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Preface

Since the earliest expeditions of humans into space, visionaries have contemplated
the possibility that extraterrestrial resources could be developed and civilization
could eventually move into space. An important early paper (Ash, Dowler, and
Varsi, 1978) proposed that propellants for ascent be produced on Mars. Thus the
term in situ propellant production (ISPP) was coined, and this provided a focus for a
couple of decades. ISPP on Mars was the most obvious choice for utilization of
extraterrestrial resources because it provided an important need and it appeared to
be more technically feasible than most other possibilities.

As time went by, visionaries looked beyond the near term and imagined the
transfer of the industrial revolution and the electronic revolution to planetary
bodies. Metals would be produced and fabricated into objects, concrete building
blocks would be assembled into structures, and electronics would be created from
indigenous materials. Thus, ISPP became an obsolete term and it was replaced by in
situ resource utilization (ISRU) to allow for a wider range of applications than mere
propellant production.

Robert Zubrin is a prominent Mars technologist and advocate of Mars explora-
tion and is founder and president of the Mars Society. His book Entering Space
provides a contemplative roadmap for humans to settle in space.

Zubrin contemplates finding ‘‘fossils of past life on its surface,’’ as well as using
‘‘drilling rigs to reach underground water where Martian life may yet persist.’’ He
believes that there is great social value in the inspiration resulting from a Mars
venture. He also said: ‘‘the most important reason to go to Mars is the doorway it
opens to the future. Uniquely among the extraterrestrial bodies of the inner solar
system, Mars is endowed with all the resources needed to support not only life, but
the development of a technological civilization . . . In establishing our first foothold
on Mars, we will begin humanity’s career as a multi-planet species.’’

Zubrin has support from a good many Mars enthusiasts. (The goal of the Mars
Society is ‘‘to further the goal of the exploration and settlement of the Red Planet.’’)
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More than 10 years ago, they believed that we could send humans to Mars ‘‘in ten
years’’ and begin long-term settlements. Each year, the International Space
Development Conference hosts a number of futurists who lay out detailed plans for
long-term settlements on Mars. The Mars Society often describes settlements on
Mars as the next step in the history of ‘‘colonization’’, and warns not to make the
same mistakes that were made in colonizing on Earth. For example, the Oregon
Chapter of the Mars Society said:

‘‘When the initial settlements are set up, there will most likely be a few clusters of
small settlements. As time goes on, they should spread out. The more spread out
the developing townships are, the more likely they will develop their own culture.
In the beginning, townships will be dependant [sic] upon each other for shared
resources, such as food, water, fuel, and air. Once a more stable infrastructure is
set up on Mars, then people should be encouraged to set up more isolated
townships. In any area w[h]ere colonization or expansion has occurred, one
important item that cannot be ignored is the law. Some form of law will be
needed on Mars. Looking at the system that was used in the old west, we can see
that whoever enforces the law can have difficulty completing his job. The ‘sheriffs’
on Mars must be trustworthy individuals that the majority of people agree on.
They should not be selected by the current form of politically interested members
of society; this only encourages corruption. Instead, some sort of lottery system of
volunteers should be allowed. As for the law itself, it should be set in place to
guarantee all of the basic rights of everyone, from speech to privacy.’’

While these zealots are already concerned with establishing law and order on
Mars, and spend time laying out townships for the Mars surface, this humble writer
is merely concerned with getting there and back safely and affordably.

ISRU visionaries know no bounds. Imaginative proposals abound for all sorts
of futuristic systems. One example is a sort of Zamboni vehicle that rolls along the
surface of the Moon or Mars, imbibing silica-rich regolith, and processing it into
silicon in real time, leaving in its wake a roadway covered by a carpet of silicon solar
cells that stretches out for miles behind the Zamboni.

NASA is not a monolithic organization. Imbedded within NASA is a small
cadre of ISRU enthusiasts who are constantly seeking support from the greater
NASA for further development of ISRU. Since the 1990s, the enthusiasts have
developed elaborate plans for development of ISRU technology that include the
more mundane elements (propellant production, life support) as well as more ambi-
tious elements (e.g., ‘‘in-situ manufacturing and assembly of complex parts and
equipment’’, ‘‘in-situ fabrication and repair’’).

The NASA ISRU enthusiasts’ approach seems to be based on the belief that if
a process utilizes extraterrestrial resources rather than resources brought from
Earth, it must by its very nature be worthwhile. While they have published many
dozens of reports, advocacy documents, and program plans, I am unable to find any
detailed economic analyses comparing the cost of developing and implementing
ISRU and prospecting for resources vs. the cost savings attributable to ISRU. As
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a result, they have contemplated use of processes that in many cases seem to me to
be impractical to implement and have little payoff compared with the cost of
implementing them.

In fairness to the NASA ISRU managers, it must be pointed out that higher
NASA management has provided highly vacillating leadership over the years, with
programs and initiatives starting with great fanfare and ending abruptly without
warning.1 Budgets rise and fall, and continuity from year to year is difficult to
achieve. The greater NASA technology theme has evolved from unprecedented, to
world shaking, to revolutionary, to disruptive, to game changing.2 The focus has
always been on seeking incredible breakthroughs, and therefore funding to do the
engineering necessary to make evolutionary systems practical has not been forth-
coming. This in turn has forced the visionaries to look beyond the best near-term
prospects. It is noteworthy that project managers tend to look with a wary eye at
these shenanigans and, as a result, project plans tend to denigrate ISRU to second-
ary priority. In this environment, at each juncture when a new technology
opportunity arises, the tendency is for NASA ISRU managers to ask NASA HQ
for far more funding than can reasonably be expected, and hope to get some fraction
of what was asked for. Inevitably, the long-range plan is so over-bloated with
ambitions that the divergence between actuality and the plan becomes embarrassing.
In 2005, when the NASA Vision for Space Exploration was announced, the ISRU
enthusiasts wrote plans for extensive robotic and human precursors to validate
ISRU on the Moon and Mars, none of which were ever funded, nor was there
any serious reason to believe they would be funded. The entire exercise, like all
such planning activities for ISRU, was basically fiction and fantasy. When the
whole NASA enterprise was diverted to lunar mission planning, the small amount
of work attributable to Mars ISRU was cancelled and new funds were allocated
solely for lunar ISRU research.

Unfortunately, lunar ISRU in any form does not seem to make much economic
sense. Furthermore, the technical challenges involved in implementing lunar ISRU
are immense. None of the lunar ISRU schemes have a practical financial advantage
and it is better, cheaper, and simpler to bring resources from Earth—at least in the
short run. By comparison, some forms of Mars ISRU have the potential for logistic
and financial benefit for human missions to Mars. Yet there has never been more
than a bare minimum of funding for Mars ISRU technology, and funding for Mars
ISRU has essentially been zero for the past seven years while funds poured in for
lunar ISRU.

In this book, I review the resources available for ISRU on the Moon and Mars,
and the technologies that have been proposed for implementation. I also discuss how
ISRU would be implemented within human mission scenarios, and I compare the
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missions with and without ISRU as well as can be done considering the limited
available data. As one might expect, the most likely possibility for ISRU to
become a viable benefit to a human mission is in providing ascent propellants for
the return trip to Earth. Unfortunately, there are great difficulties in this regard on
the Moon. None of the processes for producing oxygen from lunar regolith are
economically viable. The process for retrieving water ice from shaded lunar craters
is unworkable. In addition, the cost of prospecting for water ice from shaded lunar
craters is excessive. In addition to these impediments, mission plans call for use of
space-storable ascent propellants on the Moon, thus eliminating any demand for
oxygen (produced by ISRU) as an ascent propellant. If that were not enough, safety
considerations require that the Moon Lander retain ascent propellants to allow for
‘‘abort to orbit’’ during descent in case of abnormal conditions. Yet, NASA has
spent tens of millions of dollars over the past several years developing prototypes of
arcane processes for lunar ISRU that produce oxygen that has no use. These
processes do not appear to be cost-effective.

Use of ISRU to produce ascent propellants on Mars might become viable and
cost-effective, but there are significant hurdles to be overcome. Unlike the Moon, it
appears certain that oxygen (and probably methane as well) will be used for ascent
from Mars. This assures that propellants produced by ISRU on Mars are applicable
to missions. There are two potential resources on Mars: CO2 in the atmosphere and
H2O in the near-surface regolith. Two processes have been proposed for utilization
of only the CO2 in the atmosphere to produce oxygen. Solid state electrolysis is
appealing on paper but appears to have insuperable technical challenges.
Alternatively, the so-called reverse water–gas shift (RWGS) process may be worth-
while. Unfortunately, after funding an initial innovative breadboard study by Zubrin
and co-workers that generated some optimistic results in 1997, NASA turned a cold
shoulder on this technology and did not fund it for the next 15 years while they spent
millions on impractical schemes for lunar ISRU.

A well-studied, practical Sabatier–Electrolysis process exists for producing CH4

and O2 from CO2 and H2. The problem for this process on Mars is obtaining
hydrogen. Early NASA mission plans hypothesized bringing the hydrogen from
Earth, but they seem to have underestimated the technical difficulty in doing this.
Even more important is the fact that storing hydrogen on Mars is very difficult.
There are indications of widespread near-surface H2O on Mars, even in some near-
equatorial regions. If this were accessible, it would provide an extensive source of
hydrogen. Thus, the main problem for this form of ISRU on Mars is not process
development but, rather, prospecting for near-surface H2O.3 What is needed is long-
range, near-surface observations with a neutron spectrometer in the regions of Mars
identified from orbit as endowed with near-surface H2O. This might involve bal-
loons, airplanes or gliders, network landers, or possibly an orbiter that dips down to
low altitudes for brief periods. None of these technologies seem to be high on
NASA’s priority list.
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Hence we have concluded the following:

. None of the lunar ISRU technologies are economically viable.

. The Mars RWGS process might be a viable option, but NASA’s non-funding of
this technology after an initial somewhat successful study leaves a great deal of
uncertainty.

. The Sabatier–Electrolysis process for Mars ISRU is technically and economic-
ally viable if a source of hydrogen can be provided. Bringing hydrogen from
Earth and storing it on Mars is problematic, and prospecting for near-surface
H2O on Mars requires a costly campaign.

. Nevertheless, prospecting for near-surface H2O on Mars appears to be the most
cost-effective and technically practical way to utilize ISRU to enhance human
missions in space.

. Visionaries at NASA Centers seem to operate under the assumption that if it is
ISRU, it must be worthwhile. Thus, they continue to pursue processes that have
academic value but appear to have little practical value.
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