_19

Part I
Research Paper

Influence of Environmental Protection
Requirements on Object-Oriented
Software Design

Marat Abilov and Jorge Marx Gómez

Abstract The questions of environmental impact that company produce take
important place nowadays. The ISO 14064-1 [1] standard specifies principles and
requirements for monitor and control the greenhouse gas (GHG) emissions and
removals. These requirements can be met by optimizing companies business
processes (production, logistic, etc.) and by decreasing the power consumption of
the companies’ equipments. As side effect of these changes, the total costs of
companies can be decreased as well. Companies’ data centres and servers consume
more than half of total spent electricity power. These servers are mostly used by
companies’ software systems. Hence, if the software systems require less calcu-
lation time, less space, there will be no requirements to keep the big energy
consuming servers, and the most of tasks can go in cloud as well. Hence, the
environmental protection requirements should be considered in developing soft-
ware systems for companies. In this paper, we aim to give some literature review
and propose the research on the topic.

1 Introduction

Software systems, which support the business processes of companies, are
developed by using programming languages and methodologies. The most popular
methodology today is Object Oriented (OO) Methodology, which helps to describe
different domains using OO models.

M. Abilov (&) � J. M. Gómez
Department of Business Informatics/Very Large Business Applications, Carl von Ossietzky
University of Oldenburg, Ammerländer Heerstr. 114–118, 26129 Oldenburg, Germany
e-mail: marat.abilov@uni-oldenburg.de

J. M. Gómez
e-mail: jorge.marx.gomez@uni-oldenburg.de

B. Funk et al. (eds.), Information Technology in Environmental Engineering,
Environmental Science and Engineering, DOI: 10.1007/978-3-642-36011-4_1,
� Springer-Verlag Berlin Heidelberg 2014

3

Environmental requirements can influence the software system design process
in two ways:

1. They influence the changes in business processes and as the result the changes
in software system design as well;

2. Software system by itself should meet these requirements: use less calculation
time, and disk space, etc. These requirements can be treated as non-functional
requirements (NFR).

In order to explore the problems of integrating these requirements to software
design, the literature review of the works in this domain is explained in the
following section.

2 Literature Review

2.1 Approaches for Software Power Estimation
and Optimization

Hence, the power optimization can be treated as an environmental protection
requirement, the review of works that deal with software power optimization and
estimation will be provided. According to the review done, the existing approaches
mostly deal with embedded software and on very low level.

One approach suggests the usage of symbolic algebra techniques in low power
embedded software optimization [2]. The approach works on very low level of
code and data types. The idea behind this approach was to optimize block of codes
or algorithms of embedded software, so it would need less computation time, and
correspondingly the less power. The first improvement over the peace of software
is the consideration of moving from float-point to fix-point numbers where pos-
sible, because the fix-point ones require less calculation. The second is the energy
profiling of code blocks and identifying the routines for optimization. Then these
routines can be reformulated using polynomial approximation techniques. After
optimization accuracy of produced code should be checked.

Measuring and estimation of instructions in assembly language over RISK
processors were done by Russell and Jacome [3]. In this work authors developed
power prediction model for low-level assembly program, that gives 99 % certainty
with less than 8 % error.

Although the low-level approaches are important as well, in our approach we
will consider mostly model-based, on more abstract level problems.

4 M. Abilov and J. M. Gómez

2.2 Approaches for Functional Requirements

The nearest research has been done by the work of [4]. In this work, the author
tried to solve challenges existed in software development process with the pro-
posed ‘‘Methodological Approach’’. This approach has 4 main stages: organiza-
tional modelling, purpose analysis, specification of system requirements, and
derivation of OO diagrams. On each stage, different artefacts have to be devel-
oped. The artefacts from the last stage influence the subsequent software devel-
opment stages. The most interesting stages, in connection to current research, are
the last ones. During the System Requirement stage, ‘‘To-Be’’ Business Process
Diagrams (BPD) in the form of EBPD have to be developed, that show how
process should occur in organization after software system implementation. After
that, the System Requirement Specification (SyRS) has to be developed in the
form of Extended Task Description (ETD) templates. This proposed style of SyRS
is a combined and improved combination of other approaches: among them are
Lauesens Task and Support Descriptions [5], essential use cases [6], Info Case
approach [7], and quality requirements from ISO 9126-1 standard [8]. The
information presented in these templates is derived not only from BPD, but from
previous stage’s artefacts as well. These templates show mainly the functional
requirements of the software system. After having the ETD specified, OO dia-
grams have to be derived from them according to set of rules presented in this
work. Rules help to derive two main diagrams: the class diagram, and the state
diagram. Among overall contribution of the reviewed work, there are several open
issues in connection to current research:

1. This approach can mainly be used in waterfall model of software development,
when all work on previous stages should be done in order to proceed to next
stage. The connection to iterative, spiral or agile model was not specified in this
work.

2. On every stage of this approach the validation is needed to be done by customer
stakeholders, other validation techniques were not specified.

3. The process of analysing other non-functional requirements was not formalized
and left for system analyzer to consider them in software architecture.

4. In class diagram a rule for specifying the control class was not defined.
5. The problem of parallel works in BPD was not analysed, and rules to consider

them in state diagrams were not specified.

Analysis of this work shows that the next ideas can be effectively applied to
current research:

• Enriched BPD, as an intermediate model between BPM and OO models.
• ETD templates, as a presentation of the expected behaviour of the software.
• Rules to derive OO diagrams from ETD, as a background, that can be extended

to formalize this process for iterative methodology of software development.

Influence of Environmental Protection Requirements 5

In the work done by Loos and Allweyer [9], the authors analysed the Event-
driven Process Chain (EPC) diagrams and made connections between then and
UML diagrams. Three types of granularity were defined: object internal, object
system inside and beyond the scope of an object system. Design of EPC diagrams
has also to be conducted in three steps: high-level EPC with connection to
information system packages, medium-level EPC with connection to classes,
detailed EPC with connections to operations and attributes. The detailed EPC
diagrams then can be used to derive the UML class diagrams and the state-chart
diagrams of classes. Another UML diagrams were also analysed and relationships
from EPC to them were established. Procedural model for applying the integration
between EPC and UML was defined. The proposed approach can be used during
requirement engineering and software design stages. Although the connection of
different level between EPC diagrams and UML diagrams were presented, the
concrete guidelines for establishing such diagrams were not specified. In class
diagrams the procedure for finding relationships between classes was not specified.

The approach of deriving UML analysis models from use-case models (UCM)
is presented in the work of [10].The approach deals with text-based, specified in
restricted natural language (NL), UCM (RUCM) [11]. It contains 2 steps:

Step 1: The RUCM models have to be parsed and object model of them has to
be generated. At first, the top level objects have to be identified: Use case, Use case
specification, actors, brief description, the flows of events, pre- and post-condi-
tions. Then, the sentences, objects are constructed from, have to be parsed by NL
parser, the Stanford Parser [12].

Step 2: The UCMeta model have to be transformed into a UML analysis model.
The overall algorithm of transformation and the set of rules were specified: for
generating overall structure, for generating a class diagram, for generating a
sequence diagram, and for validation.

When deriving the class diagram, three types of objects were analysed:

• Boundary objects, that handle interaction between actors and the system
• Entity objects, that are responsible for storing and providing access to data
• Control objects, that control the interaction of participating objects.

In UML these types of classes were specified with stereotypes: �Bound-
ary�, �Entity�, and �Control�. The first set of rules presented in this work
deals with deriving this three types of classes and relationships between them. The
idea of different stereotypes for classes and rules for deriving them can be found
useful in current research.

In the work of [13], the authors presented the Component Bus System Property
(CBSP) approach, which helped to connect requirements and architecture. This
approach can be used in iterative software development model: the output of the
first iteration can be used as an input in the second. In this approach, the decision
technique is based on voting among multiple architects or experts. The CBSP
process consists of 5 steps:

6 M. Abilov and J. M. Gómez

Step 1: Selection of requirements for next iteration. On this step, the most
important requirements have to be analysed and prioritized among 2 criteria:
importance, feasibility based on stakeholder decisions.

Step 2: Architectural classification of requirements by the relevance to CBSP
dimensions, have to be decided by experts.

Step 3: Identification and resolution of classification mismatches, have to be
decided by multiple experts independently. Level of consensus for requirement has
to be calculated, and if the level is equal or more than largely then requirement
should be accepted.

Step 4: Architectural refinement of requirements. On this step, requirements
have to be rephrased and split, redundancies have to be eliminated. Then relevance
coefficients of properties for each CBSP dimensions have to be decided among 4
common architectural styles.

Step 5: Trade-off choices of architectural elements and styles with CBSP. On
this step requirements have to be refined and rephrased to CBSP model elements in
such a manner, that no conflicts exist and all model elements at least largely
relevant to one of the CBSP dimension.

Among overall contribution of this work, there are some open issues that are
related to current research:

1. Analysed architectural styles are very high level; the derivation of detailed OO
was not given in this work;

2. Business process as a type of requirements were not analysed in this work.

In the work of [14], the authors tried to connect OO and process-oriented (PO)
models using formal approach. The procedure of translation from OO to PO
models has 5 steps:

Step (a) Translation from State Machine Diagrams (SMD) to Heuristics Net
using presented algorithm I;

Step (b) Translation from SMD to Annotation Repository using presented
algorithm I;

Step (c) Translation from Heuristics Net to Petri Net using presented
algorithm II;

Step (d) Creation of a skeleton structure of a process-centric model, using
existing conversion plugins;

Step (e) Completion the process-centric model in the form of Yet-Another
Workflow Language (YAWL) [15] model.

Obtained PO models are highly detailed. This work can be used to connect two
different development approaches, also for analysing OO design from procedure
perspective. Here are also some open issues in connection to current research:

1. This approach requires finalized OO models to be translated into PO ones.
2. This approach describes only one-way translation from OO to PO models.

Although, the authors promised to start working on backward algorithm.
3. Validation technique was not provided in this work.

Influence of Environmental Protection Requirements 7

The approach, presented in this work can be used as a validation technique for
the current research.

2.3 Approaches for Non-functional Requirements

The approach of integrating non-functional requirements and conceptual models:
Entity-Relationship (ER), OO model, was done by the work [16]. The approach
has several steps: on the first step the Language Extended Lexicon (LEL) [17] has
to be developed. LEL registers the vocabulary of a given University of Discourse
(UofD) general context, where the software have to be developed or operated [17].
While developing the LEL two principles have to be followed: maximum circu-
larity, and minimum vocabulary. Each NFR has to be detailed using NFR graph,
which defines the goal on the root and subgoals on the leaves. Subgoals can
contain attributes, which can be general and data ones. General attributes char-
acterize the whole system, while data attributes can be used for deriving ER and
OO models. The paper presented the extensions to ER and OO models. In the OO
model:

• Additional information, in the form of attached rectangles, was added to the
class to show the names of used UofD and NFR.

• To improve traceability, NR_ prefix has to be added to classes, attributes and
operations driven from NFR.

• Class names have to by symbols of the LEL.

Some heuristics to integrate the NFR into conceptual models were presented.
This heuristics are not showing the straight-forward derivation of models, but the
some hints that can help the software engineer in this process. Some ideas in this
work can be used in current research:

1. Using LEL to describe the NFR;
2. NFR graph, to explore the influence of the NFR on design and;
3. Traceability idea: to present the name of used NFR and UofD in class diagram,

that can be done, by using notes or comments.

The influence of the NFR over the decision of using software design patterns
were analysed by the work [18]. For each system there might be multiple NFRs,
and some decisions that support one of the requirements can hurt another. To
address this problem NFR graph was used, that helps to reflect the decision trees
for several NFR. This tree was used to describe the reason of usage of design
pattern in the system architecture. The design pattern forces changes in the
architecture, so author presented the way of connecting NFR graph with functional
decomposition of the system.

8 M. Abilov and J. M. Gómez

3 Open Issues

To summarize the above research, there are several challenges in integrating the
requirements as a whole, and the environmental protection requirements as a part
into object-oriented software design:

1. Development of software system can be iterative, and not all information about
business processes in organizations can be known before the design phase.
Therefore, the new proposed approach in this work should be able to deal with
incomplete information, and overcome the absence of some details within it.

2. Business processes of organization and non-functional requirements can
influence the final design of the software system, so this approach should be
able to deal with different types of requirements.

3. Relationships between classes are very hard to determine, and the problem
increases when classes can be organized to perform some special behaviour.
Some of these organizations are the examples of software design patterns.
Design patterns and best practices can be used to solve the problems with
software optimization, which as a result will give the less computation time,
less power consumption and the less environmental impact as well. As a result,
this approach should be able to define any kind of relationships in addition to
show what kind of patterns can be applied.

4 Research Methodology

This study will be done by research project following the design research meth-
odology [19]. The design science research contains the next steps [20]:

• Awareness of problem–understand the problem that occurs in practice;
• Suggestion for a problem solution from the existing knowledge base;
• Awareness of problem revisited. Problem can be detailed or generalized;
• Development of possible approach that can partially or fully solve the problem;
• Evaluation of the approach using empirical studies or formal methods;
• Conclusion shows the lesson learned and what influence the approach will have

in the practice and science.

Empirical methods can be used in current research for validation the result of the
approach. There are several empirical methods that can be used in software
engineering context [21]:

• Controlled experiment—investigation of a testable hypothesis where one or
more independent variables are manipulated to measure their effect on more
dependent variables;

Influence of Environmental Protection Requirements 9

• Case studies—an empirical inquiry that investigates a contemporary phenom-
enon within its real-life context, especially when the boundaries between phe-
nomenon and context are not clearly evident [22];

• Survey research—used to identify the characteristics of a broad population of
individuals;

• Ethnographies—help to understand how technical communities build a culture
of practices and communication strategies that enable them to perform technical
work collaboratively;

• Action research—attempt to solve a real-world problem while simultaneously
studying the experience of solving the problem [23].

In most cases several of them can be used simultaneously in order to achieve the
more rigidity of the research.

The next tasks are considered as support for answering the above-mentioned
research questions:

1. Analyse environmental protection requirements, and their influence on changes
in BPM and on non-functional requirements;

2. Analyse the influence of software requirements on the overall software design;
3. Analyse the types of relationships between classes and their derivation from

BPM and other requirements;
4. Analyse the types of design patterns and their derivation from BPM and other

requirements and
5. Design the approach for derivation OO models from BPM and other require-

ments that can be used in iterative, spiral and agile models of software
engineering.

For the formalization of OO models derivation process, the ETVX (Entry, Task,
Verification, and eXit) [24] approach can be used. ETVX is a table with 4 rows:

• Entry row—items required for the execution of the task;
• Task row—details of the activity;
• Verification row—checks and controls for the task;
• eXit row criteria, need to be satisfied in order to consider the task as completed.

References

1. ISO (2006) Greenhouse gases part 1: Specification with guidance at the organization level for
quantification and reporting of greenhouse gas emissions and removals

2. Peymandoust A, Simunic T, De Micheli G (2002) Low power embedded software
optimization using symbolic algebra. In: Design, automation and test in Europe conference
and exhibition. Proceedings, pp 1052–1058

3. Russell J, Jacome M (1998) Software power estimation and optimization for high
performance, 32-bit embedded processors. In: International conference on computer
design: VLSI in computers and processors, 1998. ICCD ‘98. Proceedings, pp 328–333

10 M. Abilov and J. M. Gómez

4. de la Vara González JL (2011) Business process-based requirements specification and object-
oriented conceptual modelling of information systems. PhD thesis, Polytechnic University of
Valencia

5. Lauesen S (2002) Software requirements: styles and techniques. Addison-Wesley
Professional, Reading

6. Constantine LL, Lockwood LA (1999) Software for use: a practical guide to the models and
methods of usage-centered design. Addison-Wesley, Reading

7. Fortuna MH, Werner CM, Borges MR (2008) Info cases: integrating use cases and domain
models. In: International requirements engineering, 2008. RE’08. 16th IEEE, pp 81–84, Sept
2008

8. ISO (2001) International Standard ISO/IEC 9126-1: Software engineering product quality
part 1: quality model. ISO, International Organization for Standardization

9. Loos P, Allweyer T (1998) Process orientation and object-orientation-an approach for
integrating UML and event-driven process chains (EPC). Publication of the Institut für
Wirtschaftsinformatik, Paper, vol 144

10. Yue T, Briand L, Labiche Y Automatically deriving a UML analysis model from a use case
model. Carleton University

11. Yue T, Briand L, Labiche Y (2009) A use case modeling approach to facilitate the transition
towards analysis models: concepts and empirical evaluation. Model Driven Engineering
Languages and Systems, pp 484–498

12. Stanford (2013) The Stanford Parser: a statistical parser. http://nlp.stanford.edu/software/lex-
parser.shtml. Accessed 06/02/2013

13. Grünbacher P, Egyed A, Medvidovic N (2004) Reconciling software requirements and
architectures with intermediate models. Softw Syst Model 3(3):235–253

14. Redding G, Dumas M, ter Hofstede A, Iordachescu A (2007) Reconciling object-oriented and
process-oriented approaches to information systems engineering. In: Proceedings of the 3rd
international workshop on business process design (BPD07)

15. Van Der Aalst W, Ter Hofstede A (2005) Yawl: yet another workflow language. Inf Syst
30(4):245–275

16. Cysneiros L, do Prado Leite J, de Melo Sabat Neto J (2001) A framework for integrating non-
functional requirements into conceptual models. Requirements Eng 6(2):97–115

17. Leite J, Franco A et al. (1993) A strategy for conceptual model acquisition. In: Proceedings of
IEEE international symposium on requirements engineering, 1993, pp 243–246, IEEE

18. Gross D, Yu E (2001) From non-functional requirements to design through patterns.
Requirements Eng

19. Hevner A, March S, Park J, Ram S (2004) Design science in information systems research.
MIS Q 28(1):75–105

20. Vaishnavi VK, Kuechler Jr W (2007) Design science research methods and patterns:
innovating information and communication technology. Auerbach Publications

21. Easterbrook S, Singer J, Storey M.-A., Damian D (2008) Selecting empirical methods for
software engineering research. In: Guide to advanced empirical software engineering,
pp 285–311

22. Yin R (2003) Case study research: design and methods. SAGE Publications, Beverly Hills
23. Davison R, Martinsons MG, Kock N (2004) Principles of canonical action research. Inf Syst J

14(1):65–86
24. Radice R, Roth N, O’Hara A, Ciarfella W (1985) A programming process architecture. IBM

Syst J 24(2):79–90

Influence of Environmental Protection Requirements 11

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml

Impact of Design on the Sustainability
of Mobile Applications

Hans-Knud Arndt, Bartosz Dziubaczyk and Matthias Mokosch

Abstract Within the context of a consumer, who is anywhere contactable via
mobile phone or a mobile access to the internet and his fast changing needs, it
becomes more and more important to create a balance in the product-life-cycle.
With regard to the design and sustainability of software the requirements to a
programmer and the department of information technology in a company are
getting higher, especially on mobile Applications (Apps) for mobile devices. The
paper aims to explain what makes a good design for Apps and which types of Apps
exist. Afterwards a description of the characteristics of a sustainable designed App
and a comparison between Apple Design versus Metro Style (was changed due to
copyright issues to ‘‘Windows 8-style UI’’) follows. In connection to the envi-
ronmental friendliness of Apps it is to be recorded that material and energy have to
be saved everywhere it is possible. Developers have the responsibility to create
applications in a way that is as efficient as possible. The design of an App can be
updated with just one mouse click which is far easier than updating hardware,
because hardware can’t be updated and has to be completely exchanged. The
update principle is an important step towards sustainability. Software does not
really pollute the environment but there is a kind of virtual pollution of the
environment.

H.-K. Arndt (&) � B. Dziubaczyk � M. Mokosch
Faculty of computer science—Working group Management information system, Otto-von-
Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: hans-knud.arndt@iti.cs.uni-magdeburg.de

B. Dziubaczyk
e-mail: bartosz.dziubaczyk@st.ovgu.de

M. Mokosch
e-mail: matthias.mokosch@st.ovgu.de

B. Funk et al. (eds.), Information Technology in Environmental Engineering,
Environmental Science and Engineering, DOI: 10.1007/978-3-642-36011-4_2,
� Springer-Verlag Berlin Heidelberg 2014

13

1 Introduction

Today markets are characterized by an extremely fast moving and dynamic
environment. By the increasingly more mobile consumers and thus rapidly
changing customer needs, it is more and more important to create a balanced
product life cycle. The contrast between a stationary computer and a small mobile
device dis-appears not only with high-resolution display, but mainly by powerful
processors and fast, reliable and inexpensive data traffic [1]. Thereby the
requirements regarding to the design and sustainability of software, especially
applications for mobile devices, are not less. The parameters for optimal func-
tionality, security and usability are more complex for a mobile application than a
desktop application [2].

The paper focuses on explaining the situation illustrated by the significant de-
sign ethics of the famous German industrial designer Dieter Rams. His design
philosophy ‘‘Less, but better’’ represents the focus of this work. This paper aims to
discuss based on the ten principles for good design by Dieter Rams, whether it is
possible to ensure sustainability of mobile Apps and mobile devices through good
product design.

2 Good Design for Mobile Applications

2.1 Braun Design as Creative Director of the Apple Design

Apple’s iPhone released in 2007 turn the mobile internet through its innovative
interface and its outstanding usability into a new experience. Before that vendors
were like Nokia were the global leader in the field of mobile internet. In 2008 the
supporting pillar of the app development was the platforms Symbian and Java
Platform, Micro Edition. Nowadays, these platforms were hardly discussed. Many
companies that specialize in these platforms are trying to develop their systems to
the new platforms. The newly introduced platforms, such as Apple’s iOS (2007)
and Google’s Android (2009) have made the breakthrough just by the new tech-
nical achievements, easy programming and a playfully easy handling and a new
design language. Approximately 60 percent of all applications are developed for
Android by which this operating system is considered to be the most popular,
closely followed by iOS [1].

It has to be emphasized that mobile apps are not a new invention of Apple,
which came with the release of the iPhone in autumn 2007. There were small
applications before, but with different formats and on another scale. Java appli-
cations belonged to most of these applications. Also the handling was not the same
as it is today’s. The installation on a mobile device was complicated and time-
consuming. In the first step the application had to be downloaded on the pc and in
the second step they had to be transferred from the pc to the mobile device. Over

14 H.-K. Arndt et al.

the time the thickness of a mobile device approximated more and more to that one
of a sheet of paper. Although the data room can’t be really expanded it is today
possible to obtain millions of options on the display. To control and bundling these
data Apple invented the principle of apps, which users could use for playing,
communicating, shopping and informing or entertaining themselves. Today there
is an App for almost everything. The iPhone takes over a leading role and shows
that it is realizable in just a few easy steps to install and start mobile apps in a very
simple way [1, 3].

Since the industrialization products were manufactured with a high degree of
attractiveness to be able to sell them better. People buy and use more and more
industrially manufactured products and endanger the environment. On that score
the demand for the future has to be, that not only the designer but also the other
areas within the production process have to take care of a lasting production.
Unfortunately there are too many ‘‘junk products’’, which were bought and dis-
posed after a little while because of missing functionality. Accordingly an
immense demand at new products arises and the product life cycle gets into an
imbalance. The great challenge is to produce less of those products, which waste
unnecessary resources and strongly pollute the environment. Instead of this the
focus has to be on manufacturing products, which fulfil the demands of their
functionality and are an enrichment for life [4].

Over decades Dieter Rams, chief designer and member of the board of the
company Braun, pursued the central idea of freeing the world from chaos and to
redesign it entirely. Already at an early age he strove for a good industry design,
which was rarely at that time. For Rams was the concentration on the essential
and the simultaneously elimination of irrelevant characteristics aspects for a
good design. Primarily the chaos has increased in the mass production in
whereas factors like noise and the pollution of the environment are strongly
weighted factors [5]. Everything starts in a small way. Also the beginning of
new products or its further development begins in a small way for example the
optimization of performance characteristics like a new user interface or an easier
handling.

‘‘Less but better! Much fewer but much better!’’ [6]. With these headwords
Dieter Rams has changed the design language decisively. Due to the consideration
that good design is not quantitatively measurable and that the world is over-
crowded with mass market products, within the early 1980s Dieter Rams thoughts
to himself what good design means for him. To canonize the bases of his work, he
wrote 10 theses in the form of characteristics which distinguish between good and
bad design: Good design is innovative, makes a product useful, is aesthetic, makes
a product understandable, is unobtrusive, is honest, is long-lasting, is thorough
down to the last detail, is environmentally-friendly and is as little design as pos-
sible [7].

This thesis arose from years of practice experiences and serves many design-
oriented enterprises as a rough guideline to this day. Design is compared with the
steady further development of today’s technology and culture also a part of it and
therefore develops as well [6].

Impact of Design on the Sustainability 15

The ‘‘10 thesis’’, which Dieter Rams strictly followed in his design philosophy,
reflect particularly the severe rationality. He put himself in the position of the user
intensively, showed great sense of responsibility and was convinced that nothing is
left to chance [5].

The German industry designer Dieter Rams was an idol for Jonathan Ive the
master designer from Apple on the topic of abstraction and simplification to the
necessary. While the creation of each new technical design blue print Apple leader
Steve Jobs and Apple designer Jonathan Ive followed Rams main principle ‘‘lesser
but better’’ when they thought about how to optimize the product’s design [8].
Steve Jobs developed his preference for a simple and functional design in Aspen,
where he participated each year in the ‘‘International Design Conference’’. Clear
lines and forms are a symbol of rationality and functionality. Jobs was a great
fellow of the Bauhaus-style, where the functionality and the essence of the
products are central and Jobs wanted that Apple products look like the high-tech
products of Braun, compact and bright. With this attitude he took the opposite
design-pattern to Sony, whose design-pattern more and more became industrial
black and heavy. Due to the introduction and evolution of their Walkman and
the concept that sometimes ‘‘less is more’’ has a greater use for users. Sony was the
first company to be successful on the portable player market. Helpful were the
coinstantaneous reduction for the sake of mobility and growing individualisation
[9].

Despite the fact that the Apple-products don’t have better technologies than
those of their competitive companies and that they are far more expensive, they
sell much better. It is agreed upon multiple facts that Apple’s homogeneous,
harmonic design with its logically elaborated and user-friendly design-strategy,
such as the image-based support campaigns for each single product released by
Apple and their costumer-orientated advertising, Apple is put in the good position
to have a continuous attractive product line-up [10].

According to the facts shown above, a label defines and separates itself from
other labels by its design. The reason to buy an Apple product is based on its high
design quality, which creates a significant additional value. Primary the costumers
trust in a label is decisive, which can be achieved throughout a good design. This
simultaneously defines the design’s additional value. Apple makes it possible for
others to recognize its stability by evolving its design value according to its design
strength and design continuity, which enables Apple to outdistance its competitors
[11].

Dieter Rams, according to the facts already shown, can be called the forefather
of the iPhone, which is characterized by its good design. Good design is till today a
minority, whereas non-useful things, which have no self-explanatory quality, are
far more common in most products. The environmental pollution takes place most
likely on the visual plane. Another problem is the optical attrition. Cultures and
with them the tastes blend into each other. A conclusion is that there are less
different forms and everything becomes more akin [7].

The Meaning of design for Apple as a design-orientated company is not just
beauty in its completeness rather than an amalgamation of three parts: The

16 H.-K. Arndt et al.

simplicity and honesty of the configuration, the integration of the designer from
the very start of the whole product development process and the equalisation of
inventor and artist. Through all the diverse, innovative technologies and new
challenges arise for the product design. The simplification of electronic devises
allowed a better handling and achieved an innovative aesthetic. The maximum
purism is not just the default for the outward appearance, but also for design of the
surface of the operating system and the software. By pressing the Home-button,
the only button the iPhone, the screen is activated and it appears a virtual slider,
which requests the user to slide it sideways. On the unlocked screen the user see’s
just an orthogonal grid of the already installed miniature programmes. This clearly
shows that the software is just as consequently simple designed as the hardware
and the casing, to make sure that it is understandable and clear for the broad class
of customers. Another fact is that the technology and the design must perform in
sync, because the design has a huge effect on the company alignment [12].

2.2 Types of App Applications

The Apps are basically divided in two concept groups. Applications that can just
be installed on own terminal devices and the existing operating system are also
known as native applications. The counter model is the web-applications. These
are the solutions, which are based on mobile optimized websites and download the
compatible components of the applications from the internet [1].

The most important feature of a native application is the user-friendly handling
that allows the immediate one-click-start of the App on the icon and a direct usage.
This eradicates to type in long website addresses, the waiting for the website to be
ready for usage and the scrolling and zooming if the website is not adjusted for the
mobile usage [1]. Native applications are designed according to the criteria of the
User Interface Guidelines platform and are developed and optimized for mobile
purpose [13]. They are quasi made out of one piece, because the handling and the
appearance are better adjusted to the devices than web-applications. Furthermore
are device specific functions like the camera, the movement sensor and the Global
Positioning System (GPS) useable without problems and allow the inventor the
comfortable integration of the functions into the Apps. Last but not least this sort
of Apps needs no active internet connection [1].

Another reason for the usage of the native Apps is the easy traceability in the
Apps-store [14]. Due to the fact that more and more platforms get on the market, is
the development of downloadable and self-installing Apps connected to a great
afford and risk in marketing. The disadvantage is its low range, because the
developer can’t reach the broad masses and have to build an individual App for
each of the significant operating systems. This problem does not only affect the
support and marketing, but also has a long-term effect that shouldn’t be under-
estimated. This long-term effect is primarily connected to the management of a
contemplated evolution after a launch [1]. Even if the major advantage of the

Impact of Design on the Sustainability 17

native Apps is their independence they must pass through a time consuming and
expensive certification process of the platform operator before they have to be
distributed on a store.

Aside the native ones there are the browser-based solutions, the so called web-
Apps, which more and more take the foreground role in the mobile industry. An
elegant universal solution tries to combine all relevant platforms to minimize the
development effort and costs [1]. To run a web-application a radio network for it
completely acts in a browser. Furthermore do those Apps have no access to
functions of the system such as the native Apps have [14]. Mobile web-Apps are
controlled over a web-address and that’s why they are independent from marketing
policies of other companies. In addition do not all terminal devices have the same
browser installed. All actually available browsers differ in their handling and
quality. Despite that the whole development is cheaper and costs less time than the
building and maintenance of a native App for all the today existing platforms [15].
The reason therefore is that a lot of companies are obliged in the software
development to convert the content and context of a website to the parameters of a
mobile terminal device [1].

In the meantime there appeared temporary solutions which usefully combine
the important advantages of both models. Starting point is a hybrid-App that is
based on a native-App core and a user-interface primarily based on standard-web-
technologies. For the user behavior it means that the App is no longer running in a
browser and is instead functioning like a native App.

This was enabled throughout the special frameworks named ‘‘PhoneGap’’
which allocates certain hardware functions via interfaces of web applications to
directly activate the needed components. Therefore only the web-based compo-
nents have to be developed by the company itself, because the native components
are already implemented in the frameworks for the particular platform. On behalf
of the native application it is possible to influence the individual device functions
and the App can be published and distributed in a store. As it is a web application
its development isn’t too complicated and doesn’t cause too much effort. The
advantage of a hybrid App is that the problem of the diversification of browsers
and operating systems is solved in a practical way [14]. The user has to waive in
such a temporary solution the ‘‘Look and Feel’’ of a native App, because the App
has to be compatible with many different operating systems [13].

An online survey of the agency ‘‘Culture to go’’ determines another rather
surprising development of a prognosticated percentage on the continued existence
of Apps of just 15 %. 41 of the 112 asked people said that the native App is just a
makeshift for the not yet fully developed browser-based applications. On the other
side 44 % think that both basic approaches can co-exist. Pure native Apps do have
the right to exist, because of the applications that get more complex like games,
navigation systems and they can be easily and targeted merchandised via the main
distribution channel the App-Store. On the other side will web-Apps remain,
because especially companies will use them based on their evolutionary advan-
tages to be in a future-orientated position and that they can be scalable long-term
solution [13].

18 H.-K. Arndt et al.

