

Neural Nets and Surroundings

22nd Italian Workshop on Neural Nets, WIRN 2012, May 17–19, Vietri sul Mare, Salerno, Italy

Smart Innovation, Systems and Technologies

Editors-in-Chief

Prof. Robert J. Howlett KES International PO Box 2115 Shoreham-by-sea BN43 9AF

UK

E-mail: rjhowlett@kesinternational.org

Dr. Lakhmi C. Jain Adjunct Professor University of Canberra ACT 2601 Australia

and

University of South Australia Adelaide

South Australia SA 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

Bruno Apolloni, Simone Bassis, Anna Esposito, and Francesco Carlo Morabito (Eds.)

Neural Nets and Surroundings

22nd Italian Workshop on Neural Nets, WIRN 2012, May 17–19, Vietri sul Mare, Salerno, Italy

Editors
Prof. Bruno Apolloni
Department of Computer Science
University of Milano
Milano
Italy

Dr. Simone Bassis Department of Computer Science University of Milano Milano Italy Prof. Anna Esposito
Department of Psychology
Second University of Naples
Caserta
Italy
and
Institute for Advanced Scientific

Institute for Advanced Scientific Studies (IIASS) Vietri sul Mare Salerno Italy

Prof. Francesco Carlo Morabito Department of Mechanics and Materials Mediterranea University of Reggio Calabria Reggio Calabria Italy

ISSN 2190-3018 ISBN 978-3-642-35466-3 DOI 10.1007/978-3-642-35467-0 e-ISSN 2190-3026 e-ISBN 978-3-642-35467-0

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012953656

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17–19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS).

The workshop, and thus this book, is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

More than 60 papers were presented at the Workshop, and most of them are reported here. The review process has been carried out in two steps, one before and one after the workshop in order to meet Publisher's requirements. The selection of the papers was made through peer-review process, where each submission was evaluated by at least two reviewers. The submitted papers were authored by peer scholars from different countries (the Italian component was anyway preponderant). The acceptance rate is thus high also because most of the attendees are involved in SIREN research and organization activities for more than 20 years. In addition to regular papers, the technical program featured keynote plenary lectures by some worldwide renowned scientist (Soo Young Lee, South Korea; Ganesh K. Venayagamoorthy, USA; Jacek Zurada, USA; Günther Palm, Germany; Alessandro Vinciarelli, UK; Danilo Mandic, UK). One of the two special sessions was supported by the EU-sponsored COST Action 2102 that closed his work on February 2011 even though the Members of the Action are still networking and collaborating in scientific activities.

The first Special Session explored the new frontiers and challenges in Smart Grid research and proposed a proficient discussion table for scientists joining the WIRN conference, whose expertise typically cover the research fields addressed in Smart Grid technology, as electrical and electronic engineering, computational intelligence, digital signal processing and telecommunications. The Session included two invited contributions and seven regular ones. The Session was particularly relevant because it introduced

some aspects of neural network applications not commonly known at the community in a field of growing interest.

The second Special Session was titled Computational Intelligence in Emotional or Affective Systems and was given in honour of John Taylor, the Editor-in-chief of the journal Neural Networks recently died. The Session featured two keynote lectures and 10 regular contributions. Computational Intelligence (CI) methods have shown great capabilities in modelling, prediction, and recognition tasks and a mature degree of understanding has been achieved in many application areas, in particular in complex multimodal systems supporting human-machine or human-human interaction. At the same time, the emotional issue has recently gained increasing attention in such complex systems due to its relevance in most common human tasks (like cognitive processes, perception, learning, communication and even "rational" decision-making) and therefore is highly relevant for the goal of human-like interaction with machines. The real challenge is taking advantage of the emotional characterization of humans to make the computer interfacing with them more natural and therefore useful. The scope of the session was to assess to what extent and how sophisticated computational intelligence tools developed so far might support the multidisciplinary research on the characterization of an appropriate system reaction to human emotions and expression in interactive scenarios.

We would like to thank all of the special sessions organizers, namely: Stefano Squartini, Rosario Carbone, Michele Scarpiniti, Francesco Piazza, Aurelio Uncini, Anna Esposito, Günther Palm.

The organization of an International Conference gathers for the efforts of several people involved. We would like to express our gratitude to everyone that has cooperate to the organization, by offering their commitment, energy and spare time to make this event a successful one.

May 2012

Bruno Apolloni Simone Bassis Anna Esposito Francesco Carlo Morabito

Organization

WIRN 2012 is organized by the Italian Society of Neural Networks (SIREN) in cooperation with the International Institute for Advanced Scientific Studies (IIASS) of Vietri S/M (Italy).

Executive Committee

Bruno Apolloni University of Milano, Italy Simone Bassis University of Milano, Italy

Anna Esposito University Federico II of Napoli, Italy

Francesco Masulli University of Genova, Italy

Francesco Carlo Morabito University Mediterranea of Reggio Calabria,

Italy

Francesco Palmieri Second University of Napoli, Italy

Eros Pasero Polytechnic of Torino, Italy

Stefano Squartini Polytechnic University of Marche, Italy

Roberto Tagliaferri University of Salerno, Italy

Aurelio Uncini University "La Sapienza" of Roma, Italy

Salvatore Vitabile University of Palermo, Italy

Program Committee

Conference Chair

Francesco Carlo Morabito University Mediterranea of Reggio Calabria,

Italy

Conference Co-Chair

Simone Bassis University of Milan, Italy

Program Chair

Bruno Apolloni University of Milan, Italy

Organizing Chair

Anna Esposito Second University of Napoli, Italy

Special Tracks

Anna Esposito Second University of Napoli, Italy Stefano Squartini Polytechnic University of Marche, Italy

Referees

G. Albano S. Funari M. Re B. Apolloni C. Furlanello A. Rizzi S. Bassis G. L. Galliani P. M. Ros A. Borghese S. Giove S. Rovetta F. Camastra G. Ippoliti A. Rozza W. Capraro F. La Foresta M. Russolillo R. Carbone G. Lombardi S. Scarpetta M. Scarpiniti M. Cardin M. Lucchese A. Ciaramella D. Malchiodi R. Serra C. Claudio U. Maniscalco G. Spagnuolo D. Comminiello C. Marco S. Squartini V. d'Amato F. Masulli A. Staiano R. de Rosa L. Menconi A. Uncini F. Epifania A. Micheli G. Valentini A. M. Esposito F. C. Morabito L. Valerio A. Esposito G. Palm M. Villani M. Faundez-Zanuy F. Palmieri S. Vitabile A. Filisetti E. Pasero O. Wei M. Frasca F. Piazza A. Zippo

Sponsoring Institutions

International Institute for Advanced Scientific Studies (IIASS) of Vietri S/M (Italy) Department of Psychology, Second University of Napoli (Italy)

Provincia di Salerno (Italy)

Comune di Vietri sul Mare, Salerno (Italy)

Contents

Part I: Algorithms

Probability Learning and Soft Quantization in Bayesian Factor Graphs Francesco A.N. Palmieri, Alberto Cavallo	3
Rival-Penalized Competitive Clustering: A Study and Comparison	11
An Interpretation of the Boundary Movement Method for Imbalanced Dataset Classification Based on Data Quality	21
Genetic Algorithm Modeling with GPU Parallel Computing Technology Stefano Cavuoti, Mauro Garofalo, Massimo Brescia, Antonio Pescape', Giuseppe Longo, Giorgio Ventre	29
An Experimental Evaluation of Reservoir Computation for Ambient Assisted Living Davide Bacciu, Stefano Chessa, Claudio Gallicchio, Alessio Micheli, Paolo Barsocchi	41
Balancing Recall and Precision in Stock Market Predictors Using Support Vector Machines	51
Measures of Brain Connectivity through Permutation Entropy in Epileptic Disorders	59
A New System for Automatic Recognition of Italian Sign Language	69

Fall Detection Using an Ensemble of Learning Machines	81
Part II: Signal Processing	
PM ₁₀ Forecasting Using Kernel Adaptive Filtering: An Italian Case	02
Study	93
A Collaborative Filter Approach to Adaptive Noise Cancellation	101
Waveform Variation of the Explosion-Quakes as a Function	111
of the Eruptive Activity at Stromboli Volcano	111
Artificial Neural Network (ANN) Morphological Classification of	
Magnetic Resonance Imaging in Multiple Sclerosis	121
Neural Moving Object Detection by Pan-Tilt-Zoom Cameras	129
Control of Coffee Grinding with General Regression Neural Networks Luca Mesin, Diego Alberto, Eros Pasero	139
Defects Detection in Pistachio Nuts Using Artificial Neural Networks	147
Part III: Applications	
LVQ-Based Hand Gesture Recognition Using a Data Glove	159
Investigation of Single Nucleotide Polymorphisms Associated to Familial	1.00
Combined Hyperlipidemia with Random Forests	169
Maria Nicoletta D'Agostino, Antonietta D'Angelo, Gennaro Marotta, Marco Gentile, Fabrizio Jossa, Arcangelo Iannuzzi, Paolo Rubba,	
Giuliana Fortunato	
A Neural Procedure for Gene Function Prediction	179
Handwritten Digits Recognition by Bio-inspired Hierarchical Networks Antonio G. Zippo, Giuliana Gelsomino, Sara Nencini, Gabriele E.M. Biella	189

Contents	XI
Forecasting Net Migration by Functional Demographic Model	201
Simulation Framework in Fertility Projections	209
Building a Global Performance Indicator to Evaluate Academic Activity Using Fuzzy Measures Marta Cardin, Marco Corazza, Stefania Funari, Silvio Giove	217
Testing the Weak Form Market Efficiency: Empirical Evidence from the Italian Stock Exchange	227
Part IV: Special Session on "Smart Grids: New Frontiers and Challenges"	
Real Time Techniques and Architectures for Maximizing the Power Produced by a Photovoltaic Array	239
Sustainable Energy Microsystems for a Smart Grid	259
SVM Methods for Optimal Management of a Virtual Power Plant	271
Active Power Losses Constrained Optimization in Smart Grids by Genetic Algorithms	279
Solar Irradiation Forecasting for PV Systems by Fully Tuned Minimal RBF Neural Networks Lucio Ciabattoni, Gianluca Ippoliti, Sauro Longhi, Matteo Pirro, Matteo Cavalletti	289
Ontology-Based Device Configuration and Management for Smart Homes	301
A Comparison between Different Optimization Techniques for Energy Scheduling in Smart Home Environment	311

Part V:	Special S	Session on	"Compu	ıtational	Intelligence
	in Emot	ional or A	Affective S	Systems"	O

Towards Emotion Recognition in Human Computer Interaction	323
Towards Causal Modeling of Human Behavior	337
How Social Signal Processing (SSP) Can Help Assessment of Bonding Phenomena In Developmental Psychology?	345
Emotion and Complex Tasks: Writing Abilities in Young Graders	357
A Preliminary Study of Online Drawings and Dementia Diagnose	367
Hand-Based Gender Recognition Using Biometric Dispersion Matcher Xavier Font-Aragones, Marcos Faundez-Zanuy	375
Revisiting AVEC 2011 – An Information Fusion Architecture	385
Discriminating Human vs. Stylized Emotional Faces: Recognition Accuracy in Young Children	395
Emotional Status Determination in HCI Interface for the Paralyzed	405
Emoticons Signal Expertise in Technical Web Forums	415
Machine Learning and Soft Computing Methodologies for Music Emotion Recognition	427
Homo-Machina Visual Metaphors, Representations of Consciousness and Scientific Thinking	437
Author Index	453

Part I Algorithms

Probability Learning and Soft Quantization in Bayesian Factor Graphs

Francesco A.N. Palmieri and Alberto Cavallo

Dipartimento di Ingegneria Industriale e dell'Informazione Seconda Universitá di Napoli (SUN) via Roma 29, 81031 Aversa (CE), Italy {francesco.palmieri,alberto.cavallo}@unina2.it

Abstract. We focus on learning the probability matrix for discrete random variables in factor graphs. We review the problem and its variational approximation and, via entropic priors, we show that soft quantization can be included in a probabilistically-consistent fashion in a factor graph that learns the mutual relationship among the variables involved. The framework is explained with reference the "Tipper" example and the results of a Matlab simulation are included.

Keywords: Machine Learning, Factor Graphs, Bayesian Methods.

1 Introduction

Probability propagation on graphs is a very promising emerging paradigm for building intelligent signal processing systems [12]. Algorithms and applications are under development in many areas of research that range from communication and coding to signal processing and control. However, full use and development of artificial intelligence systems that operate with probability propagation techniques require refinements on a number of critical issues. Some of these are: 1. Propagation in graphs with cycles [1]; 2. Parameter learning [8]; 3. Graphstructure learning [13]; 4. Propagation and learning in hybrid graphs with both continuous and discrete variables; etc. In this paper we focus on learning the probability matrix in discrete-variable factor graphs [7] [6] pointing to a connection to variational learning 5 3 2 18 19. We apply the idea to a generic block where the whole probability matrix is learned from examples. Recent development on inference based on entropic priors 15 14 allows the introduction of soft quantization within the Bayesian graph framework much like in fuzzy logic [17]. Entropic priors allow to translate some of the successful heuristics typical of the fuzzy framework, into a probabilistically-consistent Bayesian learning paradigm on factor graphs. Soft logic formulated within standard probability theory 10 coupled with belief propagating on factor graphs represents a very promising framework to bring to a higher cognitive level many of the current signal processing problems. In our formulation we use factor graphs in Forney's normal

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 3–10. DOI: 10.1007/978-3-642-35467-0 1 © Springer-Verlag Berlin Heidelberg 2013

form [11], because they are easier to handle in comparison to more traditional Bayesian graphs [16].

In this paper we first review the problem of learning the probability matrix pointing to a connection with variational message passing. Then we briefly introduce soft quantization with entropic priors and finally we apply the ideas to the well-known Tipper example. The results of a simulation show how this framework implements a very natural dynamic merge of inference and learning.

2 Learning the Probability Matrix

Probabilistic inference in factor graphs via message propagation is a relatively mature technique, at least in graphs with no cycles, when the conditional probability functions that make up the model are known \square . A much harder problem is learning the model parameters on line, i.e. performing inference and learning at the same time. To focus on the specifics of this issue we start with the simplest (non trivial) factor graph of Figure \square that models N independent realizations of two random variables $X \in \mathcal{X} = \{\xi_1, ..., \xi_d\}$ and $Y \in \mathcal{Y} = \{\eta_1, ..., \eta_m\}$. The variables are discrete and take values in the two alphabets \mathcal{X} and \mathcal{Y} and are related via the unknown conditional probability matrix

$$P(Y|X\Theta) = \begin{pmatrix} p(\eta_1|\xi_1) \dots p(\eta_m|\xi_1) \\ p(\eta_1|\xi_2) \dots p(\eta_m|\xi_2) \\ \vdots & \vdots \\ p(\eta_1|\xi_d) \dots p(\eta_m|\xi_d) \end{pmatrix} = \Theta = \begin{pmatrix} \Theta_{11} \dots \Theta_{1m} \\ \Theta_{21} \dots \Theta_{2m} \\ \vdots & \vdots \\ \Theta_{d1} \dots \Theta_{dm} \end{pmatrix}, \tag{1}$$

with $0 \leq \Theta_{ij} \leq 1$, i = 1, ..., d, j = 1, ..., m; $\sum_{j=1}^{m} \Theta_{ij} = 1$, i = 1, ..., d. The unknown parameters make up the matrix $\Theta \in \mathcal{T}$, where \mathcal{T} denotes the set of all $d \times m$ stochastic matrices. Since the structure of Figure \mathbb{I} may be part of a more complex network, we assume that information on X[n] and Y[n] is available in

Fig. 1. The factor graph for N independent realizations of (X[n], Y[n])

soft form via forward and backward distributions $f_{X[n]}(x)$, $b_{X[n]}(x)$, $f_{Y[n]}(y)$ and $b_{Y[n]}(y)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Also information about matrix Θ is carried by forward and backward messages $f_{\Theta[n]}(\theta)$ and $b_{\Theta[n]}(\theta)$ which are matrix functions. These messages are related to each other via marginalization as

 $\begin{array}{l} f_{Y[n]}(y) \propto \int_{\theta \in \mathcal{T}} \sum_{x \in \mathcal{X}} P(y|x\theta) f_{X[n]}(x) f_{\Theta[n]}(\theta) d\theta; \\ b_{X[n]}(x) \propto \int_{\theta \in \mathcal{T}} \sum_{y \in \mathcal{Y}} P(y|x\theta) b_{Y[n]}(y) f_{\Theta[n]}(\theta) d\theta; \\ b_{\Theta[n]}(\theta) \propto \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(y|x\theta) b_{Y[n]}(y) f_{X[n]}(x). \end{array}$

As usual in factor graphs, the notation \propto means that the expressions are distributions except for proper normalization. The complete model is hybrid because X[n] and Y[n] are discrete and Θ is continuous and multi-dimensional. In a more compact matrix representation, forward and backward messages for X[n] and Y[n] are the column vectors

and
$$I[n]$$
 are the column vectors $\mathbf{f}_{X[n]} = (f_{X[n]}(\xi_1), ..., f_{X[n]}(\xi_d))^T; \ \mathbf{b}_{X[n]} = (b_{X[n]}(\xi_1), ..., b_{X[n]}(\xi_d))^T; \ \mathbf{f}_{Y[n]} = (f_{Y[n]}(\eta_1), ..., f_{Y[n]}(\eta_m))^T; \ \mathbf{b}_{Y[n]} = (b_{Y[n]}(\eta_1), ..., b_{Y[n]}(\eta_m))^T.$ Therefore we can write

$$\mathbf{f}_{Y[n]} \propto \int_{\theta \in \mathcal{T}} \theta^T \mathbf{f}_{X[n]} f_{\Theta[n]}(\theta) d\theta = F_{\theta[n]}^T \mathbf{f}_{X[n]};$$

$$\mathbf{b}_{X[n]} \propto \int_{\theta \in \mathcal{T}} \theta \mathbf{b}_{Y[n]} f_{\Theta[n]}(\theta) d\theta = F_{\theta[n]} \mathbf{b}_{Y[n]},$$

where $F_{\theta[n]} = \int_{\theta \in \mathcal{T}} \theta f_{\Theta[n]}(\theta) d\theta$ is the mean forward matrix for $\Theta[n]$. The backward message for $\Theta[n]$ is the matrix function

$$b_{\Theta[n]}(\theta) \propto \mathbf{f}_{X[n]}^T \theta \mathbf{b}_{Y[n]} = \mathbf{f}_{X[n]}^T \begin{pmatrix} \theta_{11} \dots \theta_{1m} \\ \theta_{21} \dots \theta_{2m} \\ \vdots \dots \vdots \\ \theta_{d1} \dots \theta_{dm} \end{pmatrix} \mathbf{b}_{Y[n]}. \tag{2}$$

Messages for $\Theta[n]$ and $\Theta'[n]$ in the other branches are formally the result of the product rule $f_{\Theta[n]}(\theta) \propto f_{\Theta'[n]}(\theta) b_{\Theta'[n-1]}(\theta)$; $b_{\Theta'[n]}(\theta) \propto b_{\Theta[n]}(\theta) b_{\Theta'[n-1]}(\theta)$; $f_{\Theta'[n]}(\theta) \propto b_{\Theta[n+1]}(\theta) f_{\Theta'[n+1]}(\theta)$. Each message is a product of the type

$$\mu_{\Theta}(\theta) \propto \prod_{l} \mathbf{f}_{X[l]}^{T} \begin{pmatrix} \theta_{11} \dots \theta_{1m} \\ \theta_{21} \dots \theta_{2m} \\ \dots \\ \theta_{d1} \dots \theta_{dm} \end{pmatrix} \mathbf{b}_{Y[l]} = \prod_{l} \sum_{i=1}^{d} \sum_{j=1}^{m} b_{Y[l]}(\eta_{j}) f_{X[l]}(\xi_{i}) \theta_{ij}$$
(3)

If variables X[n] and Y[n] of block n are instantiated, i.e. forward and backward messages are delta functions, $f_{X[n]}(x) = \delta(x-\xi_i)$, $b_{Y[n]}(x) = \delta(y-\eta_j)$, backward information from block n is simply $b_{\Theta[n]}(\theta) \propto \theta_{ij}$. If also all variables from all n are instantiated, information exchanged among the blocks (except possibly for the prior on Θ) are exactly products of Dirichlet distributions

$$\mu_{\Theta}(\theta) \propto \prod_{i=1}^{d} \prod_{j=1}^{m} \theta_{ij}^{n_{ij}} \propto \prod_{i=1}^{d} Dir(\theta_{i1}, ..., \theta_{im}; n_{i1} + 1, ..., n_{im} + 1),$$
 (4)

where n_{ij} are the integer numbers that represent the cumulative counts of the occurrences of pair (i, j) (hard scores). Unfortunately, in the general case we are

interested in with forward and backward messages carrying soft information, expression (3) becomes intractable. Hence we resort to a variational approximation $5 \ 3 \ 8$ for $b_{\Theta[n]}(\theta)$ that gives

$$b_{\Theta[n]}^{V}(\theta) \propto e^{\sum_{i=1}^{d} \sum_{j=1}^{m} b_{Y[n]}(\eta_{j}) f_{X[n]}(\xi_{i}) \log \theta_{ij}} = \prod_{i=1}^{d} \prod_{j=1}^{m} \theta_{ij}^{b_{Y[n]}(\eta_{j}) f_{X[n]}(\xi_{i})} \\ \propto \prod_{i=1}^{d} Dir(\theta_{i1}, ..., \theta_{im}; f_{X[n]}(\xi_{i}) b_{Y[n]}(\eta_{1}) + 1, ..., f_{X[n]}(\xi_{i}) b_{Y[n]}(\eta_{m}) + 1),$$
 (5)

which is again the product of d Dirichlet distributions. This is particularly interesting because the Dirichlet distribution, sometimes used as an assumption [7] [19], is exactly the variational approximation. Assuming that also the prior distribution π_{Θ} is a product of Dirichlet functions

$$\pi_{\Theta} \propto \prod_{i=1}^{d} Dir(\theta_{i1}, ..., \theta_{im}; \alpha_{i1} + 1, ..., \alpha_{im} + 1).$$

A generic message in the upper branches has the form

$$\mu_{\Theta} \propto \prod_{i=1}^{d} Dir(\theta_{i1}, ..., \theta_{im}; \alpha_{i1} + \sum_{l} f_{X[l]}(\xi_{i})b_{Y[l]}(\eta_{1}) + 1, ..., \alpha_{im} + \sum_{l} f_{X[l]}(\xi_{i})b_{Y[l]}(\eta_{m}) + 1).$$
 (6)

A priori knowledge about the rule that maps X into Y can also be easily included in the coefficients of π_{Θ} . The exponential form for the variational approximation suggests that matrix variables $\Theta[n]$ and $\Theta'[n]$ could be replaced with soft score matrix variables O[n] and O'[n]. Backward message from block n becomes matrix $b_{O[n]} = \mathbf{f}_{X[n]} \mathbf{b}_{Y[n]}^T$. Also all messages in the upper branches become $d \times m$ matrices with combination rules $f_{O[n]} = f_{O'[n]} + b_{O'[n-1]}$; $b_{O'[n]} = b_{O[n]} + b_{O'[n-1]}$; $f_{O'[n]} = b_{O[n+1]} + f_{O'[n+1]}$. Forward and backward messages for Y[n] and X[n] are respectively $\mathbf{f}_{Y[n]} \propto F_{O[n]}^T \mathbf{f}_{X[n]}$; $\mathbf{b}_{X[n]} \propto F_{O[n]} \mathbf{b}_{Y[n]}$, where $F_{O[n]}$ is the rownormalized version of $f_{O[n]}$. Note that these propagation rules represent the learning steps for Θ as inference and learning happen at the same time. Recall that the various stages in the graph represent time-unfolded versions of the same block. Mode details and proofs will be reported in a longer paper.

3 Soft Quantization

Manipulation of discrete quantities in machine learning, also when the problem involves continuous variables, may be particularly handy, because a priori qualitative information can be more easily injected into the system. Fuzzy methods [17] have shown great success in merging soft knowledge with hard functions especially in control [9]. In [15] we have shown how the use entropic priors in the Bayesian framework allowing the introduction of soft membership information in a way that is consistent within standard probability theory. This is a crucial step to allow soft quantization and coherent use of probability propagation for inference and learning in systems that contain both continuous and discrete variables.

Figure 2 shows a quantization scheme for a continuous variable S_a . All the likelihoods are triangular, complementary and centered on the M nodes $\xi_1, ..., \xi_M$. Denoting the triangular function on a, b, c with $\Lambda(s_a; a, b, c)$, the M pdfs are

$$\left\{ \frac{2}{\xi_2 - \xi_1} \Lambda(s_a; \xi_1, \xi_1, \xi_2), \frac{2}{\xi_3 - \xi_1} \Lambda(s_a; \xi_1, \xi_2, \xi_3), \\ \dots, \frac{2}{\xi_M - \xi_{M-2}} \Lambda(s_a; \xi_{M-2}, \xi_{M-1}, \xi_M), \frac{2}{\xi_M - \xi_{M-1}} \Lambda(s_a; \xi_{M-1}, \xi_M, \xi_M) \right\},$$
(7)

and are shown in Figure $\mathbb{Z}(a)$. The differential entropy $\mathbb{Z}(a)$ of $\Lambda(s_a;a,b,c)$ is easily computed to be $h(S_a) = \frac{1}{2} + \log \frac{c-a}{2}$. With entropic priors $\pi_i \propto e^{h(S_a|i)}$ 15, the prior-likelihood products, become equivalent to a set of functions with same height as in Figure 2(b). We recall that entropic priors are the distribution that maximize the joint entropy $H(S_a, S)$ for fixed likelihoods $(p_{S_a}(s_a|1),...,p_{S_a}(s_a|M))$ [15]. The node distribution can be chosen according to the data points density, but the complementarity of the likelihoods guaratees that no information is lost after soft quantization. Figure (2(b)) shows also how this kind of soft quantization can be drawn as a generative factor graph model that can be inserted into a larger factor graph. The backward message for S_a is a data point $b_{S_a}(s_a) = \delta(s_a - s_0)$. The backward message for S^1 in vector notation is $\mathbf{b}_{S^1} = (p_{S_a}(s_0|1), ..., p_{S_a}(s_0|M))^T$ that after combination with entropic priors becomes $\mathbf{f}_{S^2} = (p_{S_a}(s_0|1)\pi_1, ..., p_{S_a}(s_0|M)\pi_M)^T$. The soft quantization model satisfies a property of perfect recostruction because if $\mathbf{b}_{S^2} = \mathbf{b}_{S^1}$, we have $\mathbf{f}_{S^1} = \mathbf{f}_{S^2}$ and $f_{S_a}(s_a) = \delta(s_a - \mathbf{f}_{S^1}^T(\xi_1, ..., \xi_M)^T) = \delta(s_a - s_0)$ (lossless dequantization). More details about soft quantization with entropic priors will be reported in a longer paper elsewhere.

Fig. 2. Soft quantization on nodes $\{\xi_1, ..., \xi_M\}$. (a) The triangular likelihoods; (b) The entropic priors-likelihoods products.

4 The Tipper Example

In this paper we report some experiments with the variational learning rules of Section 2 and with the soft quantization scheme of Section 3 on the well-known "Tipper" example. In this problems there are three continuous variables: S_a (Service), F_a (Food) and T_a (Tip). The Tipper example, often used as a teaching example in control classes (there is a Matlab demo available in the Fuzzy Control Toolbox), is a typical case of mapping between two input variables (Service and Food) and a final one (Tip). In the fuzzy framework is also very easy to include soft rules and various design constraints. Our objective is here to traslate this typical approach into a probabilistically-consistent Bayesian framework. The underlying factor graphs shown in Figure 4 in which messages travel back and forth, allows simultaneous inference and learning with inputs and outputs that become essentially indistinguishable.

Even though a priori soft-logic rules can be easily included as contraints in the prior block π_{Θ} , we have assumed here no prior knowledge about the variables S_a , F_a and T_a . We have simply presented 50 realizations of the triplet as f_{S_a} , f_{F_a} and f_{T_a} and let the system learn (simulations with combinations of soft rules and examples will be reported elsewhere). The triplets were obtained from a blind run of the Matlab demo. Forward and backward messages carry information in various parts of the system and inferences can also be made backward on Service and/or Food from Tip.

The graph structure assumes that variables Service and Food are mutually independent and that the N=50 realizations are also statistically independent. The three analog variables S_a , F_a and T_a are soft quantized from ranges [0-10][0-10][5-25] with M=6 uniformly spaced nodes each into the three discrete variables S, F and T. Entropic priors are imposed in π_S , π_F and π_T . The 36×6 matrix of conditional probabilities $P(T|SF\Theta)$ is learned via message propagations with the variational algorithm described in Section 2 The simulations let the messages propagate 300 steps which is enough to cover the graph diameter. The graph is clearly a tree and convergence is guaranteed. Figure 4 shows the comparison of forward and backward information at each stage n. The thre plots show the comparison of the actual value of each variable, as carried by the backward input message, with the value provided by the rest of the system, as carried by the forward output message that uses all the other inputs after learning and propagation. Note that learning and inference is all done at the same time since information about the parameter θ are also carried by travelling messages. The simulation is self-contained and implements our best use of the data because the inference, say on $T_a[n]$, is based on all the examples except the one on $T_a[n]$. This is because $f_{\Theta[n]}$ does not contain information coming from $b_{\Theta[n]}$. Hence each stage n uses a slightly different estimate for $P(T|SF\Theta)$ because the nth examples is automatically excluded. Therefore in inferring $T_a[n]$, values of $S_a[n]$ and $F_a[n]$ are used for inference, but not for learning. The same considerations apply to inferences on $S_a[n]$ and $F_a[n]$.

Fig. 3. The factor graph for the Tipper example

 $\bf Fig.\,4.$ Comparison of forward (inference) (*) and backward (true) (o) values for the three variables in the Tipper example

Conclusions

In this work we have reported partial results for a successful Bayesian paradigm that implements via message propagation on a factor graph simultanaous inference and learning. By means of an example, we have also proposed a quantization scheme, that via the introduction of entropic priors, allows us to build a probabilistically-consistent graph that can adapted with belief propagation. More work will be devoted to further understanding of the adaptation rules and on the inclusion of soft-logic contraints.

References

- Graphical models emerge. new connections between machine learning and signal processing. Signal Processing Magazine, 27(6) (2010)
- Beal, M.J.: Variational algorithms for approximate bayesian inference. Ph.D. thesis, University of London (2003)
- 3. Beal, M.J., Ghahramani, Z.: Variational bayesian learning of directed graphical models with hidden variables. Bayesian Analysis 1, 1–44 (2004)
- 4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2006)
- Dauwels, J.: On variational message passing in factor graphs. In: ISIT2007, Nice, France, June 24-June 29 (2007)
- 6. Ghahramani, Z.: Unsupervised Learning. Springer (2004)
- 7. Heckerman, D.: A tutorial on learning with bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Research (1996); March 1995 (Revised November 1996)
- Dauwels, J., Eckford, A., Loeliger, S.K., Expectation, H.A.: xpectation maximization as message passing–part i: Principles and gaussian messages. arXiv:0910, 1–14 (2009); Submitted to IEEE Tr. on Information Theory
- 9. Jantzen, J.: Foundations of Fuzzy Control. Wiley (2007)
- Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press (2003)
- Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Processing Magazine 21(1), 28–41 (2004)
- Loeliger, H.A., Dauwels, J., Hu, J., Korl, S., Ping, L., Kschischang, F.: The factor graph approach to model-based signal processing. Proceedings of the IEEE 95(6), 1295–1322 (2007)
- Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree graphical models. Journal of Machine Learning Research 12, 1771–1812 (2011)
- Palmieri, F.A.N., Ciuonzo, D.: Entropic priors for short-term stochastic process classification. In: 14th Int. Conf. on Information Fusion, Chicago, IL (2011)
- Palmieri, F.A.N., Ciuonzo, D.: Objective priors from maximum entropy in data classification. In: Information Fusion (2012), doi:10.1016/j.inffus.2012.01.012
- Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)
- 17. Novak, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Press (1999)
- Winn, J., Bishop, C.M.: Variational message passing. Journal of Machine Learning Research 6, 661–694 (2005)
- Winn, J.M.: Variational message passing and its applications. Ph.D. thesis, University of Cambridge (2004)

Rival-Penalized Competitive Clustering: A Study and Comparison

Alberto Borghese and Wiliam Capraro

Applied Intelligent Systems Laboratory, Dept. of Comupter Science, University of Milano borghese@di.unimi.it, wiliam.capraro@studenti.unimi.it

Abstract. A major recurring problem in exploratory phases of data mining is the task of finding the number of clusters in a dataset. In this paper we illustrate a variant of the competitive clustering method which introduces a rival penalization mechanism, and show how it can be used to solve such problem. Additionally, we present some tests aimed at comparing the performance of our rival-penalized technique with other classical procedures.

1 Introduction

The term central clustering refers to a family of clustering algorithms that are based on moving a set of points, referred to as prototypes, inside the data space until their position minimizes a certain cost function, representing a measure of the goodness by which the prototypes represent the data points.

In the literature, approaches based on soft-clustering, like fuzzy c-means [14], Neural-Gas [13]4] or Self-Organizing Maps (SOM) [6]16], and competitive learning [5]15]12], have been proposed to partition a given dataset into a predefined number of clusters, each one represented by a prototype usually corresponding to the cluster centroid. All these algorithms suffer from several issues, most notably, the optimal value of the cost function is rarely reached. Only stochastic optimization [10], that is extremely costly, or a careful initialization of the prototypes allow escaping local minima. Although a few attempts have been proposed to derive a robust initialization (e.g. [11]), there seem to be no universal and reliable way to proceed, and some prototypes typically get stuck during the clustering process. These prototypes are referred to as "dead units" [13] and affect the proper operation of the algorithm and the quality of the result. As a consequence, the general approach is to repeat the clusterization process several times with different, random initializations of the prototypes, so as to allow the algorithm to escape from local minima from time to time.

A slightly different task is to find the number of clusters in a dataset (e.g. [3]). This is indeed a frequent problem in exploratory phases of data mining, and a straightforward approach is to adopt a parameterized version of a clustering algorithm using the desired number of data clusters K as parameter and to try a different clusterization for each possible value of the parameter. Subsequently, the best result would be chosen based on some validity measure or index.

However, it is impractical to run several random initializations of one algorithm for each possible values of its parameter, especially when the latter spans a wide interval of

values. Alternatively, in some cases it is possible to exploit the intrinsic characteristics of some algorithms to produce dead units (e.g. [6]), to facilitate the search for a good solution.

Recently, in the framework of central clustering, a different approach has been proposed for moving the prototypes. The idea is that, while the winning prototype is attracted by the closest data point, other prototypes are moved in the opposite direction. This mechanism, known as rival-penalization [5][5], is somehow similar to the BCM model proposed by Bienenstock, Cooper and Munro [9] in a typical Hebbian learning fashion.

Rival-penalization clustering has been overlooked in the past. In this paper we present the results of some tests we performed, aimed at comparing the rival-penalization approach with classical clustering techniques, namely standard competitive learning and SOM. The ability of rival-penalization of discovering the proper number of clusters in a given dataset is analysed and discussed. Specifically, we show that, by introducing the rival penalization mechanism into a competitive learning setting, results comparable with soft-clustering can be achieved. Moreover, the number of clusters can be discovered in a robust and reliable way.

2 Algorithms

We'll consider a collection of N d-dimensional observations, $\{\xi_j\}$. Goal of clustering algorithms is to assign each observation to one of K clusters Ψ_i , according to a similarity measure with the other elements in the same cluster. Each cluster is represented by its centroid, ψ_i , which is also a point in \mathbb{R}^d .

The following subsections give a quick coverage of the algorithms we employed.

2.1 Competitive Learning and Rival Penalization

Competitive learning (CL) is an effective tool for data clustering, widely applied in a variety of signal processing problems such as data compression, classification, adaptive noise cancelation, image retrieval and image processing [2].

For the purposes of this contribution, a feed-forward neural network with a single layer consisting of K output units is used to achieve a K-cluster data partitioning. Each unit represents a cluster centroid ψ_i .

The training of the network proceeds as follows. At each iteration, each data point ξ is presented in turn to the network and a winning unit, w, is elected. This is the prototype whose Euclidean distance from the point is minimum:

$$w = \arg\min_{i} \|\xi - \psi_{i}\|. \tag{1}$$

Subsequently, the position of the winning unit is updated towards the data point using the following updating rule

$$\psi_{wj} = \psi_{wj} + \eta_{(t)}(\xi - \psi_w) \tag{2}$$

where *j* denotes a component of the prototype vector and $\eta_{(t)}$ is a learning rate parameter whose value decays as a function of the time *t*.

In a pure competitive learning setting, only the winning unit is updated. The procedure is repeated multiple times for each data point, until the prototypes converge to their final position—i.e. when the maximum difference in the position of any centroid in two successive iterations is smaller than a fixed tolerance ε , or when a maximum number of iterations is reached.

The prototypes are initialized using the "Forgy" approach —i.e. *K* of the available data points are randomly chosen to serve as cluster prototypes. In this context, this is enough to guarantee that no dead unit will ever appear, as every prototype shall win the competition for at least one data point, that is, the prototype itself.

The rival-penalized competitive learning (RPCL) algorithm improves on the pure competitive learning approach by introducing a rival penalization mechanism, as proposed in [5] and [15]. With this approach, not only the position of the winning unit is updated towards the input vector, but additionally the position of its rival unit is updated in the opposite direction.

In order to find the winning unit and its rival, a relative winning frequency is introduced, which keeps track of how many times each unit happens to win a competition for some input vector. The relative winning frequency for unit *i* is defined as

$$\gamma_i = \frac{s_i}{\sum_{j=1}^K s_j} \tag{3}$$

where s_i is the number of times unit i was declared winner in the past. When $\sum_{j=1}^{K} s_j = 0$ —i.e. initially, then $\gamma_i = 1$ in order to give every prototype a fair chance to win.

The winning unit w for an input vector ξ is now given by

$$w = \arg\min_{i} \gamma_{i} \|\xi - \psi_{i}\|. \tag{4}$$

Notice how the parameter γ_i acts as a "conscience" for the unit—if the unit has won too often in the past, its chances to win the competition for the current data point are reduced accordingly. Moreover, for each input vector ξ , the rival penalized competitive learning algorithm computes not only the winning unit w, but also a second winning unit, referred to as the rival, defined by

$$r = \arg\min_{i} \gamma_{i} \|\xi - \psi_{i}\|, \ i \neq w.$$
 (5)

Equation \square is used to update both the winner and its rival. The latter, however, moves away its centroid from the input point with a de-learning rate β , which is related to η by

$$\beta_{(t)} = -c\eta_{(t)}\gamma_r \tag{6}$$

where γ_r is the relative winning frequency of the rival and c = 1/10 is a predefined constant. Unlike the implementation of [5], here β depends on both the learning rate η and the winning frequency γ_r , so that the rival is dynamically penalized according to γ_r even for constant η (which is not the case anyway).

In contrast to the CL algorithm, here a "Forgy" initialization of the prototypes is not enough to guarantee dead unit avoidance. In fact, even if the prototypes are initialized using the input data points, depending on the de-learning rate β , a rival unit may incur

considerable modification in the value of its prototype, and thus it can fail to win the competition even for the input data point to which it had been initialized.

What is interesting with this approach is that, as reported in [5], if the learning rate η is chosen to be at least one order of magnitude larger than β , then the adequate number of output clusters will be automatically found. In other words, assuming that the actual number of clusters is unknown and that the number of units K is chosen greater than the cluster number, the prototype vectors will converge towards the centroids of the actual clusters with few of them overlapping in space. In our implementation, this condition holds in each iteration as c = 1/10. In each iteration, the RPCL algorithm pushes away the rival, thus allowing for faster convergence, and invalidates extra prototypes by eventually making their cluster empty. Hence, the RPCL algorithm is believed to be able to perform appropriate clustering without knowing the cluster number.

2.2 **SOM**

The limitation of considering only one data point at a time in competitive learning has been overcome by soft-clustering approaches [2] in which the position of all the prototypes is updated for each data point. Among these approaches, Self-Organizing Maps (SOMs) represent an excellent tool in exploratory phases of data mining. They project the input space onto prototypes in a low-dimensional regular grid that can be effectively used to visualize and explore properties of the data. The SOM consists of a regular, one- or two-dimensional grid of units, with each unit i represented by its prototype vector ψ_i . Additionally, each unit i is assigned a place in the output grid, represented by its coordinates $r_i = (x_i, y_i)$, and the units are logically linked to adjacent ones by a neighborhood relation. During training, data points lying near each other in the input space are mapped to nearby units in the output hyperplane. Thus, the SOM can be regarded as a topology-preserving tool for mapping the input space onto the output grid.

The SOM is trained iteratively. At each training step, a data point ξ is randomly chosen from the input data set, and the distance between ξ and all the prototype vectors is computed. Subsequently, all prototype vectors are updated, each proportionally to the distance of the corresponding unit from the winning unit in the output grid:

$$\psi_{ij} = \psi_{ij} + \eta_{(t)} \Lambda(i, w) (\xi - \psi_i). \tag{7}$$

In the hereabove equation $\Lambda(i, w)$ denotes the value of the neighborhood function between unit i and the winning unit w, as given by

$$\Lambda(i, w) = \exp\left(-\frac{\|r_i - r_w\|^2}{2\sigma^2}\right) \tag{8}$$

where the parameter σ defines the radius of the neighborhood. $\Lambda(i,w)$ therefore defines a region of influence for the prototype w. Notice that the value of Λ is exactly 1 when i=w, and decreases as the distance of the prototype from the other data points increases. Also, it is useful to adjust the radius as well as the learning rate at each iteration, so that the influence region of a prototype decays with time as a function of σ and η .

In this work, we are mainly concerned with the SOM's ability to perform appropriate clustering of a given data set. Thus, only SOMs with one-dimensional output arrays are actually used. As stated in [16], this configuration is expected to produce better results as compared to the 2-dimensional grid configuration. This is due to the fact that the "tension" exerted in each unit by the neighboring units is much higher in the second configuration, and such a tension limits the plasticity of the SOM to adapt to the particular distributions of the dataset.

3 Experimental Setting and Test Results

In order to test the algorithms, we have generated a specific dataset containing 250 3-d data points distributed over 5 non-overlapping clusters. It has been generated by perturbating the centroid of each cluster with a Gaussian distribution with mean value 0 and variance 1.

Since the resulting clusterization depends strongly on the initialization of prototypes, it is essential that each algorithm be tested several times with different initializations. For our tests, 60 "Forgy" initializations (which we'll refer to as trials) have been generated and evaluated for each algorithm. This should be enough to overcome random fluctuations.

As to the tests we conducted, they can be divided into two types. In a first type thereof—we call it type-A experiment—we focused on a specific algorithm and tried to partition our dataset varying the cluster number from K = 2 to K = 10. (And for each K, 60 trials have been performed as described before.) On the other hand, in type-B experiments we tested 60 trials of an algorithm with a fixed value of K but varying the parameters of the algorithm instead.

In our tests, the validity of the resulting clusterization is evaluated by means of quality indexes, and the number of iterations required by the algorithm to converge was also measured. The quality indexes used are the Davies-Bouldin (DB) index and the mean quadratic error (MQE). The mean quadratic error is simply the ratio of the sum of all the squared distances of each data point from its cluster prototype to the total number of data points:

$$MQE = \frac{\sum_{i=1}^{K} \sum_{\xi \in \Psi_i} \|\xi - \psi_i\|^2}{\sum_{i=1}^{K} |\Psi_i|}.$$
 (9)

The Davies-Bouldin index is defined as

$$DB = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \left\{ \frac{S_i + S_j}{\|\psi_i - \psi_j\|} \right\}$$
 (10)

where S_i is the within *i*-th cluster scatter, as given by

$$S_i = \sqrt{\sum_{\xi \in \Psi_i} \frac{\|\xi - \psi_i\|^2}{|\Psi_i|}}.$$
 (11)

For a detailed review of these and other cluster validity measures see [8]. Notice that it is geometrically plausible to seek clusters that have minimum within-cluster scatter

and maximum between-class separation, so the number of clusters \bar{K} that minimizes the Davies-Bouldin index can be reasonably taken as the optimal value of K. As reported in [8], for well-separated clusters, the Davies-Bouldin index is expected to decrease monotonically as K increases until the correct number of clusters is achieved.

In all the tests conducted, we fixed a tolerance of $\varepsilon = 0.001$ and the maximum number of iterations was set to 500. It should be enough for the algorithms to produce good clusterizations given the time-decay rule for η adopted, which is

$$\eta_{(t)} = \exp\left(-\frac{t}{50}\right) \cdot \eta_0 \tag{12}$$

where $\eta_0 = 0.1$ is the initial value and t = 0, 1, ... is the iteration number. In the remaining of this section we illustrate the results of our tests.

3.1 Competitive Learning

To begin with, we measured the effectiveness of the standard CL algorithm in partitioning our dataset by running a type-A test. The results can be used throughout the rest of this work as a reference for the other algorithms. For each value of K, Table \square reports the Davies-Bouldin index and the quadratic error for the best outcome out of the 60 trials of the algorithm, along with the number of iterations performed.

As Table \blacksquare shows, the algorithm succeeds in discovering the correct number of clusters: the DB index takes on its optimal value for K = 5.

As expected, the mean quadratic error is a decreasing function of the number of clusters (indeed one expects the within-cluster variance to decrease in this case), and hence it does not convey any useful information on the goodness of the result.

As a downside, the CL algorithm takes a considerable number of iterations to converge, as in each iteration only the winning unit is moved towards the current data point by a small, η -dependent, fraction of the distance. Moreover, in order to discover the optimal value of the parameter K, every possible value has to be investigated and the result evaluated. The average number of iterations is a decreasing function of K, which is rather obvious since, for small K, we expect the amount of modification in the position of each centroid as a function of the data points to be higher in each iteration as compared to when K is large.

Fig. 1. Scatterplot of the dataset

Table 1. Type-A test results for CL

K	DB	MQE	it
2	0.712	49.642	344
3	0.396	27.360	344
4	0.429	10.583	328
5	0.298	2.816	298
6	0.690	2.648	298
7	0.751	2.603	298
8	0.768	2.540	298
9	0.746	2.435	298
10	0.809	10.197	328

(a) $\sigma = 0.5$	(b) $\sigma = 1$	(c) $\sigma = 1.5$
K nD DB MQE it	K nD DB MQE it	K nD DB MQE it
2 0 0.7123 49.6421 346	2 0 0.7123 49.6421 346	2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345	3 0 0.5779 32.8641 345	3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330	4 0 0.4291 10.5827 330	4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300	5 0 0.2983 2.8161 300	5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300	6 1 0.2983 2.8161 300	6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300	7 2 0.2983 2.8161 300	7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300	8 3 0.2983 2.8161 300	8 3 0.2983 2.8161 300
9 4 0.2983 2.8161 300	9 3 0.7244 2.6374 294	9 2 1.0505 2.5142 294
10 5 0.2983 2.8161 300	10 3 1.0228 2.4724 294	10 3 1.0710 2.5077 294

Table 2. Type-A test results for SOM

We have also investigated the role of the learning rate η in the learning process. To this end, a type-B test has been performed in which a value of K=5 has been fixed and η takes on some values in the range (0.2-0.02). As before, 60 trials of the algorithm have been tested for each value of η , and the best outcome is considered. We do not report the results for space issues. We report, however, that the initial learning rate seems to play no crucial role in the learning process, since for every value of η the best value obtained for the DB index is the same as that of Table Π

3.2 **SOM**

As our second test, we have investigated the performance of a SOM in achieving proper clusterizations of the dataset. As before we ran a type-A test using a 1-dimensional output array of units, as we are not interested in the spatial organization of the resulting cluster centroids. The distance of each prototype from its neighbor prototypes on the output array has been set arbitrarily to 1, which is also the initial value for the radius of the neighborhood σ . The general idea is that, by exploiting the SOM's inherent ability to produce dead units, it is possible to avoid testing every possible value of the parameter K provided it is chosen larger than the actual number of clusters. Results are reported in Table 2b, where nD represents the number of dead units and again each line represents the best outcome for all the 60 initializations, according to the Davies-Bouldin index.

As the table implies, the minimum of the DB index is obtained for values of K in the range between K = 5 and K = 8. The values reported confirm the ability of the SOM to produce good clusterizations of the dataset, with values comparable with that of the competitive learning approach for all values of the parameter K. The results also advocate the thesis that the SOM is able to invalidate extra clusters and discover the correct number of clusters if the parameter K is chosen in a neighborhood of its optimal value.

We did not expect the quality of the resulting clusterization to change considerably as a function of the initial learning rate η , so we did not conduct any test in this respect. It is interesting, however, to observe the behavior of the algorithm when the initial radius is enlarged or restricted. Tables 2a and 2c also show the result of type-A tests

Table 3. Type-B test results for RPCL

# K DB MQE it	(a) $\eta = 0.1$	(b) $\eta = 0.3$	(c) $\eta = 0.5$
2 1 1 2 5 0.2958 2 5 0.2958 2 5 0.2978 2 3 3 1 n.a. n.a. 49 4 7 0.8392 2.3403 33 7 1 1 9 1 9 1	# K DB MQE it	# K DB MQE it	# K DB MQE it
3 5 0.2983 2.8161 298 3 5 0.2978 2.8162 335 3 1 1.m. n.a. 49 5 7 0.2977 2.8162 298 5 10 3.2478 12092 0.2973 2.8165 298 6 5 0.2977 2.8165 298 7 7.2296 407.3566 499 7 7.2396 407.3566 499 7 7.2396 407.3566 499 7 7.2396 8.7213 18.1 14.0 18.1 14.0 18.1 14.0 18.1 18.2 2.1 18.1 18.2 2.1 18.1 18.2 2.1 18.1 18.2 2.1 18.1 18.2 2.1 18.2 2.1 18.2 2.1 18.2 2.1			
4 7 0.8392 3.4301 337 4 6 1.0019 594.3351 499 4 9 1.0335 8.1133 440 6 5 5 0.2977 2.8165 298 5 10 3.2478 12020.830 499 7 7 1.7469 27172.1130 499 8 8 5 0.2972 2.8165 298 8 1 n.a. n.a. 499 9 8 1 0.2019 1 4926.2644 499 9 1 n.a. n.a. 499 9 8 1.2113 127.1700 485 9 9 2.0219 1 4926.2644 499 9 1 n.a. n.a. 499 11 9 1.9186 283.6699 486 11 1 n.a. n.a. 494 11 3 1.3013 8 43.3499 449 11 9 1.9186 283.6699 486 11 1 n.a. n.a. 494 11 3 1.3013 8 43.3499 449 13 9 1.5104 2.2541 285 13 8 3.3781 736.2310 499 13 8 1.5026 353.7500 499 14 10 1.4525 3.2495 438 14 6 0.6007 2.6212 353 14 5 0.2983 2.8161 298 12 1 n.a. n.a. 499 11 9 1.828 4395 499 14 10 1.4525 3.2495 438 14 6 0.6007 2.6212 353 14 5 0.2983 2.8161 298 12 1 n.a. n.a. 499 16 9 3.2711 1289.8405 499 16 8 1.1660 254.0439 499 16 1 n.a. n.a. 499 16 9 3.2711 1289.8405 499 16 8 1.1660 254.0439 499 16 1 n.a. n.a. 499 17 5 0.2981 2.8161 298 17 9 4.7230 68607.6355 499 18 18 9 8.7524 200.3968 499 17 9 4.2872 598 19 1 n.a. n.a. 486 19 8 1.3259 2.0547 283 18 1 n.a. n.a. 489 18 9 8.7524 200.3968 499 17 5 0.2981 1.8161 298 17 9 4.7330 6807.6355 499 18 9 8 1.3188 33309.9092 49 18 9 8.7524 200.3968 499 17 5 0.2981 2.8161 298 17 9 4.7330 6807.6355 499 18 9 8 1.3188 33309.9092 17 0 8.711 1289.8405 499 18 1 n.a. n.a. 499 18 9 8.7524 200.3968 499 18 5 0.2964 2.8175 298 19 1 n.a. n.a. 486 18 18 18 18 18 18 18 18 18 18 18 18 18			
5 5 0.2977 2.8162 298 6 9 2.2782 27149.0875 499 5 8 2.0086 183.43202 499 6 5 0.2977 2.8162 298 6 9 2.2782 27149.0875 499 7 7 1.7469 27172.1130 499 8 5 0.2977 2.8168 298 8 7 7 2.2396 407.3365 499 7 7 1.7469 27172.1130 499 8 5 0.2972 2.8168 298 8 1 n.a. n.a. 499 9 1 n.a. n.a. 499 10 5 0.2980 2.8161 298 11 1 n.a. n.a. 499 10 1 n.a. n.a. 499 11 9 1.9186 283.6699 486 11 1 n.a. n.a. 496 12 7 1.0529 659.0174 499 13 9 1.5104 2.2541 285 13 8 3.3781 736.2310 499 13 8 1.5026 353.7500 499 15 8 1.8814 119.3174 478 15 9 1.1331 2.4473 363 15 7 1.3130 663.7360 499 15 9 3.2711 1289,8499 16 8 1.1660 254.0439 499 17 4 0.9470 45.7815 432 18 10 1.3259 2.0547 283 18 1 n.a. n.a. 499 12 5 0.2981 2.8161 298 17 5 0.2981 2.8161 298 <t< td=""><td></td><td></td><td></td></t<>			
6 5 0.2972			
7 5 0.2977 2.8162 298 8 1 n.a. n.a. 499 8 1.2113 127.1700 485 9 9 2.0219 14926.2644 499 9 1 n.a. n.a. 49.0 10 5 0.2980 2.8161 298 1 n.a. 49.0 1 n.a. n.a. 49.0 11 9 1.9186 2.836699 486 11 n.a. n.a. 49.0 1 n.a. 49.0 14 12 1.9186 2.83161298 1 n.a. 49.0 1 1.0.20 659.0714499 14 10 1.4525 3.2.4955 438 14 6 0.6007 3.0.21112893495 16 8.1.1600 2.2.4473 630 15 7.1.3130 66037300 499 15 8 1.8111289,8495 499 16 8.1.1600 2.2.4473 630 17 4.0.9470 4.57815 432 4.0.448 4.999 17 4.0.9470 4.0.448 </td <td></td> <td></td> <td></td>			
8 5 0.2972 2.8168 298 8 1 n.a. n.a. 499 8 1 n.a. n.a. 499 10 5 0.2980 2.8161 298 10 8 1.0866 111.9457 499 10 1 n.a. n.a. 499 10 5 0.2980 2.8161 298 10 8 1.0866 111.9457 499 10 1 n.a. n.a. 499 11 9 1.9186 283.6699 486 11 1 n.a. n.a. 494 11 3 1.3013 843.499 454 12 5 0.2981 2.8161 298 12 1 n.a. n.a. 494 11 3 1.3013 843.499 454 140 1.4525 3.24951 481 14 6 0.6007 2.6212 353 14 5 0.2983 2.8163 379 15 10 1 n.a. 181.41 19.3174 478 15 9 1.1331 2.4473 363 15 7 1.3130 663.7360 499 16 9 3.2711 1289.8495 499 16 8 1.1660 254.0439 499 16 1 n.a. n.a. 496 16 9 3.2711 1289.8495 499 16 8 1.1660 254.0439 499 16 1 n.a. n.a. 496 16 9 3.2711 1289.8495 499 16 8 1.1660 254.0439 499 16 1 n.a. n.a. 499 18 9 8.7524 200.3968 499 17 9 4.7230 68067.6355 499 18 9 8 7.524 200.3968 499 18 0 1.3259 2.0547 283 18 1 n.a. n.a. 499 18 9 8.7524 200.3968 499 19 5 0.2964 2.8175 298 19 1 n.a. n.a. 486 19 8 1.3188 3309.9092 49 18 9 8.7524 200.3968 499 19 5 0.2964 2.8175 298 19 1 n.a. n.a. 486 19 8 1.3188 3309.9092 49 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
9 8 1.2113 127.1700 485 9 9 2.0219 14926.2644 499 9 1 n.a.			
10 5 0.2980 2.8161 298			
12 5			
13	11 9 1.9186 283.6699 486	11 1 n.a. n.a. 494	11 3 1.3013 84.3499 454
14 10	12 5 0.2981 2.8161 298		12 7 1.0529 659.0174 499
15 8 1.8814 119.3174 478 15 9 1.1331 2.4473 363 15 7 1.3130 663.7360 499 16 9 3.2711 1289.8495 499 16 8 1.1660 254.0439 499 17 4 0.9470 45.7815 432 18 10 1.3259 2.26547 283 18 1 n.a. n.a. 496 17 4 0.9470 45.7815 432 18 10 1.3259 2.26547 283 18 1 n.a. n.a. 486 19 8 8.7524 200.3968 499 20 7 0.8711 2.4896 298 20 1 n.a. n.a. 486 19 8 8.7524 200.3968 499 21 5 0.2961 2.8180 298 21 5 0.2948 2.8272 353 21 5 0.2983 2.8161 379 21 5 0.2948 2.8272 353 21 5 0.2983 2.8161 379 22 8 1.2890 187.3231 478 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 27 8 1.1634 401 26 5 0.2995 2.8205 298 26 1 n.a. n.a. 495 26 6 0.1000 270.6201 499 27 8 1.4844 7.8484 29 5 0.2995 2.8205 298 26 1 n.a. n.a. 495 26 6 0.1000 270.6201 499 27 9 0.2299 30.12280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12480 22 499 28 1 2.0702 2.8167 298 30 7 1.1727 7076.8766 499 28 7 2.1072 12480 22 499 28 5 0.2995 2.8164 298 32 9 1.4061 599.8796 499 32 9 2.0005 4802.1818 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 37 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8669 402 34 5 0.2995 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 38 5 0.2995 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.2653 292 35 1 n.a. n.a. 470 40 6 4 6 0.2953 2.8164 399 42 6 0.2973 2.8164 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.2653 292 35 1 n.a. n.a. 470 40 6 0.2953 2.8163 298 44 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 36 5 0.2993			
16 1			
17 5 0.2981 2.8161 298 17 9 4.7230 6.8607.6355 499 17 4 0.9470 45.7815 432 18 10 1.3259 2.0547 283 18 1 n.a. n.a. 496 18 9 8.7524 200.3968 499 20 7 0.8711 2.4896 298 20 1 n.a. n.a. 486 19 8 1.3188 35309.9092 499 21 5 0.2961 2.8180 298 21 5 0.2948 2.8272 353 21 5 0.2983 2.8161 379 22 8 1.2890 187.3231 478 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 23 5 0.2983 2.8161 298 23 8 1.4005 22.1895 463 23 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 22 8 7 2.7303 374 25 7 0.7805 3.0149 401 26 5 0.2995 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 278 8.1484 786.6143 499 279 1.1134 6.0580 410 27 1 n.a. n.a. 494 22 1 0.3833 499 29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 494 29 5 0.2985 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 28 8 1.568 355.1591 499 30 7 1.0933 3285294.0333 499 35 7 0.2983 2.8161 298 32 9 1.4621 599.8796 499 30 7 1.0933 3285294.0333 499 35 7 0.8893 2.8161 298 35 9 1.6021 359.8796 499 30 7 1.0933 3285294.0333 499 35 7 0.8893 2.8161 298 35 1 0.36183 400.4338 499 36 7 1.0028 50.24863 499 35 7 0.8893 2.8161 298 35 1 0.36183 400.4338 499 36 7 1.0028 50.24863 499 37 5 0.29973 2.8161 298 35 1 0.36183 400.4338 499 36 7 1.0028 50.24863 499 37 5 0.29973 2.8164 298 37 7 2.0509 72.95399 499 37 1 n.a. n.a. 499 44 5 0.2975 2.8164 298 37 7 2.0509 72.95399 499 37 1 n.a. n.a. 499 44 5 0.2975 2.8164 298 37 7 0.5059 2.8183 298 41 1 n.a. n.a. 499 41 1 n.a. n.a. 499 41 1 0.			
18 10 1.3259 2.0547 283 18 1 n.a. n.a. 499 18 9 8.7524 200.3968 499 19 5 0.2964 2.8175 298 19 1 n.a. n.a. 486 19 8 1.3188 35309.092 499 21 5 0.2961 2.8180 298 21 5 0.2948 2.8272 353 21 5 0.2983 2.8161 379 22 8 1.2890 187.3231 478 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 25 8 1.7381 87.3881 429 25 9 1.1667 2.7230 374 25 7 0.7805 3.0149 401 26 5 0.2995 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 27 8 1.4844 78.66143 499 27 9 1.1134 6.0580 410 27 1 n.a. n.a. 454 28 9 2.2929 931.2280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 25 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 30 5 0.2967 2.8167 298 31 9 1.2331 2.29518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 30 7 1.0933 3285294.0383 499 35 0.2993 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 0.2973 2.8162 298 36 10.36183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2973 2.8162 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 42 5 0.2975 2.8162 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 48 5 0.2975 2.8162 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 49 5 0.2973 2.8162 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 44 5 0.2975 2.8162 298 37 7 0.0551 2.6401 363 34 34 34 34 34 34 34			
19 5 0.2964 2.8175 298 19 1 n.a. n.a. 486 19 8 1.3188 35309.9092 499 20 7 0.8711 2.4896 298 20 1 n.a. n.a. 459 20 8 2.2503 712.0748 499 21 5 0.2961 2.8180 298 21 5 0.2948 2.8272 353 21 5 0.2983 2.8161 379 22 8 1.2890 187.3231 478 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 23 5 0.2983 2.8161 298 23 8 1.4005 22.1895 463 23 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 25 8 1.7381 87.3881 429 25 9 1.1667 2.7230 374 25 7 0.7805 3.0149 401 26 5 0.2959 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 27 8 1.4844 786.6143 499 27 9 1.1134 6.0580 410 27 1 n.a. n.a. 495 29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 33 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 33 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 5.09.464 49 32 9 2.2053 32.8161 298 33 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 5.09.464 3.4218 3.5518 3			
20			
21 5 0.2961			
22 8 1.2890 187.3231 478 22 1 n.a. n.a. 499 22 1 n.a. n.a. 499 23 5 0.2983 2.8161 298 23 8 1.4005 22.1895 463 23 1 n.a. n.a. 499 24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 25 8 1.7381 87.3881 429 25 9 1.1667 2.7230 374 25 7 0.7805 3.0149 401 26 5 0.2959 2.8205 298 26 1 n.a. n.a. n.a. n.a. 494 27 8 1.4844 786.6143 499 27 9 1.1134 6.0580 410 27 1 n.a. n.a. 492 29 5 0.2983 2.8161 298 30 7 1.177 7076.8766 499 30 7 1.0933 3285294,0383 499 31 5 <t< td=""><td></td><td></td><td></td></t<>			
24 10 1.4116 2.0938 287 24 7 0.8376 2.4683 345 24 1 n.a. n.a. 499 25 8 1.7381 87.3881 429 25 9 1.1667 2.7230 374 25 7 0.7805 3.0149 401 26 5 0.2959 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 27 8 1.4844 786.6143 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 30 5 0.2967 2.8167 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.439			
25 8 1.7381 87.3881 429 25 9 1.1667 2.7230 374 25 7 0.7805 3.0149 401 26 5 0.2959 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 27 8 1.4844 786.6143 499 27 9 91.1134 6.0580 410 27 1 n.a. n.a. 454 28 9 2.2929 931.2280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 29 5 0.2967 2.8161 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2970 2.8164 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2973 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 33 7 0.8889 2.5653 292 35 0.2973 2.8161 298 36 10 3.6183 406.4338 499	23 5 0.2983 2.8161 298	23 8 1.4005 22.1895 463	23 1 n.a. n.a. 499
26 5 0.2959 2.8205 298 26 1 n.a. n.a. 495 26 6 1.0100 270.6201 499 27 8 1.4844 786.6143 499 27 9 1.1134 6.0580 410 27 1 n.a. n.a. 454 28 9 2.2929 931.2280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 20 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 30 5 0.2967 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 31 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 33 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.2653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2933 2.8161 298 36 10 3.6	24 10 1.4116 2.0938 287	24 7 0.8376 2.4683 345	24 1 n.a. n.a. 499
27 8 1.4844 786.6143 499 27 9 1.1134 6.0580 410 27 1 n.a. n.a. 454 28 9 2.2929 931.2280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 29 5 0.2967 2.8174 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 33 5 0.2973 2.8163 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 <td></td> <td>25 9 1.1667 2.7230 374</td> <td></td>		25 9 1.1667 2.7230 374	
28 9 2.2929 931.2280 499 28 8 1.1568 355.1591 499 28 7 2.1072 12438.7022 499 29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 30 5 0.2967 2.8164 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 33 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2989 2.8161 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.26573 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499			
29 5 0.2983 2.8161 298 29 6 1.4096 91.4646 443 29 1 n.a. n.a. 499 30 5 0.2967 2.8167 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2975 2.8164 298 32 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2973 2.8165 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 36 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 </td <td></td> <td></td> <td></td>			
30 5 0.2967 2.8174 298 30 7 1.1727 7076.8766 499 30 7 1.0933 3285294.0383 499 31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 31 8 0.9186 3.4217 410 32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 33 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8163 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499			
31 5 0.2970 2.8167 298 31 9 1.2331 22.9518 479 32 9 2.0005 4802.1818 499 33 5 0.2975 2.8164 298 32 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 47 35 9 8.6214 631.4390 499 36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. <td< td=""><td></td><td></td><td></td></td<>			
32 5 0.2975 2.8164 298 32 9 1.4621 599.8796 499 32 9 2.0005 4802.1818 499 33 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499 38 5 0.2979 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8163 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311			
33 5 0.2983 2.8161 298 33 9 1.2037 2.8699 384 33 7 0.9568 2.8659 402 34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 38 5 0.2973 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 4.a.			
34 5 0.2959 2.8183 298 34 8 0.9067 2.8137 374 34 8 2.0441 15709.4822 499 35 7 0.8889 2.5653 292 35 1 n.a. n.a. 470 35 9 8.6214 631.4390 499 36 5 0.2983 2.8165 298 37 7 2.0509 729.5399 499 37 7 1.0028 502.4863 499 38 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499 39 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 40 2 0.7452 106.3408 445 <t< td=""><td></td><td></td><td></td></t<>			
36 5 0.2983 2.8161 298 36 10 3.6183 406.4338 499 36 7 1.0028 502.4863 499 37 5 0.2973 2.8165 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 38 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499 39 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8164 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 45 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 0.9915 904.8396 499 47 8 1.3926 246.4092 499 47 7 1.7933 317.9108 499 47 1 n.a. n.a. 499 <			
37 5 0.2973 2.8165 298 37 7 2.0509 729.5399 499 37 1 n.a. n.a. 499 38 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499 49 2 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 40 2 0.7452 106.3408 445 40 1 n.a. n.a. 469 41 8 2.7086 503.6955 499 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 45 9 1.2287 150.8042 494 44 1 n.a. n.a. 499 45 <	35 7 0.8889 2.5653 292	35 1 n.a. n.a. 470	35 9 8.6214 631.4390 499
38 5 0.2979 2.8161 298 38 8 0.9922 2.6372 352 38 1 n.a. n.a. 499 39 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8164 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 45 9 1.2583 69.7734 465 45 9 1.6941 22.7070 461 45 5 1.6410 564.5119 499 46 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 47 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.1090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3	36 5 0.2983 2.8161 298	36 10 3.6183 406.4338 499	36 7 1.0028 502.4863 499
39 5 0.2973 2.8164 298 39 9 1.2467 32.5807 487 39 7 2.0152 147.8561 482 40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8164 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 45 9 1.6941 22.7070 461 45 5 1.6941 22.7070 461 45 5 1.6941 9.27070 461 45 5 1.6941 9.27070 47 <			
40 7 1.4684 206.7596 491 40 1 n.a. n.a. 467 40 2 0.7452 106.3408 445 41 5 0.2975 2.8164 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 4195.7684 899 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 45 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 47 8 1.3926 246.4092 499 47 7 1.7933 317.9108 499 47 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.1090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 51 5 0.2958 2.8162 298 </td <td></td> <td></td> <td></td>			
41 5 0.2975 2.8164 298 41 1 n.a. n.a. 499 41 8 2.7086 503.6955 499 42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 46 9 1.2287 150.8042 494 46 1 n.a. n.a. 49 46 1 n.a. n.a. 49 41 n.a. n.a. 49 46 1 n.a. n.a. 49 41 n.a. n.a. 49 1 n.a. n.a.			
42 5 0.2959 2.8188 298 42 8 1.8052 5702.3187 499 42 6 2.6311 41958.7468 499 43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889.5130 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 45 9 1.2583 69.7734 465 45 9 1.6941 22.7070 461 45 5 1.6410 564.5119 499 46 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.1090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. n.a. 499 51 5 0.2958 2.8192 298 51 10 1.9694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 53 5 0.2976 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473			
43 9 1.0727 2.5370 297 43 9 1.0551 2.6401 363 43 8 2.3926 889,5130 499 44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904,8396 499 45 9 1.2287 150,8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 47 8 1.3926 246,4092 499 47 7 1.7933 317,9108 499 47 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.030 3.8625 396 49 1 n.a. n.a. n.a.			
44 5 0.2975 2.8163 298 44 1 n.a. n.a. 499 44 6 0.9915 904.8396 499 45 9 1.2583 69.7734 465 45 9 1.6941 22.7070 461 45 5 1.6410 564.5119 499 46 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 47 8 1.3926 246.4092 499 47 7 1.7933 317.9108 499 47 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.1090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 51 5 0.2958 2.8162 298 51 10 1.9694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 54 5 0.2970 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473 1132.3572 499 54 5 0.29970 2.8168 298			
45 9 1.2583 69.7734 465 45 9 1.6941 22.7070 461 45 5 1.6410 564.5119 499 46 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 47 1 n.a. n.a. 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 51 5 0.2958 2.8192 298 51 10.1964 1978.7778 499 <td></td> <td></td> <td></td>			
46 9 1.2287 150.8042 494 46 1 n.a. n.a. 499 46 1 n.a. n.a. 499 47 8 1.3926 246.4092 499 47 7 1.7933 317.9108 499 47 1 n.a. n.a. 499 48 5 0.2959 2.8183 298 48 9 1.1030 3.8625 396 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 51 5 0.2982 2.8192 298 51 10 1.9694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378			
48 5 0.2959 2.8183 298 48 9 1.1090 3.3827 386 48 7 1.1248 208.1925 499 49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 1.1030 1.0535 1192.2263 499 50 1 n.a. n.a. 499 1.1030 1.0535 1192.2263 499 50 1 n.a. n.a. 499 1.121 1.15298 445 52 5 0.2982 2.8161 333 52 7 0.8945 2.7744 378 53 5 0.2976 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473 1132.3572 49	46 9 1.2287 150.8042 494		
49 7 2.1666 222.3385 487 49 9 1.1030 3.8625 396 49 1 n.a. n.a. 499 50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 499 51 5 0.2958 2.8192 298 51 10.19694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 53 5 0.2976 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473 1132.3572 499 54 5 0.2970 2.8168 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a. 499 55 9 1.3163 988.7258 499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 <t< td=""><td>47 8 1.3926 246.4092 499</td><td>47 7 1.7933 317.9108 499</td><td>47 1 n.a. n.a. 499</td></t<>	47 8 1.3926 246.4092 499	47 7 1.7933 317.9108 499	47 1 n.a. n.a. 499
50 5 0.2983 2.8161 298 50 7 1.0535 1192.2263 499 50 1 n.a. n.a. 4.99 51 5 0.2958 2.8192 298 51 10 1.9694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 53 5 0.2970 2.8162 298 53 8 5.0827 783.8008 499 54 1 n.a. n.a.499 54 5 0.2970 2.8168 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a.499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 56 5 0.2982 2.8161 298			
51 5 0.2958 2.8192 298 51 10 1.9694 1978.7778 499 51 2 0.8228 102.4013 450 52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 53 5 0.2970 2.8162 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a. 499 55 9 1.3163 988.7258 499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 56 5 0.2982 2.8161 298 56 5 0.2983 2.8161 353 56 1 n.a. n.a. 499 57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499			
52 9 1.4211 51.5298 445 52 5 0.2982 2.8161 353 52 7 0.8945 2.7744 378 53 5 0.2976 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473 1132.3572 499 54 5 0.2970 2.8168 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a. n.a. 499 56 5 0.2982 2.8161 298 56 5 9.12069 39.0237 497 55 6 1.0058 582.4626 499 57 5 0.2982 2.8161 298 56 5 0.2983 2.8161 353 56 1 n.a. n.a. 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. <			
53 5 0.2976 2.8162 298 53 8 5.0827 783.8008 499 53 7 1.0473 1132.3572 499 54 5 0.2970 2.8168 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a. n.a. 499 55 9 1.3163 988.7258 499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 56 5 0.2982 2.8161 298 56 5 0.2983 2.8161 355 56 1 n.a. n.a. n.a. 499 57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 59 6			
54 5 0.2970 2.8168 298 54 7 1.9763 3376261.9184 499 54 1 n.a. n.a. 499 55 9 1.3163 988.7258 499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 56 5 0.2982 2.8161 298 2.8161 298 56 5 0.2983 2.8161 353 56 1 n.a. n.a. 499 57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. n.a. n.a. 59 5 0.2978 2.8161 298 59 1 n.a. n.a. 469 59 6 0.9993 464.6136 499			
55 9 1.3163 988.7258 499 55 9 1.2069 39.0237 497 55 6 1.0058 582.4626 499 56 5 0.2982 2.8161 298 56 5 0.2983 2.8161 353 56 1 n.a. n.a. 499 57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. n.a. 469 59 5 0.2978 2.8161 298 59 1 n.a. n.a. 499 59 6 0.9993 464.6136 499			
56 5 0.2982 2.8161 298 56 5 0.2983 2.8161 353 56 1 n.a. n.a. 499 57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. n.a. 469 59 5 0.2978 2.8161 298 59 1 n.a. n.a. 499 59 6 0.9993 464.6136 499			
57 9 1.2233 2.2424 292 57 5 0.2894 2.9133 354 57 10 6.9798 282791.2331 499 58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. n.a. 469 59 5 0.2978 2.8161 298 59 1 n.a. n.a. 499 59 6 0.9993 464.6136 499			
58 8 1.7596 428.0865 499 58 7 1.0936 701.7895 499 58 1 n.a. n.a. 469 59 5 0.2978 2.8161 298 59 1 n.a. n.a. 499 59 6 0.9993 464.6136 499			
60 5 0.2982 2.8161 298 60 8 2.7499 133.5437 499 60 1 n.a. n.a. 499	59 5 0.2978 2.8161 298	59 1 n.a. n.a. 499	59 6 0.9993 464.6136 499
	60 5 0.2982 2.8161 298	60 8 2.7499 133.5437 499	60 1 n.a. n.a. 499

for $\sigma = 1.5$ and $\sigma = 0.5$: results show a general tendency of the radius to influence the ability of the SOM to kill extra units—this ability seems to increase as the radius of the neighborhood narrows.

3.3 Competitive Clustering with Rival Penalization

Lastly, we have analysed the performance of our RPCL implementation in discovering the correct number of clusters. As suggested in [5] we have chosen a number of clusters, K=10, larger than the true number of clusters. Recall that the de-learning rate β is always at least one order of magnitude smaller than η . Once again we considered 60 "Forgy" initialization of the algorithm, and ran three type-B tests using different learning rates, namely $\eta=0.1$, $\eta=0.3$ and $\eta=0.5$. Results are reported in Tables 3a through 3c where we have indicated with k the number of partitions in the resulting clusterization, and with # the trial number. For each value of η , we have highlighted the best result according to the Davies-Bouldin index.

Results reveal the following aspects. As expected, the algorithm exhibits a strong ability to invalidate extra units. Such ability appears to be stronger compared to the SOM, as suggested by the fact that the algorithm has always been able to obtain correct clusterizations of the dataset—i.e. five clusters, associated with extremely good values for the Davies-Bouldin index.

Moreover, this ability is only partially affected by the choice of the initial learning rate η —as Table 3 implies, the RPCL algorithm has been able to obtain correct partitionings of the dataset in the 56.67% of the trials for $\eta=0.1$, 11.67% for $\eta=0.3$ and 5% for $\eta=0.5$. In this respect, a higher learning rate does augment the ability of the rival units to move in the data space, and hence the ability of the algorithm to invalidate extra clusters 4, but the success or failure of the algorithm is ultimately due to the goodness of the initialization of the prototypes. As a consequence, we expect the algorithm to succeed independently of the learning rate as long as the number of initializations tested is large enough.

4 Discussion and Conclusion

In conclusion, all the algorithms tested work reasonably well and produce good clusterizations of the dataset. However, if the main task is to make use of one such methods to discover the number of clusters in a given dataset, the rival-penalized competitive learning approach appears to be more robust and practical, since it exhibits a remarkable ability to invalidate extra units—i.e. clusters—depending on the prototype initialization, provided the number of initializations tested is large enough. Hence, this method comes in handy when the number of clusters of a dataset is unknown.

If the number of clusters is not known exactly but it is known to belong to a range of a few possible values, then the self-organizing map can also guess the correct number of clusters and yield a good clusterization, providing multiple, random initializations are tested and the prototypes are drawn from the input dataset. However, the performance

Note that, in some cases, this ability has reached a point in which the algorithm produced a 1-cluster partitioning, for which the Davies-Bouldin index is structurally not defined and the quadratic error loses its significance.