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Yoshikazu Sasaki (right) and his mentor Shigekata Syono working on hydrodynamic
theory of vortex motion during Syono’s visit to the University of Oklahoma
(December 1963): Drawn by John M. Lewis, using pen, brush, and India ink.





To Yoshi K. SASAKI and Roger W. DALEY





Preface

Since the first session for data assimilation (DA) had been organized at the Asia
Oceania Geosciences Society (AOGS) Annual Meeting in 2005, we have conducted
several successful sessions under the title of “Yoshi K. Sasaki Symposium on
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications.” It was
to honor Prof. Yoshi K. Sasaki of the University of Oklahoma for his lifelong
contributions to DA in geosciences. Yoshi had introduced the variational method
to meteorology as early as the 1950s, and since then DA has developed into an
utmost important technique in modern numerical prediction in various disciplines
of geosciences.

The first volume of this book, under the same title of the Sasaki Symposium, has
been published in March 2009 with a collection of notable invited papers along with
those selected from previous symposiums up to 2008. Among them, John M. Lewis,
one of Yoshi’s students, contributed a chapter titled “Sasaki’s Pathway to Determin-
istic Data Assimilation.” I. Michael Navon provided a thorough review of variational
DA for numerical weather prediction, while Yoshi himself introduced a new theory
based on the entropic balance. Milija and Dusanka Zupanski discussed some issues
in ensemble DA, and Zhaoxia Pu overviewed the effect of satellite DA to improve
forecasts of tropical cyclones. A coastal application of the ocean DA was reviewed
by Xiaodong Hong and colleagues, and the variational approach to hydrologic
DA was discussed by Francois-Xavier Le Dimet. Rolf H. Reichle and colleagues
addressed recent advances in land data assimilation at the NASA/GMAO, and
Nasim Alavi and colleagues surveyed assimilation of soil moisture and temperature
into land surface models. As demonstrated, the previous volume covered important
topics on DA in meteorology, oceanography, and hydrology, by dealing with both
theoretical and practical aspects.

It has been more than 3 years since the first volume has been published.
Since then we had three successful symposiums - held at Singapore in August
2009, at Hyderabad in July 2010, and at Taipei in August 2011, each with about
30 presentations. Therefore we decided to publish the second volume under the
same title, again by collecting both invited papers and selected papers from the
three symposiums. This volume includes excellent overviews of estimation theory,
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x Preface

nudging and variational methods, and Markov chain Monte Carlo methods. Most
prominently, Yoshi has extended his entropy balance theory for tornado DA from
the previous volume.

In this volume, theoretical and methodological aspects encompass estimation
and entropic balance theory, variational and ensemble methods, nudging and
representer methods, Monte Carlo and ensemble adaptive methods, the maximum
likelihood ensemble filter, the local ensemble transform Kalman filter, micro-
genetic algorithm, etc., with applications to oceanic, meteorological, and hydrologic
DA; radar/lidar/satellite assimilation; parameter estimation; adjoint sensitivity; and
adaptive (targeting) observations.

This book will be useful to individual researchers as well as graduate students
as a reference to the most recent progresses in the field of data assimilation. We
appreciate Boon Chua at Naval Research Laboratory and Francois-Xavier Le Dimet,
who have served as the co-conveners of the Sasaki Symposium. We are very honored
to dedicate this book to Yoshi Sasaki and the late Roger Daley for their significant
contributions in data assimilation.

Ewha Womans University, Seoul
Naval Research Laboratory, Monterey Liang Xu
July 2012

Seon Ki Park
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Chapter 1
A Survey of Observers for Nonlinear Dynamical
Systems�

Wei Kang, Arthur J. Krener, Mingqing Xiao, and Liang Xu

Abstract The Kalman filter, invented initially for control systems, has been widely
used in science and engineering including data assimilation. For the last several
decades, the estimation theory for dynamical systems has been actively developed
in control theory. In this paper, we survey several observers, including Kalman
filters, for nonlinear systems. We also review some fundamental concepts on the
observability of systems defined by either differential equations or a numerical
model. The hope is that some of these ideas will inspire research that can benefit
the area of data assimilation.

Keywords Observers and estimation • Nonlinear systems • Observability

1.1 Introduction

In modern control theory, the term Observer has a technical meaning. An observer
is a system defined by differential or difference equations and associated computa-
tional algorithms which accepts the measured data from another system as input and
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returns an estimate of the state of the other system. Observers play a critical role in
control systems because many feedback controllers depend on the accurate estimate
of state variables of the system to be controlled. An accurate estimation of the state
in the presence of noise and uncertainties is essential for a controller to achieve high
quality performance.

Estimation from data with random noise can be traced to Gauss about 200 years
ago who invented the technique of deterministic least-squares for orbit measure-
ments. In the early twentieth century, Fisher introduced maximum likelihood
estimation. Then in the middle of the twentieth century Wiener invented his
well known optimal filter for stationary processes. Around 1960s, Kalman and
Bucy introduced an optimal recursive filter for dynamical systems. This filter,
now known as the Kalman filter, is “the very foundation for data mixing in
modern multisensor systems (Gelb 1974).” The estimation for systems governed by
differential equations has been an active research field in control theory for more
than 50 years. In addition to the Kalman filter, which is essentially a recursive
solution to the least square problem, estimation processes have been developed
for various performance requirements, such as asymptotically stable estimation,
H1 estimation, and minimum energy estimation. Fundamental theory has been
developed to analyze observability, an intrinsic property of systems with sensors that
largely determines the invertibility from past measurement to the state of the system.

Data assimilation is an area of estimation theory and an application to systems
with extremely high dimensions. Both filtering and smoothing methods are critical
to date assimilation. Although we focus on nonlinear filtering methods in this paper,
smoothing algorithms can be developed using similar ideas. Approaches such as
ensemble Kalman filters and 4D-Var are based on the theory of optimal estimation,
especially the Kalman filter and minimum energy estimation. The data assimilation
community has done extensive research on these topics for over 30 years. While this
book is focused on problems in data assimilation, this article is to provide a survey
on some ideas and results that have been actively developed in control theory, but
not widely used in data assimilation. The goal is to lay out some related but different
concepts and methods. We hope that some of them may inspire different approaches
that benefit the area of data assimilation.

1.2 Observability

In this paper, we consider systems defined by differential equations. The sensor
measurement is defined by an output function. For example,

Px D Ax

y D Cx

x.0/ D x0

(1.1)
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is a linear system in which x 2 R
n is the state variable, y 2 R

p is the output variable
whose value can be measured, A 2 R

n�n and C 2 R
n�p are known constant or

time varying matrices. Given A, C , and the past sensor information about y.t/, the
problem is to estimate x or a function of the state variable in the presence of noise
and uncertainties. A nonlinear system is defined similarly,

Px D f .x/

y D h.x/

x.0/ D x0

(1.2)

An immediate question to be answered before observer design is whether
a system (1.1) or (1.2) admits a convergent estimator. In other words, how to
determine that the past values of y.t/ contain adequate information to achieve a
reliable estimate of x.t/. This leads to the concept of observability. Two initial
states x01 and x02 are said to be distinguishable if the outputs y1.t/ and y2.t/
of (1.2) satisfying the initial conditions x0 D x01 and x0 D x02 differ at some time
t � 0. The system is said to be observable if every pair x01, x02 are distinguishable.
Observability can be easily verified for linear systems. The output of (1.1) and its
derivatives at time t D 0 are

y.0/ D Cx0
Py.0/ D CAx0

Ry.0/ D CA2x0
:::

y.n�1/.0/ D CAn�1x0

(1.3)

Obviously, (1.1) is observable if the mapping from x0 to the derivatives of y.t/
is one-to-one. In fact, it can be proved that (1.1) is observable if and only if the
following observability matrix has full rank

O D

2
666664

C

CA

CA2

:::

CAn�1

3
777775

For nonlinear systems, the output and its derivatives are given by the iterated Lie
derivatives

y.0/ D y.x0/

Py.0/ D Lf .h/.x0/ D @h

@x
.x0/f .x0/
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Ry.0/ D L2f .h/.x0/ D @Lf .h/

@x
.x0/f .x0/

:::

y.k�1/.0/ D Lk�1
f .h/.x0/ D @Lk�2

f .h/

@x
.x0/f .x0/

for some integer k > 0. If the mapping from x0 to h;Lf .h/; L2f .h/; � � � distin-
guishes points then the system is observable. For a real analytic system this is a
necessary and sufficient condition for observability. For simplicity of exposition,
suppose p D 1. Consider the matrix

2
666666664

@h

@x
.x0/

@Lf .h/

@x
.x0/

:::

@Ln�1
f .h/

@x
.x0/

3
777777775

If this matrix is invertible, then the system is locally observable at x0. This
observability matrix is a topic addressed in almost all textbooks of linear and
nonlinear control theory, for instance Kailath (1980) for linear systems and Isidori
(1995) for nonlinear systems.

For high dimensional systems, it is important to quantitatively define observabil-
ity. The observability Gramian is a widely used concept for this purpose (Kailath
1980). Consider a linear system (1.1), an arbitrary initial state x0 of a trajectory

x.t/ D eAtx0

can be uniquely determined from the known function y.t/ D Cx.t/ if and only if
the columns in the matrix

CeAt

are linearly independent over Œt0; t1�. This is equivalent to say that

G D
Z t1

t0

eA
T tC T CeAtdt

is nonsingular. This matrix is called the observability Gramian. In fact, theL2-norm
of the output satisfies Z t1

t0

jjy.t/jj2dt D xT0 Gx0
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Therefore, the eigenvalues of G represent the gain from the initial state to the
output. If G has a zero eigenvalue, then its eigenvector results in a zero output. The
system is unobservable. If G has a very small eigenvalue, then the system is weakly
observable, i.e. a small noise in y.t/ can cause a large estimation error. Therefore,
the smallest eigenvalue of G is used as a quantitative measure of observability.

For nonlinear systems, an empirical observability Gramian can be numerically
computed (Krener and Ide 2009). Consider (1.2) and a nominal trajectory x.t/ with
initial state x.0/ D x0. Define a mapping

ıx0 ! h. Ox.t// � h.x.t//

subject to
POx.t/ D f . Ox.t//
Ox.0/ D x0 C ıx0

(1.4)

Let v1; v2; � � � ; vn be an orthonormal basis in R
n. Let � > 0 be a small number. In

the direction of �vi , the variation of the output can be estimated empirically by

�i.t/ D 1

2�

�
h.xC.t// � h.x�.t//

�
; (1.5)

where
Px˙.t/ D f .x˙.t//
Ox˙.0/ D x0 ˙ �vi ;

The mapping, (1.4), from the initial state to the output space can be locally
approximated by a linear function

ıx0 D
nX
iD0

˛ivi !
nX
iD0

˛i�i .t/ (1.6)

Therefore, the observability Gramian of the nonlinear system can be approximated
by the Gramian associated to (1.6)

G D .Gij /
n
i;jD1

Gij D
Z t1

t0

�T
i .t/�j .t/dt

(1.7)

Locally around the nominal trajectory, the eigenvalues of (1.7) measure the gain
from the variation of the initial state to the variation of the output. If G has a small
eigenvalue, then x.t/ is weakly observable. A small noise in y.t/ can result in a
large estimation error.

The Gramian or empirical Gramian in Kailath (1980) and Krener and Ide (2009)
measures the observability of full initial states. However, for systems with very high
dimensions, the problem of full observability is, in many cases, ill-posed. Some
discussions on the partial observability, or Z-observability, for complex systems
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were introduced in Kang and Barbot (2007). Meanwhile, quantitatively measure
partial observability has been rapidly developed in a sequence of papers (Kang 2011;
Kang and Xu 2009a,b, 2011). For PDEs, the observability is defined and computed
for the finite dimensional approximations of the original model. In Kang and Xu
(2009a,b), dynamic optimization is used as a tool for the definition.

Definition 1.1. Given a trajectory x.t/, t 2 Œt0; t1�. Let W � R
n be a subspace. Let

� > 0 be a constant. Define � as follows

� D minNx.t/ jjh. Nx.t// � h.x.t//jj
subject to

PNx D f . Nx/;
jj Nx.0/� x0jj D �

Nx.0/ � x0 2 W

Then the ratio �=� is a measure of observability for the W -component of x.0/.

If � ! 0, the ratio �=� can be considered as an extension of the observability
Gramian. Consider a linear system (1.1). Suppose W D R

n. Then the observability
Gramian, G, satisfies (Kailath 1980; Krener and Ide 2009)

jjyjj2
L2

D xT0 Px0 (1.8)

Given jjx0jj D �, we have
�2 D �min�

2 (1.9)

where �min is the smallest eigenvalue of G. Therefore, the ratio �2=�2 equals the
reciprocal of the smallest eigenvalue of the observability Gramian. In Kang and Xu
(2009a,b), the concept of partial observability was applied to more general problems
using various types of norms and knowledge of the system. An example of optimal
sensor location by maximizing the observability for data assimilations was given in
Kang and Xu (2011).

1.3 Asymptotic Observers

Following control theory, asymptotic observers are systems defined by differential
or difference equations and associated computational algorithms which accepts the
measured data from another system as input and returns an estimate of the state of
the other system. In the case of a perfect model without noise and uncertainties,
the estimated state should converge to the true state of the system being observed.
Also if the initial state of the observer equals the true state, then the estimation error
is zero along the entire trajectory. In most observer designs, such as Luenberger
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observers and Kalman filters, an observer consists of a copy of the original system
plus a correction term which is a function of the measured data.

Asymptotic observers are widely used in control systems to achieve stable
estimates of state variables. The design emphasizes the stability and simplicity of
the estimation process. In general it does not optimize any performance measure.
The Luenberger observer for linear systems is a simplest example that illustrates the
fundamental idea of asymptotic observers.

1.3.1 Luenberger Observer

Given a dynamical system with an output

Px D Ax

y D Cx
(1.10)

where x 2 R
n is the state variable, y 2 R

p is the output which can be measured,
A 2 R

n�n and C 2 R
p�n are matrices. We assume that A, C and the output y.t/

are known information. The goal is to find an estimate, estimate, denoted by Ox.t/,
of the state variable so that Ox.t/ asymptotically approaches x.t/. The observer has
the following form

POx D A Ox CG.y � C Ox/ (1.11)

The matrix G 2 R
n�p is called the observer gain, which is used to stabilize the

estimation error. Define
e D x � Ox

then the error dynamics has the following form

Pe D Ae �G.y � C Ox/
D .A �GC/e (1.12)

It is obvious that e.t/ asymptotically approaches zero if the eigenvalues of A�GC
are all located in the left half plane. To estimate x.t/, one can use any initial guess
Ox.0/. Then Ox.t/ from (1.11) satisfies

lim
t!1 e.t/ D 0

When applying the observer, y.t/ is measured online and the (1.11) is numerically
propagated in real-time to provide an estimate of x.t/.

It can be proved that, for any set of n complex numbers, there always exists an
observer gain, G, so that the eigenvalues of the error dynamics (1.12) are placed
at these locations, if the pair .A; C / is observable, i.e. the following observability
matrix has full rank
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2
666664

C

CA

CA2

:::

CAn�1

3
777775

This result guarantees that one can always find linear observers with stable error
dynamics for observable systems. For systems in which .A; C / is not observable,
it is still possible to achieve asymptotic stability of (1.12). This depends on the
spectrum of A, which can be divided into observable modes and unobservable
modes. Details are referred to Kailath (1980). If all the unobservable modes are
on the left half plane, then there always exists a G that stabilizes (1.12).

The error dynamics does not include measurement error. If the output is corrupted
by noise, the asymptotic stability of the observer guarantees that Ox.t/ is stabilized
around the true value. There are infinitely many observer gains to stabilize the
observer. A high gain observer has fast convergence to the true value of the system,
however it is very sensitive to sensor noise. Although asymptotic observers do not
guarantee optimal performance in any sense, their advantage lies in the simplicity.
For real time applications, each estimate at a given time is simply computed by
one step integration of the observer equation, which can be implemented using any
numerical algorithm for solving ordinary differential equations (ODEs). Luenberger
observers can be found as a standard topic in almost all textbooks on control theory,
for instance (Kailath 1980; Khalil 2002).

1.3.2 Observers with Linear Error Dynamics

For nonlinear systems, observer design with a guaranteed asymptotically stable error
dynamics is a difficult task (Hermann and Krener 1977). The Luenberger observer
works for linear systems because its error dynamics is decoupled from the unknown
trajectory being observed. For nonlinear systems, however, this is not true in general.
There is a large volume of literature on the construction of nonlinear observers
that admit a linear error dynamics. In the pioneering work (Krener and Isidori
1983) a technique called output injection was introduced. In addition, necessary
and sufficient conditions are found under which the error dynamics of the nonlinear
observer is equivalent to a linear ODE. Consider a nonlinear dynamical system with
an output

Px D f .x/

y D h.x/
(1.13)

in which x 2 R
n is the state variable, y 2 R

p is the output which can be measured,
f .x/ and h.x/ are vector valued functions with adequate smoothness. In Krener and
Isidori (1983), it is propose to find a change of coordinates around a fixed point x0
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z D z.x/
z.x0/ D 0

(1.14)

so that (1.13) is transformed into a linear system with a nonlinear output injection

Pz D Az C �.y/

y D C z
(1.15)

for some matrices A 2 R
n�n and C 2 R

p�n. If this is the case, then we can easily
construct a Luenberger type of observer as follows.

POz D AOz C �.y/CG.y � C Oz/ (1.16)

Let
e D z � Oz

then the error dynamics is a linear system decoupled from z.t/

Pe D .A�GC/e

If G, the observer gain, is chosen so that the eigenvalues of .A�GC/ are all in the
left half plane, then

lim
t!1 e.t/ D 0

Not all nonlinear systems can be transformed into a linear system with output
injection. The existence of the change of coordinates (1.14) can be determined
using Lie differentiation. Given a function h.x/, let dh represents the 1-form, or
the gradient,

dh.x/ D
�
@h

@x1
.x/

@h

@x2
.x/ � � � @h

@xn
.x/

�

The Lie derivative is defined as follows

Lf .h/ D dh � f
Lf .dh/ D f T

@2h

@x
C dh

@f

@x

The following theorem was proved in Krener and Isidori (1983).

Theorem 1.1. There exists a local change of coordinates (1.14) that trans-
forms (1.13) into a linear system with output inject (1.15) if and only if

f .x0/ D 0

h.x0/ D 0

and Lnf .dh/ is a linear combination of Lkf .dh/ for k D 0; 1; � � � ; n � 1.
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Note that the theorem guarantees the existence of a local change of coordinates
around an equilibrium. Therefore, the observers are limited in a local neighborhood
of an equilibrium point. Among a large number of publications on the observer
design by achieving linearized error dynamics, we would like to bring up (Kazantzis
and Kravaris 1998). In this work, the formulation of the observer design problem
is realized via a system of singular first-order linear partial differential equations
(PDE). The theory is applicable to a larger family of systems than that addressed
in Krener and Isidori (1983). In fact, after a nonlinear change of coordinates, the
resulting system is not required to have a linear output like in (1.15). Another
advantage of the work in Kazantzis and Kravaris (1998) is that the solution to
the PDEs is locally analytic and this enables the development of a series solution
method, that is programmable using symbolic software packages. In the presence
of noise, some types of output injection, such as a y2 term, may result in a biased
estimation because EŒ.y C n/2� D EŒy2�C EŒn2�, where n is a random noise.

Other related work includes Zeitz’s extended Luenberger observer based upon
a local linearization technique (Zeitz 1987). Nonlinear coordinate transformations
have also been employed to transform the nonlinear system to a suitable observer
canonical form, where the observer design problem may be solved (Bestle and Zeitz
1983; Ding et al. 1990; Xia and Gao 1989; Zheng et al. 2007).

1.3.3 Observers Based on Lyapunov Functions

For systems that do not admit a linear error dynamics, nonlinear observers can
be derived so that its stability is guaranteed by a Lyapunov function. A widely
used approach is based on the high gain observer proved in Gauthier et al. (1992).
Once again, consider the nonlinear system (1.13). Using a single output case as an
example, consider the mapping, z D z.x/ W Rn ! R

n, defined by

z.x/ D

2
6664

h.x/

Lf h.x/
:::

Ln�1
f h.x/

3
7775 (1.17)

We assume that z D z.x/ is a diffeomorphism on a region � � R
n. Under this

transformation, the original system is equivalent to the system in the form

Pz D

2
666664

z2
z3
:::

zn
�.z/

3
777775

y D z1

(1.18)


