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Introduction

The theory of cylindric algebras (CAs) and Tarskian algebraic logic have
been immensely successful in, e.g., applications to such a diversity of fields
as logic, mathematics, computer science, artificial intelligence, linguistics
and even relativity theory. In some of the applications one has to transcend
(a little) the original definition of CAs but not its spirit. For example, the
emphasis shifted to relativized CAs and to adding extra operations such
as, e.g., substitutions (sτ s). To keep the original Tarskian spirit of CAs, in
this volume we consider only quasi-polyadic operations (e.g., substitutions
where τ is finite) as opposed to Halmos’ polyadic ones (e.g., substitutions
with all infinite τs). These and similar generalizations are the reason for
“cylindric-like” algebras in the title in place of simply CAs.

In the literature of cylindric-like algebras, the following three books
are regarded as the main source of the theory: [Hen-Mon-Tar,85], Part I,
[Hen-Mon-Tar-And-Nem,81] and [Hen-Mon-Tar,85], Part II. Sometimes,
they are referred to as [CA1], [CA1.5], and [CA2], respectively. We will use
this notation ([CA1] etc.) in the present introduction. We will refer to the
three of them together as [CA]. Since those volumes were completed before
1985 (almost 30 years ago) and since the theory grew and diversified much
in the meantime, a general consensus formed that it would be timely to
edit a new book [CA3] summarizing new trends, new directions of develop-
ment/applications in a coherent volume, using the terminology, notation
and overall structure of the original [CA]. For completeness, we note that
after [CA2] important volumes did appear on the topic, some of them
being [And-Mon-Nem,91b], [Ber-Mad-Pig,90], [Cra,06], [Csir-Gab-Rij,95],
[Gab-Kur-Wol-Zak,03], [Hir-Hod,02a], [Mad,06], [Mar-Pol-Mas,96],
[Mar-Ven,97], [Tar-Giv,87], but neither of them had the just described
ambition.

The present volume [CA3] intends to be a guide to the field of cylindric-
like algebras and algebraic logic as it developed after the completion of
[CA2]. It is also the purpose of the present volume to highlight new hori-
zons, new research directions found after [CA2], promising new possibilities
for research and application of cylindric-like algebras. Let us take an exam-
ple. The application of Boolean algebras (BAs) to logic was spectacularly
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successful. At the time [CA1] and [CA1.5] were written, this success story of
BAs could not be repeated for CA-theory, e.g., because of the nonexistence
of a Stone-type representation theorem for CAs. Actually, such a representa-
tion theorem was known to be impossible by the non-finitizability results of
J. Donald Monk, Roger Maddux, James Johnson, Hajnal Andréka, Balázs
B́ıró and others. This mercilessly unfriendly picture started to soften when
the Resek–Thompson result with Andréka’s simple proof appeared in 1988
[And-Tho,88]. This meant that shifting emphasis to representing CAs by
relativized cylindric set algebras in place of “square” cylindric set algebras
yielded positive representability (hence axiomatizability) results. Indeed,
this insight (together with [CA1.5] and [Nem,86]) led eventually to a flurry
of applications of cylindric-like algebras to logic as summarized in Johan
van Benthem’s paper in this volume [Ben,thisVol]. (For completeness we
note that a distant hope for such a positive turn was found already in [CA2]
in the form of Remarks 3.2.88, p. 101.) Representation theory of cylindric-
like algebras is nicely developing in the direction of using more and more
natural variants of relativised set algebras, see, e.g., by Maddux, Andréka
and Ferenczi: [Mad,89b], [And,01] and [Fer,12a]; developments in this field
are surveyed in Miklós Ferenczi’s paper in this volume [Fer,thisVol,a].

We dedicate this volume to the memory of Leon Henkin, our friend, col-
laborator, co-author and co-teacher, who passed away in 2006. Leon had a
noble unselfish passion (and insistence) on looking for positive results (as a
reaction to discovering negative ones). His positive-oriented influence can
be felt throughout logic, not just in algebraic logic. Henkin-type seman-
tics and his completeness theorem for higher-order logics is an example of
this approach. Diane Resek was a student of Henkin, and their work on
relativized cylindric algebras and merry-go-round equations led to the just
discussed Resek–Thompson–Andréka turn. A further example of Henkin’s
striving for positive results (in the face of negative ones) is his method of
“twisting elements” which he designed for non-standard representation of
non-representable CAs ([CA2], 3.2.71, p. 89). Indeed, Henkin conjectured
that by his methods of relativization and twisting, all CAs might be rep-
resentable (in terms of square set-CAs). This conjecture was confirmed
by András Simon in 1999; it is summarized in his paper for this volume
[Sim,thisVol]. In the spirit of Leon’s work, we would like to pass on his ded-
ication for advancing science by striving for positive contributions, to our
readers, our students, and to future generations.

The papers in this volume are survey papers expanded by proofs or by
ideas of proofs. All of them were invited by the editors. The subjects



Introduction 11

were carefully selected in order to provide a balanced representation of
the development of the field after completion of [CA2], and we are pleased
with the result. There are subjects, though, we would have liked to devote
separate papers to, but which were omitted from the list of papers for one
reason or another. Below we list some of these subjects with some pointers
to the literature:

– relation algebras (RAs) (two monographs appeared recently about
these [Hir-Hod,02a], [Mad,06] and [Giv,12] by Steven R. Givant is to appear;
further, paying proper homage to RAs would have overthrown the balance
of [CA3]),

– translation of logic to algebra and back, the process of algebraization of
logics and the “bridge theorems” (development after [CA2] in this important
subject is discussed in detail in [And-Nem-Sai,01], [Nem,87a], [Nem,90] and
also, in less detail, in the PhD dissertations of Eva Hoogland, Szabolcs
Mikulás and others in Amsterdam from around 2000; György Serény’s
paper [Ser,thisVol] discusses the model theoretic part or aspects of this
“translation of logic to algebra and back” subject under the name “cylindric
algebraic model theory”, and this subject is also touched upon in this volume
in [Sai,thisVol], [Say,thisVol,a]),

– the finitization problem and its positive solutions (by Ildikó Sain and
Viktor Gyuris [Sai-Gyu,97], Vera Stebletsova and Yde Venema [Ste,00],
[Ste-Ven,98], and via non-well-founded set theory by Ági Kurucz and István
Németi [Kur-Nem,00]; this finitization problem/issue is discussed (to some
extent) in the updated version of [Nem,91]),

– the related weakly higher-order algebraic logic approach (CA ↑) (by
Németi, Simon, and Gábor Sági [Nem-Sim,09], [Sag,00]),

– Galois theory of CAs by, e.g., Stephen Comer [Com,84],

– connection between CAs and RAs (by Maddux, Simon, Robin Hirsch,
Ian Hodkinson and Németi [Nem-Sim,97], [Hir-Hod,02a]).

In this volume, some familiarity with the central notions of [CA] is as-
sumed. [CA3] uses the notation and terminology of [CA]. Further, [CA3] fol-
lows the logical structure (chapter titles) of [CA] with some minor changes.
Relative to [CA], there are two new kinds of chapters: Chapter 4 (Applica-
tions of cylindric-like algebras) and Chapter 6 (Connections with abstract
algebraic logic and universal logic). Both topics, Chapters 4 and 6, are re-
garded as “hot topics” recently, e.g., there is an article on the latter in the
Stanford Encyclopedia of Philosophy. The bibliography of [CA3] intends to
cover most publications, in the subject, which appeared after [CA2]. An
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Internet site devoted to open problems in cylindric-like algebras as well as
following the status of problems published in, e.g., [CA] is under prepara-
tion.

We want to express our grateful thanks to J. Donald Monk and Leon
Henkin whose consistent help and support throughout the years beginning
with the conception of [CA1.5] made this volume possible. We want to
express our thanks to all the authors of this volume for accepting our
invitation and contributing excellent papers. Finally, warm thanks go to
Ildikó Miklós who typed the volume, trying to coordinate the typographies
of the papers originating from 19 authors.

Budapest, July 2012. The Editors
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Reducing First-order Logic to Df3,
Free Algebras

HAJNAL ANDRÉKA and ISTVÁN NÉMETI

Alfred Tarski in 1953 formalized set theory in the equational theory
of relation algebras [Tar,53a, Tar,53b]. Why did he do so? Because the
equational theory of relation algebras (RA) corresponds to a logic without
individual variables, in other words, to a propositional logic. This is why the
title of the book [Tar-Giv,87] is “Formalizing set theory without variables”.
Tarski got the surprising result that a propositional logic can be strong
enough to “express all of mathematics”, to be the arena for mathematics.
The classical view before this result was that propositional logics in general
were weak in expressive power, decidable, uninteresting in a sense. By
using the fact that set theory can be built up in it, Tarski proved that the
equational theory of RA is undecidable. This was the first propositional
logic shown to be undecidable.

From the above it is clear that replacing RA in Tarski’s result with
a “weaker” class of algebras is an improvement of the result and it is
worth doing. For more on this see the open problem formulated in Tarski–
Givant ([Tar-Giv,87, p. 89, line 2 bottom up – p. 90, line 4 and footnote 17
on p. 90]).

A result of J. D. Monk says that for every finite n there is a 3-variable
first-order logic (FOL) formula which is valid but which can be proved
(in FOL) with more than n variables only (cf. [Hen-Mon-Tar,85, 3.2.85]).
Intuitively this means that during any proof of this formula there are steps
when we have to use n independent data (stored in the n variables as in n
machine registers). For example, the associativity of relation composition
of binary relations can be expressed with 3 variables but 4 variables are
needed for any of its proofs.

Tarski’s main idea in [Tar-Giv,87] is to use pairing functions to form
ordered pairs, and so to store two pieces of data in one register. He used
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this technique to translate usual infinite-variable first-order logic into the
three-variable fragment of it. From then on, he used the fact that any
three-variable-formula about binary relations can be expressed by an RA-
equation, [Hen-Mon-Tar,85, 5.3.12]. He used two registers for storing the
data belonging to a binary relation and he had one more register available
for making computations belonging to a proof.

The finite-variable fragment hierarchy of FOL corresponds to the appro-
priate hierarchy of cylindric algebras (CAn’s). The n-variable fragment Ln

of FOL consists of all FOL-formulas which use only the first n variables. By
Monk’s result, Ln is essentially incomplete for all n ≥ 3, it cannot have a
finite Hilbert-style complete and strongly sound inference system. We get a
finite Hilbert-style inference system �n for Ln by restricting a usual complete
one for infinite-variable FOL to the first n variables (see [Hen-Mon-Tar,85,
Sec. 4.3]). This inference system �n belonging to Ln is a translation of an
equational axiom system for CAn, it is strongly sound but not complete:

�n is much weaker than validity |=n (which is the restriction of |= to the
formulas in Ln).

Relation algebras are halfway between CA3 and CA4, the classes of 3-
dimensional and 4-dimensional cylindric algebras, respectively. We some-
times jokingly say that RA is CA3.5. Why is RA stronger than CA3? Be-
cause, the so-called relation-algebra-type reduct of a CA3 is not necessarily
an RA, e.g., associativity of relation composition can fail in the reduct. See
[Hen-Mon-Tar,85, Sec. 5.3], and for more in this line see [Nem-Sim,97]. Why
is CA4 stronger than RA? Because not every RA can be obtained, up to iso-
morphism, as the relation-algebra-type reduct of a CA4, and consequently
not every 4-variable sentence can be expressed as an RA-term. However, the
same equations are true in RA and in the class of all relation-algebra-type
reducts of CA4’s (Maddux’s result, see [Hen-Mon-Tar,85, Sec. 5.3]). Thus
Tarski formulated set theory, roughly, in CA4, i.e., in L4 with �4, or in L3

with validity |=3.

Németi ([Nem,85b], [Nem,86a]) improved this result by formalizing set
theory in CA3, i.e., in L3 with �3 in place of validity |=3. The main idea for
this improvement was using the pairing functions to store all data always,
during every step of a proof, in one register only, so as to get two registers
to work with in the proofs. In this approach one represents binary relations
as unary ones (of ordered pairs).

First-order logic has equality as a built-in relation. One of the uses of
equality in FOL is that it can be used to express (simulate) substitutions
of variables, thus to “transfer” content of one variable to the other. The
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reduct SCA3 of CA3 “forgets” equality dij but retains substitution in the
form of the term-definable operations sij . The logic belonging to SCA3 is
weaker than 3-variable fragment of FOL. Zalán Gyenis [Gye,11] improved
parts of Németi’s result by extending them from CA3 to SCA3.

We get a much weaker logic by forgetting substitutions, too, this is the
logic corresponding to Df3 in which FOL and set theory were formalized in
[And-Nem,11a].

Three-dimensional diagonal-free cylindric algebras, Df3’s, are Boolean
algebras with 3 commuting complemented closure operators, see
[Hen-Mon-Tar,85, 1.1.2] or [Kur,thisVol]. The logic Ldf3 corresponding to
Df3 has several intuitive forms, one is 3-variable equality- and substitution-
free fragment of first-order logic with a rather weak proof system �df , an-
other form of this same logic is modal logic [S5,S5,S5], see [Kur,thisVol]
and [Gab-Kur-Wol-Zak,03]. Not only set theory but the whole of FOL is
recaptured in Ldf3. This is a novelty w.r.t. previous results in this line. All
the formalizability theorems mentioned above follow from this last result.

In Section 1 we define our weak “target logic” Ldf3 and we state the
existence of a structural translation mapping of FOL with countably many
relation symbols of arbitrary ranks, Lω, into Ldf3 with a single ternary re-
lation symbol, see Theorem 1.1.6. If equality is available in our target logic,
then we can do with one binary relation symbol, we do not need a ternary
one, see Theorem 1.1.7. For theories in which a conjugated pair of quasi-
pairing functions can be defined, such as most set theories, we can define a
similar translation function which preserves meaning of formulas a bit more
closely, see Theorem 1.1.6(ii), Theorem 1.1.7(ii). Theorem 1.1.6(ii) is a
very strong version of Tarski’s main result in [Tar-Giv,87, Theorem (xxxiv),
p. 122], which states roughly the same for the logic corresponding to RA in
place of Df3. After Theorem 1.1.7 we discuss the conditions in both The-
orem 1.1.6 and Theorem 1.1.7, and we obtain that almost all of them are
needed and that they cannot be substantially weakened.

In Sections 2 and 3 we concentrate on the applications of the theorems
stated in Section 1. In Section 2 we show that our translation functions are
useful in proving properties for n-variable logics as well as for other “weak”
logics. In particular, we prove a partial completeness theorem for the n-
variable fragment of FOL (n ≥ 3) and we prove that Gödel’s incompleteness
property holds for it.

In Section 3 we review some results and problems on free cylindric-like
algebras from the literature since 1985. As an application of the theorems in
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Section 1, we show that the free cylindric algebras are not atomic (solution
for [Hen-Mon-Tar,85, Problem 4.14]) and that these free algebras are not
“wide”, i.e., the k+ 1-generated free cylindric algebra cannot be embedded
into the k-generated one, but these free algebras have many k-element
irredundant non-free generator sets (solution for [Hen-Mon-Tar,85, Problem
2.7]).

1. Interpreting FOL in its Small Fragments

Instead of Df3 and CA3, we will work with fragments of FOL which are
equivalent to them because this will be convenient when stating our theo-
rems. We treat FOL as [Hen-Mon-Tar,85] does, i.e., with equality and with
no operation symbols. We deviate from [Hen-Mon-Tar,85] in that our con-
nectives are ∨, ¬, ∃vi, vi = vj , i, j ∈ ω and we treat the rest as derived ones,

by defining ϕ∧ψ d
= ¬(¬ϕ∨¬ψ), ⊥ d

= (v0 = v0∧¬v0 = v0), 
 d
= ¬⊥. We will

use the derived connectives ∀, →, ↔, too, as abbreviations: ∀vϕ d
= ¬∃v¬ϕ,

ϕ → ψ
d
= ¬ϕ ∨ ψ, ϕ ↔ ψ

d
= (ϕ → ψ) ∧ (ψ → ϕ). We will use x, y, z to

denote the first three variables v0, v1, v2. Sometimes we will write, e.g., ∃xy
or ∀xyz in place of ∃x∃y or ∀x∀y∀z, respectively.

We begin with defining the fragment Ldf3(P, 3) of FOL. It contains three
variables and one ternary relation symbol P . It is a fragment of FOL in
which we omit the equality, quantifiers ∃v for v distinct from x, y, z, and
atomic formulas P (u, v, w) for uvw �= xyz; and we omit all relation symbols
distinct from P .

Definition 1.1.1 (3-variable restricted FOL without equality Ldf3(P, 3)).
(i) The language of our system contains one atomic formula, namely

P (x, y, z). (E.g., the formula P (y, x, z) is not available in this lan-
guage, this feature is what the adjective “restricted” refers to.) The
logical connectives are ∨, ¬, ∃x, ∃y, ∃z. Thus, the set Fdf 3 of formu-
las of Ldf3(P, 3) is the smallest set F containing P (x, y, z) and such
that ϕ ∨ ψ, ¬ϕ, ∃xϕ, ∃yϕ, ∃zϕ ∈ F whenever ϕ,ψ ∈ F .

(ii) The proof system �df which we will use is a Hilbert-style one with the
following logical axiom schemes and rules.

The logical axiom schemes are the following. Let ϕ,ψ ∈ Fdf 3 and
v, w ∈ {x, y, z}.
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((1)) ϕ, if ϕ is a propositional tautology.

((2)) ∀v(ϕ→ ψ)→ (∃vϕ→ ∃vψ).
((3)) ϕ→ ∃vϕ.
((4)) ∃v∃vϕ→ ∃vϕ.
((5)) ∃v(ϕ ∨ ψ)↔ (∃vϕ ∨ ∃vψ).
((6)) ∃v¬∃vϕ→ ¬∃vϕ.
((7)) ∃v∃wϕ→ ∃w∃vϕ.
The inference rules are Modus Ponens ((MP), or detachment), and
Generalization ((G)).

(iii) We define Ldf3(P, 3) as the logic with formulas Fdf 3 and with proof
system �df .

(iv) We define Ldfn(R, ρ) where n is an ordinal, R is a sequence of relation
symbols and ρ is the sequence of their ranks (i.e., numbers of argu-
ments), all ≤ n, analogously to Ldf3(P, 3). When we do not indicate
R, ρ in Ldfn(R, ρ), we mean to have infinitely many n-place relation
symbols.

The fragment Lca3 is similar to the above fragment Ldf3, except that
we do not omit equality from the language, hence we will have u = v as
formulas for u, v ∈ {x, y, z}, and we will have two more axiom schemes con-
cerning equality in the proof system. Since we have equality, our “smallest
interesting” language will be when we have one binary relation symbol E.

Definition 1.1.2 (3-variable restricted FOL with equality Lca3(E, 2)).

(i) The language of our system contains one atomic formula, namely
E(x, y). The logical connectives are ∨, ¬, ∃x, ∃y, ∃z together with
u = v for u, v ∈ {x, y, z} as zero-place connectives. Thus, x = x,
x = y, etc are formulas of Lca3. We denote the set of formulas
(of Lca3) by Fca3.

(ii) The proof system �ca which we will use is a Hilbert-style one with the
logical axiom schemes and rules of Ldf3 (understood as schemes for
Lca3) extended with the following two axiom schemes:

Let ϕ ∈ Fca3 and u, v, w ∈ {x, y, z}.
((8)) (u = v → v = u) ∧ (u = v ∧ v = w → u = w) ∧ ∃v u = v.

((9)) u = v ∧ ∃v(u = v ∧ ϕ)→ ϕ, where u, v are distinct.
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(iii) We define Lca3(E, 2) as the logic with formulas Fca3 and with proof
system �ca.

(iv) We define Lcan(R, ρ) where n is an ordinal, R is a sequence of relation
symbols and ρ is the sequence of their ranks, all ≤ n, analogously to
Lca3(E, 2). When we do not indicate R, ρ in Lcan(R, ρ), we mean to
have infinitely many n-place relation symbols.

Remark 1.1.3 (On the fragment Ldf3 of FOL).

(i) The proof system �df is a direct translation of the equational axiom
system of Df3. Axiom ((2)) is needed for ensuring that the equivalence
relation defined on the formula algebra by ϕ ≡ ψ ⇔ �df ϕ ↔ ψ be a
congruence with respect to (w.r.t.) the operation ∃v. It is congruence
w.r.t. the Boolean connectives ∨, ¬ by axiom ((1)). Axiom ((1)) expresses
that the formula algebra factorized with ≡ is a Boolean algebra, axiom ((5))
expresses that the quantifiers ∃v are operators on this Boolean algebra (i.e.,
they distribute over ∨), axioms ((3)), ((4)) express that these quantifiers
are closure operations, axiom ((6)) expresses that they are complemented
closure operators (i.e., the negation of a closed element is closed again).
Together with ((5)) they imply that the closed elements form a Boolean
subalgebra, and hence the quantifiers are normal operators (i.e., the Boolean
zero is a closed element). Finally, axiom ((7)) expresses that the quantifiers
commute with each other. We note that ((1)) is not an axiom scheme in
the sense of [And-Nem-Sai,01] since it is not a formula scheme, but it can
be replaced with three formula schemes, see [Hen-Mon-Tar,85, Problem 1.1]
(solved in [McC,97]).

(ii) The logic Ldf3 corresponds to Df3 in the sense of [Hen-Mon-Tar,85,
Sec. 4.3], as follows. What is said in (i) above immediately implies that
the proof-theoretic (Lindenbaum–Tarski) formula algebra of Ldf3 (which
is just the natural formula-algebra factorized by the equivalence relation
≡ defined in (i) above) is the infinitely generated Df3-free algebra, and
that of Ldf3(P, 3) is the one-generated Df3-free algebra. Moreover, valid
formulas of Ldf3 correspond to equations valid in Df3, namely we claim
that Ldf3 �df ϕ ⇔ Df3 |= τμ(ϕ) = 1 for all ϕ ∈ Fdf 3, where τμ(ϕ) is as
defined in [Hen-Mon-Tar,85, 4.3.55].

(iii) The logic Ldf3 inherits a natural semantics from first-order logic
(namely Mod, the class of models of FOL, and |=3, the validity relation
restricted to 3-variable formulas). The proof system �df is strongly sound
with respect to this semantics, but it is not complete, for more on this
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see Section 2. We note that just as Df3 corresponds to the logic Ldf3 =
〈Fdf 3,�df〉, the class of algebras corresponding to 〈Fdf 3, |=3〉 is the class
RDf3 of representable diagonal-free cylindric algebras ([Hen-Mon-Tar,85,
5.1.33(v)]). For more on connections between logics and classes of algebras,
besides [Hen-Mon-Tar,85, Sec. 4.3], see [And-Nem-Sai,01], or [Sai,thisVol].

The expressive power of Ldf3 is seemingly very small. It’s not only
that “we cannot count” due to lack of the equality, we cannot transfer any
information from one variable to the other by the use of the equality, so all
such transfer must go through an atomic formula. Hence if we have only
binary relation symbols, in the restricted language there is just no way of
meaningfully using the third variable z, and we basically have two-variable
logic which is decidable. However, Theorem 1.1.6 below says that if we have
at least one ternary relation symbol and we are willing to express formulas
in a more complicated way (than the most natural one would be), then we
can express any sentence that we can in FOL.

(iv) In the present paper we will use Ldf3 as introduced above because it
will be convenient to consider it a fragment of FOL. However, Ldf3 has sev-
eral different but equivalent forms, each of which has advantages and disad-
vantages. Some of the different forms are reviewed in [And-Nem,11a, Sec. 2].
We mention two of the equivalent forms. One is modal logic [S5,S5,S5],
this is equivalent to Ldf3 (while the modal logic S5 × S5 × S5 introduced
in [Kur,thisVol] is equivalent with 〈Fdf 3, |=3〉), see [Gab-Kur-Wol-Zak,03,
p. 379]. The other equivalent form is just equational logic with the defining
equations of Df3 as extra axioms.

Remark 1.1.4 (On the fragment Lca3 of FOL).

(i) The logic Lca3 corresponds to CA3 just the way Ldf3 corresponds to
Df3. The proof system �ca is a direct translation of the equational axiom
system of CA3. ((8)) expresses that = is an equivalence relation and ((9))
expresses that formulas do not distinguish equivalent (equal) elements. Take
the Hilbert-style proof system with axiom schemes ((1))–((9)) and rules as
(MP) and (G). Add the axioms

((0)) R(vi1, . . . , vin) ↔ ∃vjR(vi1, . . . , vin) for R an n-place relation sym-
bol and j /∈ {i1, . . . , in}.

Then the so obtained proof system is complete for FOL (with usual
semantics Mod, |=). Hence, Ldf3 and Lca3 are “proof-theoretic” fragments
of FOL when taking this complete proof system for FOL.
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(ii) The expressive power of Lca3 is much greater than that of Ldf3, due
to the presence of equality. E.g., one can express that a binary relation is
actually a function, one can express composition of binary relations, one can
express (simulate) substitution of variables. However, the proof system �ca
is still very weak, e.g., one can express but cannot prove the following:
the composition of two functions is a function again, composition of binary
relations is associative, converse of the converse of a binary relation is the
original one, interchanging the variables x, y in two different ways by using
z as “auxiliary register” results in an equivalent formula (this is the famous
merry-go-round equation [Hen-Mon-Tar,85, 3.2.88], see also [Fer,thisVol,a],
[Sim,thisVol]). More precisely, one cannot prove these statements if one
expresses them the most natural ways. Our theorems below say that if
we express the same statements in more involved ways, they become �ca-
provable.

Let Lω denote usual FOL with countably many variables and with
countably many relation symbols for each rank, i.e., we have countably
many n-place relation symbols for all positive n. Let Lω denote the set
of formulas of Lω. Thus Lω = 〈Lω,�〉 where � is either the proof system
outlined in Remark 1.1.4(i) above, or just the usual semantic consequence
relation |=. We assume that E is a binary and P is a ternary relation symbol
in Lω. Then Lω(E, 2) denotes the set of formulas in Lω in which only E
occurs from the relation symbols. Zermelo–Fraenkel set theory written up
in Lω(E, 2) is denoted by ZF . A formula of Lω is called a sentence if it does
not contain free variables.

Definition 1.1.5 (Structural translations). Let L = 〈F,�〉 be a logic (in
the sense of Remark 1.1.8(i) below). Assume that ∨,¬ are connectives in
L, and let → denote the corresponding derived connective in L, too. Let
f : Lω → F be an arbitrary function. We say that f is structural iff the
following (i)–(ii) hold for all sentences ϕ,ψ ∈ Lω.

(i) � f(ϕ ∨ ψ)↔ [
f(ϕ) ∨ f(ψ)

]
,

(ii) � f(ϕ→ ψ)→ [
f(ϕ)→ f(ψ)

]
.

The following is proved in [And-Nem,11a] together with [And-Nem,11b],
by defining concrete translations tr. For the role of ¬ tr(⊥) in (ii) below see
Remark 1.1.8(iii), (iv).
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Theorem 1.1.6 (Formalizability of FOL in Ldf3).
(i) There is a structural computable translation function tr : Lω →

Ldf3(P, 3) such that tr has a decidable range and the following (a),
(b) are true for all sets of sentences Th ∪{ϕ} in Lω:

(a) Th |= ϕ iff tr(Th) �df tr(ϕ).

(b) Th |= ϕ iff tr(Th) |= tr(ϕ).

(ii) There is a structural computable translation function tr : Lω(E, 2)→
Ldf3(P, 3) such that tr has a decidable range and the following (c),
(d) are true, where Δ denotes the set of the following two formulas:

E(x, y) ↔ ∀zP (x, y, z) ∧ ∃xyz[P (x, y, z) ∧ ¬∀zP (x, y, z)
]
,

x = y = z ↔ P (x, y, z) ∧ ¬E(x, y).

(c) Statements (a) and (b) in (i) above hold for all sets of sen-
tences Th ∪{ϕ} in Lω(E, 2) such that Th ∪Δ |= ¬ tr(⊥). Further,
ZF ∪Δ |= ¬ tr(⊥).

(d) Δ ∪ {¬ tr(⊥)} |= ϕ↔ tr(ϕ) for all sentences ϕ ∈ Lω(E, 2).

The following is proved in [Nem,85b], [Nem,86a] (taken together with
[And-Nem,11b]), by constructing concrete tr’s. It says that we can replace
the ternary relation symbol P with a binary one in Theorem 1.1.6 if we have
equality.

Theorem 1.1.7 (Formalizability of FOL in Lca3).
(i) There is a computable, structural translation function tr : Lω →

Lca3(E, 2) such that tr has a decidable range and the following (a),
(b) are true for all sets of sentences Th ∪{ϕ} in Lω:

(a) Th |= ϕ iff tr(Th) �ca tr(ϕ).
(b) Th |= ϕ iff tr(Th) |= tr(ϕ).

(ii) There is a computable, structural translation function tr : Lω(E, 2)→
Lca3(E, 2) such that tr has a decidable range and the following (c),
(d) are true:

(c) Statements (a) and (b) in (i) above hold for all sets of sentences
Th ∪{ϕ} in Lω(E, 2) such that Th |= ¬ tr(⊥). Further, ZF |=
¬ tr(⊥).

(d) ¬ tr(⊥) |= ϕ↔ tr(ϕ), for all sentences ϕ ∈ Lω(E, 2).
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On the proof of Theorem 1.1.7. The most difficult part of this theorem
is proving |= ϕ⇒�ca tr(ϕ), for all ϕ ∈ Lω, therefore we will outline the ideas
for proving this part. So, we want to prove a kind of completeness theorem
for �ca.

Formulas ϕ(x, y) with two free variables x, y represent binary relations
and then the natural way of expressing relation composition of binary
relations is the following:

(ϕ ◦ ψ)(x, y) d
= ∃z(ϕ(x, z) ∧ ψ(z, y)

)
, where

ϕ(x, z)
d
= ∃y(y = z ∧ ϕ(x, y)

)
and ψ(z, y)

d
= ∃x(x = z ∧ ψ(x, y)

)
.

Now, assume that we have two unary partial functions, p, q which form
pairing functions, i.e. for which the following formula π holds:

π
d
= ∀xy∃z(p(z) = x ∧ q(z) = y).

For supporting intuition, let us write z0 = x and z1 = y in place of p(z) = x
and q(z) = y, and let 〈x, y〉 denote an arbitrary z for which z0 = x and
z1 = y. Now, we can “code” binary relations as unary ones, i.e., if ϕ(x) is a
formula with one free variable x, then we can think of it as representing the
binary relation

{〈x0, x1〉 : ϕ(x)
}
. With this in mind then a natural way of

representing relation composition is the following

(ϕ� ψ)(x)
d
= ∃y(ϕ(y0) ∧ ψ(y1) ∧ x0 = y00 ∧ y01 = y10 ∧ y11 = x1).

Fig. 1. Illustration of ϕ� ψ

As we said in Remark 1.1.4(ii), associativity of ◦ cannot be proved by

�ca, i.e., there are formulas ϕ, ψ, η in Fca3 such that

�ca
(
(ϕ ◦ ψ) ◦ η)(x, y)↔ (

ϕ ◦ (ψ ◦ η))(x, y).
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However, associativity of relation composition expressed in the unary form
can be proved, by assuming a formula Ax ∈ Fca3 which is semantically
equivalent with π but proof-theoretically stronger:

Ax �ca ((ϕ� ψ)� η
)
(x)↔ (

ϕ� (ψ � η)
)
(x)

for all formulas ϕ,ψ, η with one free variable x such that �ca ϕ(x)→ pair (x),

etc, where pair (x)
d
= ∃yx0 = y ∧ ∃yx1 = y. (I.e., pair (x) holds for x if

both p and q are defined on it.) We note that π is not strong enough for
proving associativity of �, and even Ax is not strong enough for proving
associativity of ◦, see [Nem,86a, 15T(ii), (iv)]. We mentioned already that

�ca cannot prove that composition of functions is a function again. Roughly,
Ax is π together with stating that composition of at most three “copies” of
p, q is a function again (i.e., p ◦ p ◦ q, p ◦ q etc are all functions). Similarly
to the above, we can express converse of binary relations and the identity
relation (coded for their unary form) and prove for these by�ca all the relation
algebraic equations, from Ax of course. Thus we defined relation-algebra-
type operations on the set of formulas of form ϕ(x) ∧ pair (x), and we can
prove from Ax that these operations form an RA. If p, q can be expressed as
above, then we have a so-called quasi-projective RA, a QRA, which are
representable by [Tar-Giv,87, 8.4(iii)], and we know that representation
theorems help us to get provability from validity (i.e., the hard direction
of completeness theorems). It remains to get suitable pairing formulas p, q
(see (1) below) and to translate all FOL-formulas, in a meaning-preserving
way, to the above QRA-fragment of Lca3 (see (2) below).

(1) We can get p, q by “brute force”: we add a new binary relation
symbol E to our language, intuitively we will think of it as the element-
of relation ∈. Then we express ordered pairs the way usually done in set

theory (i.e., 〈x, y〉 d
=
{{x}, {x, y}}), and realize that we can write up the

two projection functions belonging to these using only three variables. By
using these projection functions we can convert every FOL-formula to one
in Fca3 so that we preserve validity (we can use the pairing-technique to
code all the relations into one binary one, and then we can code up all the
variables into the first three ones). This part is not so difficult because we
may think “semantically”.

(2) It remains now to translate all 3-variable formulas ϕ ∈ Fca3 into the
QRA-fragment of Lca3 we obtained above. The paper Simon [Sim,07] comes
to our aid. In [Sim,07], to every QRA a CA3-type subreduct is defined which
is representable, i.e., which is in RCA3. Let C be this subreduct of our above-
defined QRA, then the universe of C is a subset of Fca3 and the operations
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of C are defined in terms of formulas of Fca3, too. Let f : Fca3 → C be a
homomorphism (where the CA3-type operations of Fca3 are the natural

ones), and then we define tr : Fca3 → Fca3 by tr(ϕ)
d
= Ax → f(ϕ).

Now, one can check that |= ϕ ⇒ �ca tr(ϕ). For the details of the proof
outlined above and for the proof of Theorem 1.1.6 we refer the reader to
[And-Nem,11a, And-Nem,11b, Nem,85b, Nem,86a].

Remark 1.1.8 (Discussion of the conditions in Theorems 1.1.6, 1.1.7).

(i) In Abstract Algebraic Logic, AAL, and/or in Universal Logic the key
concept is a logical system (logic in short) 〈F,�〉 where F is a set (thought
of as the set of formulas) and �⊆ Sb(F )× F (thought of as a consequence
relation), where Sb(F ) denotes the powerset of F . If f : F → F ′ is a
function between two logics L = 〈F,�〉 and L′ = 〈F ′,�′〉, then f is called
a translation iff it preserves �, i.e., iff Th � ϕ ⇒ f(Th) �′ f(ϕ) holds for
all Th ∪{ϕ} ⊆ F , and f is called a conservative translation if ⇒ can be
replaced by ⇔ in the above. Jeřábek [Jer,11] proved that FOL can be con-
servatively translated even to classical propositional calculus (CPC); and
moreover, every countable logic can be conservatively translated to CPC.
In this sense, the existence of conservative translations does not mean much
in itself. However, if we require the translation to be computable in ad-
dition, then undecidability is preserved along the translation, and so FOL
can be translated to undecidable logics only (i.e., where {ϕ ∈ F : ∅ � ϕ} is
undecidable), and so it cannot be translated to CPC. For this reason, the
conditions that we have at least one at least ternary relation symbol, we
have at least 3 quantifiers (closure operators), and that they commute are
all necessary conditions for our target logic in Theorem 1.1.6 since without
these conditions we get decidable logics. (We have seen that Ldf3(P, 2) is ba-
sically 2-variable logic which is decidable [Hen-Mon-Tar,85, 4.2.7], and the
logic we get from Ldfn by omitting the axiom scheme ((7)) requiring that
the quantifiers commute is proved to be decidable in [Nem,86a, Chap. III],
[Nem,95, Theorem 1.1]). If we require more properties for the translation
function to hold, then more properties are preserved along them. E.g., struc-
tural computable conservative translations preserve Gödel’s incompleteness
property from one logic to the other, see Theorem 1.2.4.

(ii) The achievement (of Theorems 1.1.6, 1.1.7) that the range of the
translation is decidable can be omitted, since if we have a translation func-
tion then by using the trick in [Cra-Vau,58] we can modify this function so
that its range becomes decidable and keep all the other good properties, at
least in our case when our logics are extensions of CPC.
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(iii) There are sentences in Lω(E, 2) which are not equivalent seman-
tically to any formula in L3(E, 2), hence there is no function f : Lω →
L3(E, 2) for which |= ϕ ↔ f(ϕ) would hold for all sentences ϕ ∈ Lω. For
this reason, ¬ tr(⊥) cannot be omitted in Theorems 1.1.6(ii)(d), 1.1.7(ii)(d).
For example, such a 4-variable sentence is exhibited in [Nem,86a, p. 39].
We note that Δ in Theorem 1.1.6(ii) is an explicit “definition” of E and =
from P .

(iv) Our translation functions are not Boolean homomorphisms in gen-
eral, e.g., the translations tr we define in the proofs of Theorems 1.1.6,
1.1.7 do not preserve negation in the way they preserve disjunction. Con-
sequently, ¬ tr(⊥) is not the same as tr(
), and more importantly, ¬ tr(⊥)
is not a valid formula. From the fact that tr is structural, it can be proved
that � tr(ϕ)↔ [¬ tr(⊥)→ tr(ϕ)

]
. Hence, ¬ tr(⊥) seems to be the weakest

assumption under which one can expect semantical equivalence of ϕ with
tr(ϕ). Intuitively, ¬ tr(⊥) is the “background knowledge” we assume for the
translation function tr to preserve meaning. This is the role of ¬ tr(⊥) in
Theorems 1.1.6(ii), 1.1.7(ii).

(v) A logic 〈F,�〉 is defined to be a propositional logic (or sentential logic)
in AAL if F is built up from some set, called propositional variables, by
using connectives and � is substitutional, i.e., � is preserved by substitution
of arbitrary formulas for propositional variables. In this sense, Ldf3 and
Lca3 are propositional logics, but Lω is not, see e.g., [And-Nem-Sai,01] or
[Sai,thisVol].

(vi) Any logic L = 〈F,�〉 which is between Ldf3(P, 3) and Lω can
be taken in Theorem 1.1.6 in place of Ldf3(P, 3). (We say that a logic
L = 〈F,�〉 is contained in another one, L′ = 〈F ′,�′〉, if F ⊆ F ′ and � ⊆ �′.)
This is easy to check.

Problem 1.1.9 (Interpreting FOL in weaker fragments). Can the require-
ment of the closure operators being complemented be omitted in our theo-
rems? I.e., is there a computable (structural) conservative translation from
Lω to the equational theory EqBf3 of Bf3 where Bf3 denotes the class of
all Boolean algebras with three commuting (not necessarily complemented)
closure operators? Is EqBf3 undecidable?
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2. Applications of the Interpretation

There are many applications, of different flavors, of the interpretability the-
orems of which Theorem 1.1.6 is presently the strongest one. In this and the
next sections we state some of these applications. We will concentrate on
consequences for cylindric algebras, CAn, RCAn and their logical counter-
parts, but analogous results hold for all their variants, e.g., for diagonal-free
cylindric algebras Dfn, RDfn, substitution-cylindrification algebras SCAn,
RSCAn, polyadic equality algebras PEAn, RPEAn, polyadic algebras PAn,
RPAn, for relation algebras SA, RA, RRA and their logical counterparts.
For the definition of these classes of algebras see, e.g., [Hen-Mon-Tar,85],
[Mad-Say,thisVol], [Mad,82].

The first applications we talk about here concern completeness theorems.
Tarski used his translation in [Tar-Giv,87] to transfer the completeness
theorem for Lω into a kind of completeness theorem for his target logic,
which in algebraic form is stated as a representation theorem, namely that
every quasi-projective relation algebra is representable. (Later Maddux
[Mad,78] gave a purely algebraic proof for this.) It is shown in [Nem,85b,
3.7–3.10], [Nem,86a, 17T(viii)] that RA cannot be replaced with CA3 in
this consequence, namely, quasi-projective CA3’s are rather far from being
representable (and the same is true for the class SA of semi-associative
relation algebras, in place of CA3). So, in this respect, Tarski’s result cannot
be improved.

Yet, we can use our translations in Theorems 1.1.6, 1.1.7 to prove
completeness results for our target logics, but in a different way. We
begin with recalling some definitions from [And-Nem-Sai,01, D. 33, D. 48].
A proof system is called Hilbert-style if it is given by finitely many axiom
schemes and rules where the rules are of form ϕ1, . . . , ϕk � ϕ0 for some
formula schemes ϕ0, . . . , ϕk. A proof system � is called sound w.r.t. the
semantics |= iff � ϕ implies |= ϕ, strongly sound if Th � ϕ implies Th |= ϕ,
complete, strongly complete when “implies” is replaced with “implied by” in
the above, for all sets Th ∪{ϕ} of formulas. Finally, we define Ln = 〈Ln,�n〉,
the usual n-variable fragment of Lω, as restricting Lω to those formulas of
Lω which contain only the first n variables. (E.g., R(y, x, x, z) ∈ L3 when
R is a 4-place relation symbol in Lω.) More precisely, �n is the provability
relation we get from the axiom schemes ((0))–((9)) understood as schemes
for Ln and rules (MP), (G), cf. Remark 1.1.4(i). Throughout this section, we
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assume that E is a binary relation symbol in Lω and n ≥ 3 is finite. Hence,
in Theorem 1.1.7 we can replace Lca3(E, 2) with Ln (see Remark 1.1.8(vi)).

We know that Ln is inherently incomplete, i.e., there is no complete
and strongly sound Hilbert-style proof system for the “standard” validity
|= restricted to Ln. In the literature, there are approaches aimed at getting
around this inherent incompleteness of Ln. One goes by replacing “stan-
dard” models and validity with “non-standard” models and validity which
one can obtain from CAn. This approach originates with Leon Henkin. The
other approach is keeping the standard semantics and using new complete
inference systems which are sound but not strongly sound. Such infer-
ence systems are introduced, e.g., in [Ven,91], [Ven,thisVol] and in [Sim,91].
Problem 7.2 in [Sai,thisVol], as well as [Hen-Mon-Tar,85, Problem 4.16], and
[And-Mon-Nem,91b, Problem 1(a) (p. 730), Problems 49, 50 (p. 740)] are
strongly related to this direction.

Let �nt denote the proof system we obtain from �n by adding the rule
which infers ϕ from tr(ϕ) when ϕ is a sentence in Ln, where tr is the
translation in Theorem 1.1.7(i). This last rule is sound but not strongly
sound, i.e., �nt ϕ implies |= ϕ, but it is not true that Th �nt ϕ implies
Th |= ϕ (namely, tr(ϕ) �nt ϕ for all ϕ, but tr(ϕ) |= ϕ is not true for all ϕ).

Our first theorem in this section is an immediate corollary of Theo-
rem 1.1.7(i). It says that the “standard” Hilbert-style proof system �n is
strongly complete and strongly sound within a large enough subset of Ln;
and the “non-standard” proof system �nt is complete and sound for the whole
of Ln.

In more detail, the first part of Corollary 1.2.1 below says that we can
select a subset G of formulas, call it the set of “formulas of good shape”, such
that the natural Hilbert-style proof system �n is strongly complete within
this subset; moreover we can decide whether a formula is in good shape, and
every formula ϕ can be algorithmically converted to one in a good-shape
such that meaning is preserved in the sense described in Theorem 1.1.7(i).

Corollary 1.2.1. Let G denote the range of tr in Theorem 1.1.7(i) and let
n > 2 be finite. Then (i)–(iii) below hold:

(i) �n is strongly complete within G ⊆ Ln, i.e., for all Th ∪ {ϕ} ⊆ G we
have that Th |= ϕ⇔ Th �n ϕ.

(ii) G is large enough in the sense that tr(ϕ) ∈ G for all ϕ ∈ Ln and
|= ϕ⇔|= tr(ϕ).
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(iii) �nt is complete and sound in the whole of Ln, i.e., for all formulas
ϕ ∈ Ln we have |= ϕ⇔ �nt ϕ.

The next corollary concerns connections between RCAn and its finitary
approximation, CAn. Let ⊗ denote the complement of the symmetric dif-

ference, i.e., x ⊗ y
d
= (x · y) + (−x · −y). We note that ⊗ is the algebraic

counterpart of ↔.

Corollary 1.2.2. There is a computable function f mapping CAn-terms to
CAn-terms such that for all CAn-terms τ , σ we have

(i) RCAn |= τ = σ iff CAn |= f(τ⊗σ) = 1, or, in an equivalent form

(ii) RCAn |= τ = 1 iff CAn |= f(τ) = 1.

The above corollary of Theorem 1.1.7 justifies, in a way, the introduction
of CAn. Namely, CAn was devised in order to “control”, have a firm grasp
on equations true in RCAn. Nonfinite axiomatizability of RCAn implies that
this firm grasp cannot be attained in the form of EqCAn = EqRCAn where
EqK denotes the equational theory of the class K of algebras. By contrast,
the above theorem says that a firm grasp can be obtained by using the
computable function f ; the axioms of CAn together with the definition of f
provide a finitary tool that captures (reconstructs completely) EqRCAn.

A corollary of Theorem 1.1.6 says that the computational complexity of
FOL is the same as that of the equational theory of Df3. We recall from
[Coo,03], informally, that the Turing-degree of S ⊆ ω is less than or equal
to that of Z ⊆ ω, in symbols S ≤T Z, if by using a decision procedure
for Z we can decide S. The Turing-degrees of S and Z are the same, in
symbols S ≡T Z, if S ≤T Z and Z ≤T S. The same notion can be applied
to the equational theories of various classes of algebras, and to various FOL-
theories. Let Th(∅) denote the set of valid formulas of Lω.

The following corollary says that if we have a decision procedure for any
one of Th(∅), EqK with K one of Dfn, RDfn, CAn, RCAn, SCAn, RSCAn, . . . ,
RA, RRA, 3 ≤ n < ω then we can decidable any other of the same list. In
short, the Turing-degrees of all these classes are the same. This corollary
follows from Theorems 1.1.6, 1.1.7.

Corollary 1.2.3. Let 3 ≤ n < ω and let K be any one of Dfn, RDfn, CAn,
RCAn, SCAn, RSCAn, PAn, RPAn, PEAn, RPEAn, SA, RA, RRA. Then (i)
and (ii) below hold.
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(i) EqDf3 ≡T EqK.

(ii) EqDf3 ≡T Th(∅).

The above applications are all relevant to Problem 4.1 of
[Hen-Mon-Tar,85]. Indeed, from Corollary 1.2.2 we can get a decidable
equational base for EqRCAn similar to that in [Hen-Mon-Tar,85, 4.1.9], and

�nt gives a kind of solution for [Hen-Mon-Tar,85, Problem 4.1] similar to
[Hen-Mon-Tar,85, 4.1.20].

Now we turn to other kinds of applications. Tarski introduced and used
translation functions from a logic L into a logic L′ in order to transfer some
properties of L to L′. For example, if the translation function is computable,
then undecidability of the valid formulas of L implies the same for L′.
This is how Tarski proved that EqRA was undecidable. The same way,
Theorem 1.1.6 immediately implies that the sets of validities of Ldfn, Lcan
as well as the equational theories of Dfn, CAn for n ≥ 3 are undecidable.
These have been known and have been proved by using Tarski’s translation
of set theory into RA for n ≥ 4, and for n = 3 it is a result of Maddux
[Mad,80], proved by an algebraic method.

The next theorem says that structural computable translations are capa-
ble of transferring Gödel’s incompleteness property. For Lca3 this is proved
in [Nem,85b, Theorem 1.6], and for Ldf3 it is proved in [And-Nem,11a,
Theorem 2.3].

Theorem 1.2.4 (Gödel-style incompleteness theorem for Ldf3). There is
a formula ϕ ∈ Fdf 3 such that no consistent decidable extension T of ϕ
is complete, and moreover, no decidable extension of ϕ separates the �df -
consequences of ϕ from the ϕ-refutable sentences (where ψ is ϕ-refutable
iff ϕ �df ¬ψ). The same is true for Lca3 and Ln in place of Ldf3.

The proof of Theorem 1.2.4 goes by showing that the translation of
an inseparable formula which is consistent with ¬ tr(⊥) by a structural
computable translation function tr is inseparable again.

In algebraic logic, the algebraic property corresponding to the logi-
cal property of Gödel’s incompleteness is atomicity of free algebras (see
[Hen-Mon-Tar,85, 4.3.32] and [Nem,85b, Proposition 1.8]). Indeed, Theo-
rem 1.2.4 above implies non-atomicity of free cylindric algebras, this way
providing a solution for [Hen-Mon-Tar,85, Problem 4.14]. We devote the
next section entirely to free cylindric algebras, because of their importance.


