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Preface

Hi no hikari
Yabu shi wakaneba
Isonokami-
Furinishi sato ni
Hana mo sakikeri

For the light of the sun
Shuns not the wild thickets,
Even in Isonokami-
This village grown ancient,
The flowers are in bloom.

-Furu Imamichi (Kokinshu).

The mysterious link between special values of complex zeta and L-functions and
purely arithmetic problems was discovered by Dirichlet and Kummer in the nine-
teenth century, and spectacularly generalized in the twentieth century by Birch and
Swinnerton-Dyer with the formulation of their celebrated conjecture on the arith-
metic of elliptic curves. We owe to Iwasawa the great discovery that these problems
can be attacked by p-adic methods, where p is any prime number, provided one is
prepared to work with a class of infinite Galois extensions of the base field F (which
is always supposed to be a finite extension of Q). Iwasawa himself only considered
those Galois extensions whose Galois group is isomorphic to the additive group of
the ring of p-adic integers Zp and the trivial Tate motive. However, it soon became
apparent that his methods ought to apply to a much wider class of infinite extensions,
namely those whose Galois group over F is a p-adic Lie group of dimension � 1,
and to a large class of motives defined over F . While it is still not known how to
formulate it in complete generality, it is now widely believed that, in this general set-
ting, the link between special values of complex L-functions and arithmetic should
be expressed by what is known as a main conjecture. Very roughly speaking, such
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vi Preface

a main conjecture should assert that an appropriate p-adic L-function, interpolating
special values of the relevant complex L-functions, should coincide with a certain
algebraically defined invariant, usually called a characteristic element, which arises
naturally from the arithmetic of the motive over the p-adic Lie extension.

This book arose from a workshop held at the University of Münster from April
25–30, 2011. The principal aim of this Workshop was to present the proof of the
first key example of these general ideas, namely, the case when the motive is the
trivial Tate motive and the p-adic Lie extension F1 of F is totally real (in addition,
we always assume that F1 contains the cyclotomic Zp-extension of Q). The first
important progress on this problem goes back to Iwasawa himself, although we owe
to Mazur and Wiles the first complete proof of the most classical case of this main
conjecture (when F1 is a the compositum of a real abelian base field F with the
cyclotomicZp-extension ofQ). Subsequently, Wiles discovered a deep new method,
relying heavily on the theory of automorphic forms, for attacking these problems.
In this way, he succeeded in proving the main conjecture when the base field F is
any totally real number field, and the Galois group of F1 over F is abelian. This
book is concerned with the problem of how one can extend Wiles’ work to establish
the general non-abelian totally real main conjecture for the trivial Tate motive. Two
approaches for doing this were discovered independently and simultaneously, by
Kakde on the one hand, generalizing ideas of Kato, and by Ritter and Weiss on
the other. Both methods do in fact require one to assume a standard conjecture of
Iwasawa about the vanishing of his cyclotomic �-invariant, and so far this has only
been proven when the base field F is an abelian extension of Q and the Galois
group of F1 over F is assumed to be pro-p. Both approaches are discussed in
this book, but, following the lectures at the Workshop, it is largely Kakde’s method
which is treated in detail here. One reason for doing this is that the remarkable
set of congruences established by Kakde to describe the K1- group of the Iwasawa
algebra of any compact p-adic Lie group should also apply to attacking the non-
commutative main conjecture for other motives. Finally, for reasons of space, the
book only contains a written version of the lectures at the workshop which were
closely related to the proof of the main conjecture.

The Scientific Committee for the Münster Workshop consisted of J. Coates,
P. Schneider (Chairman), R. Sujatha, and O. Venjakob. It was made possible by the
generous financial support of Project A2 within the DFG Collaborative Research
Center 878 “Groups, Geometry, and Actions” at Münster and by some additional
funding from the ERC Starting Grant IWASAWA at Heidelberg.

Cambridge, UK John Coates
Münster, Germany Peter Schneider
Vancouver, Canada R. Sujatha
Heidelberg, Germany Otmar Venjakob
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Introduction to the Work of M. Kakde on the
Non-commutative Main Conjectures for Totally
Real Fields

John Coates and Dohyeong Kim

Abstract These notes are aimed at providing a not too technical introduction to
both the background from classical Iwasawa theory for, as well as a detailed dis-
cussion of, the principal result (see Theorem 5.1) of Mahesh Kakde’s fundamental
paper [K1] proving, subject to the Iwasawa conjecture, the non-commutative main
conjecture for totally real p-adic Lie extensions of a number field. Kakde’s work
is the beautiful development of ideas initiated by Kazuya Kato in his important
paper [KA]. The material covered roughly corresponds to the oral lectures given
by one of us at the Workshop. We have not attempted here to discuss the detailed
methods of proof used either by Kakde in his paper, or by Ritter and Weiss in
their important related work [RW], leaving all of this to the written material of
the subsequent lecturers at the Workshop. We would also like to particularly thank
R. Greenberg and K. Ardakov for some very helpful comments which have been
included in the present manuscript. In particular, we are very grateful to Greenberg
for providing us with a detailed explanation of his observation (Theorem 4.5) that
Wiles’ work (Theorems 4.3 and 4.4) on the abelian main conjecture for totally real
number fields, can be extended to include the case of abelian characters, whose order
is divisible by p.
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2 J. Coates and D. Kim

1 Notation

Throughout, F will denote a totally real finite extension of Q, and p an odd prime.
As always �pn , with 1 � n � 1, is the group of all pn-th roots of unity. Write F cyc

for the uniqueZp-extension ofF contained in F.�p1/, and put � D Gal.F cyc=F /

so that � ' Zp:

Let ˙ be a fixed finite set of finite primes of F which contains all the primes
dividing p, and write F˙ for the maximal extension of F , which is unramified
outside the primes in ˙ and the infinite primes of F . If L is any extension of F
contained in F˙ , put G˙.L/ D Gal.F˙=L/. Also, defineM.L/ to be the maximal
abelian p-extension of L contained in F˙ , and put

X.L/ D Gal.M.L/=L/:

Assume now that L is Galois over F , so that M.L/ is also Galois over F . There
is a natural left action of Gal.L=F / on X.L/ defined by g � x D Qgx Qg�1, where Qg
denotes any lifting of g in Gal.L=F / to Gal.M.L/=F /: As usual, this left action
extends to a left action of the Iwasawa algebra�.Gal.L=F //, which is defined by

�.Gal.L=F // D lim �
U

ZpŒGal.L=F /=U �;

where U runs over the open normal subgroups of Gal.L=F /. Also, if W is any
abelian group,W.p/ will denote the p-primary subgroup of W .

A Galois extension F1 of F is defined to be an admissible p-adic Lie extension
of F if (1) F1 is totally real, (2) the Galois group of F1 over F is a p-adic Lie
group, (3) F1=F is unramified outside a finite set of primes of F , and (iv) F1
contains F cyc. Given such an admissible p-adic Lie extension, we shall always put

G D Gal.F1=F /; H D Gal.F1=F cyc/; � D Gal.F cyc=F /;

and take˙ to be a finite set of primes of F containing all primes which are ramified
in F1=F . If I denotes the ring of integers of some finite extension of Qp, it will also
be convenient to write I ŒŒ� �� for the Iwasawa algebra of � with coefficients in I .
Fixing a topological generator � of � , we can, as usual, identify I ŒŒ� �� with the
ring I ŒŒT �� of formal power series in an indeterminate T with coefficients in I , by
mapping � to 1CT . Finally, we shall write A.G/ for the set of Artin representations
of G, and L˙.�; s/ for the complex Artin L-function, with the Euler factors for the
primes in ˙ removed, of each � in A.G/.
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2 Iwasawa’s Work on the Cyclotomic Theory

We use the above notation, and we stress that the base field F is always assumed to
be totally real. In his fundamental paper [IW], Iwasawa proved the following basic
result which is the starting point for the whole theory.

Theorem 2.1. For all totally real number fields F , X.F cyc/ is a finitely generated
and torsion �.� /-module, which has no non-zero finite �.� /-submodule. More-
over, we have

H2.G˙.F
cyc/;Qp=Zp/ D 0: (1)

Recall that one form of Leopoldt’s conjecture, which remains unproven, is the
assertion that F cyc is the unique Zp-extension of F . The above theorem is
established by noting that X.F cyc/ being �.� /-torsion is seen, by using the full
force of global class field theory, to be equivalent to the assertion that the defect
in the Leopoldt conjecture (i.e. the difference between the Z-rank of the unit group
and the Zp-rank of its closure, in the p-adic topology, in the product of the local
unit groups at the primes above p) is bounded as one mounts the finite layers of
the Zp-extension F cyc=F . This boundedness of the defect of Leopoldt is then, in
turn, shown to be implied by the boundedness of capitulation of ideal classes in the
extension F cyc=F . Finally, Iwasawa gives an ingenious proof of the boundedness
of this capitulation. The vanishing statement (1) is then a consequence of an Euler
characteristic argument which shows that, in the case of a totally real base field F ,
the Pontrjagin duals of the two modulesHi.G˙.F

cyc/;Qp=Zp/.i D 1; 2/ have the
same �.� /-rank.

In addition, a celebrated conjecture of Iwasawa will play an important role in
the non-abelian theory developed later. By the structure theory, a finitely generated
�.� /-module W is �.� /-torsion if and only if W=W.p/ is a finitely generated
Zp-module. Moreover,W.p/ is finite if and only if its Iwasawa �-invariant is zero.

Conjecture A. For totally real F , X.F cyc/ is a finitely generated Zp-module.

Note that, if Conjecture A is true, Theorem 2.1 shows that X.F cyc/ is in fact a free
Zp-module of finite rank. The classical Iwasawa � D 0 conjecture is the assertion
that, for every finite extensionK of Q, the Galois group of the maximal unramified
abelian p-extension ofKcyc is a finitely generated Zp-module. It is well known that,
by using an argument from Kummer theory, this classical Iwasawa conjecture for
the totally imaginary field K D F.�p/ implies Conjecture A for the totally real
field F .

So far, Conjecture A has only been proven when F is an abelian extension of
Q, where it is a consequence of the Ferrero-Washington for the cyclotomic Zp-
extension of the field F.�p/, which is again an abelian extension of Q.
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3 Admissible p-Adic Lie Extensions of F

The later material in this book will be concerned with an arbitrary admissible p-adic
Lie extension F1=F , and the �.G/ module X.F1/. We stress that this means, in
particular, that F1 must also be totally real.

The first thing we should point out is that non-trivial examples of such admissible
p-adic Lie extensions are not easy to come by. If Conjecture A is valid for F ,
we can always take F1 to be the field M.F cyc/. Moreover, assuming that (1)
Conjecture A is valid, (2) thatG is pro-p with no element of order p, and that (3)G
has dimension at least 2 as a p-adic Lie group, it follows from Theorem 3.1 below
and Theorem 5.2 of the Appendix that X.F1/ ¤ 0 if and only if the Zp-rank of
X.F cyc/ is at least 2. Perhaps the most down to earth example of such an admissible
p-adic Lie extension F1 with X.F1/ ¤ 0 is to take F to be the maximal real
subfield of the field generated over Q by the p-th roots of unity, where p is any odd
prime such that at least two of the rational numbers

�.Q;�1/; �.Q;�3/; : : : ; �.Q; 4� p/

have their numerators divisible by p (the smallest such prime is p D 157); here
we take ˙ to consist of the unique prime of F above p, and �.Q; s/ denotes
the Riemann zeta function. It is the classical main conjecture for X.F cyc/ which
guarantees that the Zp-rank of X.F cyc/ is at least 2 for such primes p. A much
more esoteric example is given by Ramakrishna [RK], who proves the existence of
infinitely many Galois extensions L1 of Q, which are totally real, whose Galois
group J over Q, is either SL2.Z7/ or the quotient of SL2.Z7/ by the subgroup
generated by �I (where I is the unit matrix), and which are unramified outside a
finite set T of primes of Q. Thus we can take F1 to be the compositum of L1
and the cyclotomic Z7-extension of Q. Note that if we define F to be the fixed field
of the image in J of the group of matrices congruent to the identity modulo 7 in
SL2.Z7/, then the Galois group of F1=F will be pro-7, and have no element of
order 7. Defining ˙ to be the set of primes of F lying above either 7 or the primes
in T , it follows from the above remarks that, assuming that Conjecture A is valid
for F with p D 7, then the Z7-rank of X.F cyc/ is at least 2, and X.F1/ ¤ 0.

The full analogue of Theorem 2.1 for any admissible p-adic Lie extension is
proven in the two papers [OV,V,V1]. We say that a left �.G/-moduleW is �.G/-
torsion if every element of W is annihilated by a non-zero divisor in �.G/.

Theorem 3.1. For every admissible p-adic Lie extension F1=F , X.F1/ is a
finitely generated torsion �.G/-module. Moreover, if G has no element of order
p, then X.F1/ has no non-zero pseudo-null submodule.

Assuming that G is both pro-p and has no element of order p, it follows from the
final assertion of Theorem 3.1 and the results of [V] that there is an exact sequence
of �.G/-modules
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0! X.F1/.p/!
jDtM

jD1
�.G/=pnj�.G/! D ! 0; (2)

where D is a pseudo-null �.G/-module. One then defines �G.X.F1// D n1 C
� � � C nt . In particular, we have X.F1/.p/ D 0 if and only if �G.X.F1// D 0.
We shall see below that a suitable form of Conjecture A implies a strong statement
about the module X.F1/, which shows, in particular, that �G.X.F1// D 0.

In our present state of knowledge, we do not know how to even formulate the
main conjecture using the result of this theorem alone (we cannot define a charac-
teristic element for X.F1/ assuming only that it is finitely generated and torsion
over �.G/, even if we impose the additional hypothesis that �G.X.F1// D 0). In
order to overcome this difficulty, we follow [CFKSV] and introduce the category
MH.G/ consisting of all finitely generated �.G/-modules W such that W=W.p/
is finitely generated over �.H/, where we recall that H DGal.F1=F cyc/. While
it seems very reasonable to conjecture that X.F1/ always belongs to the category
MH.G/, we unfortunately cannot prove this unconditionally at present. Neverthe-
less, assuming this conjecture, the following result is proven in the Appendix.

Theorem 3.2. Assume that the p-adic Lie extension F1=F is such that (i) G is
pro-p and has no element of order p, (ii) G has dimension at least 2 as a p-adic
Lie group, and (iii) X.F1/ belongs to the category MH.G/. Then �G.X.F1// D
�� .X.F

cyc//, and X.F1/=X.F1/.p/ has �.H/-rank equal to r � 1, where r is
the Zp-rank of X.F cyc/=X.F cyc/.p/.

Our present inability to prove that X.F1/ lies in the category MH.G/ leads us to
work with a stronger conjecture in the subsequent analytic and algebraic arguments.

Iwasawa Conjecture: The admissible p-adic Lie extension F1=F will be said
to satisfy the Iwasawa conjecture if there exists a finite extension F 0 of F in F1
such that (1) the Galois group of F1 over F 0 is pro-p, and (2) X.F 0cyc/ is a finitely
generated Zp-module.
We remark that, by the theorem of Ferrero-Washington, this Iwasawa conjecture is
true for all p-adic Lie extensions F1=F such that F is an abelian extension of Q
and the Galois groupG is pro-p. In particular, when F is an abelian extension of Q
and F1 D M.F cyc/, the Iwasawa conjecture is valid.

Theorem 3.3. Assume that the p-adic Lie extension F1=F satisfies the Iwasawa
Conjecture. Then X.F1/ is finitely generated over�.H/, and X.F1/.p/ D 0.

Proof. Put H 0 D Gal.F1=F 0cyc/. Then we have the exact sequence of inflation
restriction

0! H1.H 0;Qp=Zp/! Hom.X.F 0cyc/;Qp=Zp/

! Hom.X.F1/H 0 ;Qp=Zp/! H2.H 0;Qp=Zp/:
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Now Hi.H 0;Qp=Zp/ is a cofinitely generated Zp-module for all i � 0. Hence,
assuming that X.F 0cyc/ is a finitely generated Zp-module, it follows that X.F1/H 0
is also a finitely generated Zp-module. But, as H 0 is pro-p, �.H 0/ is a local ring,
and so it follows from Nakayama’s lemma that X.F1/ is finitely generated over
�.H 0/, and so all the more so over �.H/. To prove the final assertion of the
theorem, we note that we can find an open subgroupH 00 ofH 0 such thatH 00 is pro-p
and has no element of order p (possibly H 00 D 0). Since X.F1/ is also finitely
generated over �.H 00/, a theorem of Venjakob asserts that every �.G/ submodule
of X.F1/, which is�.H 00/-torsion, is pseudo-null as a �.G/-module, and so must
be zero by Theorem 3.1. In particular, this shows that X.F1/.p/ D 0.

4 The Classical Abelian Main Conjecture

In this section, we discuss the classical abelian main conjecture for an arbitrary
admissible p-adic Lie extension F1=F which will be assumed throughout this
section to satisfy the:
Abelian Hypothesis. GDGal.F1=F / is an abelian p-adic Lie group of dimen-
sion 1.
As before,˙ will denote the set of primes of F which ramify in F1. We fix a lifting
of � D Gal.F cyc=F / to G, which we denote by the same symbol � . Thus, since
G is abelian, this means that we have G D H � � . We define K to be the fixed
field of the subgroup � of G, so that K \F cyc D F , and F1 is the compositum of
K and F cyc. Let OH be the group of 1-dimensional characters of H . Write

	F W Gal.F.�p1/=F /! Z�p

for the cyclotomic character. As we can view � as a subgroup ofGal.F.�p1 /=F /,
it makes sense to consider the restriction of 	F to � . In what follows, we then
consider 	F as a character of G by defining it always to be trivial on H .

While complexL-functions can be defined in great generality via Euler products,
nothing like this seems to be true in the p-adic world, and, at present, our only way to
define p-adic L-function is via p-adic interpolation of essentially algebraic special
values of complex L-functions. Viewing an element 
 in OH as being complex
valued, let L˙.
; s/ be the imprimitive complex L-function attached to 
, with
the Euler factors corresponding to the primes in ˙ omitted from its Euler product.
The following basic result is due to Siegel.

Theorem 4.1. For each 
 in OH , and each even integer n > 0,L˙.
; 1�n/ belongs
to the field Q.
/, which is generated over Q by the values of 
.

In fact, Siegel’s proof shows that

L˙.

� ; 1 � n/ D L˙.
; 1 � n/� (3)
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for all � in the absolute Galois group of Q, and all even integers n>0, and even
allows us to define this value intrinsically when the character 
 is no longer assumed
to have complex values. In fact, we shall assume from now on that the 
 in OH all
have values in the algebraic closure of Qp .

Let O be the ring of integers of the field obtained by adjoining the values of all

 in OH to Qp , and let �O.G/ be the Iwasawa algebra of G with coefficients in O.
Write QO.G/ for the ring of fractions of �O.G/ (i.e. the localization of this ring
with respect to its set of non-zero divisors). An element � of QO.G/ is defined to
be a pseudo-measure on G if .� � 1/� is in �O.G/ for all � in G. If  W G ! O�
is any continuous homomorphism, which is distinct from the trivial homomorphism
of G, which we denote by 1, it is easily seen that one can define the integral of  
against �, which we denote by Z

G

 d�;

and which is a well defined element of the fraction field of O. The following
theorem, which generalizes many earlier results starting with Kummer, is due to
Cassou-Nogues and Deligne-Ribet.

Theorem 4.2. Assume that F1=F satisfies the abelian hypothesis. Then there
exists a unique pseudo-measure �F1=F onGDH �� such that, for all 
 in OH , we
have Z

G


	F
nd�F1=F D L˙.
; 1 � n/; (4)

for all integers n > 0 with n � 0 mod ı, where ı D ŒF .�p/ W F �:
This theorem is easily seen to imply the following assertion. For each character 


in OH , let O
 be the ring of integers of the field obtained by adjoining the values of 

to Qp, and let O
ŒŒT�� be the ring of formal power series in an indeterminate T with
coefficients in O
. Fix, for the remainder of this section, a topological generator �
of � . Then, if 
 ¤ 1, there exists a unique formal power series W
.T / in O
ŒŒT��
such that

W
.	F .�/
n � 1/ D L˙.
; 1 � n/;

for all integers n > 0 with n � 0 mod ı. In addition, if 
 D 1, there exists a unique
power series W1.T / in ZpŒŒT�� such that

W1.	F .�/
n � 1/=.	F .�/n � 1/ D �˙.F; 1 � n/;

where �˙.F; s/ denotes the complex zeta function of F , with the Euler factors
removed at the primes in ˙ . Let �
 be any fixed local parameter for the ring O
.
We plainly can write

W
.T / D ��

 V
.T /; (5)
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where �
 is a non-negative integer, and V
.T / is a power series in O
ŒŒT��, with
at least one of its coefficients a unit in O
. It is conjectured that we always have
�
 D 0 for every F1=F and every 
 in OH , but this has only been proven in the
case F D Q by Ferrero-Washington, and it is unknown for every other totally real
base field other than Q.

The aim of the abelian main conjecture is to give a precise relation between
the analytic pseudo-measure �F1=F on the one hand, and the algebraic structure
of the arithmetic �O.G/-module X.F1/ on the other hand. However, the exact
formulation of this relationship is not straightforward from a classical point of view,
because there is no known structure theory for finitely generated torsion �O.G/-
modules when p divides the order of H . For each 
 in OH , let

e
 D #.H/�1
X

h2H

.h/h�1

be the orthogonal idempotent of 
 in the group ring of H with coefficients in the
field of fractions L of O
. The simplest thing to do is to simply consider

Z.F1/ D X.F1/˝Zp L; Z.F1/
 D e
Z.F1/; (6)

which are both finite dimensional vector spaces over L by Theorem 2.1. We then
define R
.T / to be the characteristic polynomial of � � 1 acting on Z.F1/
. We
omit the proof of the following technical lemma, which is due to Greenberg (see
[G1], Proposition 1).

Lemma 4.1. Let 
 be any element of OH , and let K 0 be any intermediate field
between F andK such that 
 is trivial onGal.K=K 0/. Write 
0 for 
, when viewed
as a character of Gal.K 0=F /, and let F 01 be the compositum of K 0 and F cyc. Then
Z.F1/
 is isomorphic to Z.F 01/
0 as representations of � .

In particular, this lemma shows that the polynomial R
.T / depends only the
character 
 of H , and not on the particular finite extension of F such that 
 factors
through the Galois group over F of this extension.

The first fundamental result of Wiles (see Theorem 1.3 of [W1]) in the direction
of the main conjecture for all totally real number fields F is the following.

Theorem 4.3. Assume that F1=F satisfies the abelian hypothesis. Then, for all
characters 
 of H , we have

V
.T /O
ŒŒT�� D R
.T /O
ŒŒT��: (7)

The problem with this result is that it does not tell us anything about the�-invariants
on either the analytic or the algebraic sides. Of course, the analytic �-invariant is
the integer �
 appearing in (5), and is valid for all characters 
 of H , irrespective
of whether the order of 
 is divisible by p or not. The definition of the algebraic
�-invariant is much more delicate. We first explain what to do in the easy case, when
the order of 
 is prime to p. Assuming this to be the case, we may also suppose that
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K is exactly the fixed field of the kernel of 
, as this does not change the polynomial
R
.T / by Lemma 4.1. Define

X.F1/
 D e
.X.F1/˝Zp O
/:

Now, by Theorem 2.1, X.F1/
 is a finitely generated torsion O
ŒŒT��-module, and
thus, by the well known structure theory for such modules and the Weierstrass
preparation theorem, it has a characteristic ideal of the form C
.T /O
ŒŒT��, where
C
.T/ is a polynomial in O
ŒT � of such that

C
.T / D �


 R
.T /; (8)

for some integer 

 � 0; here R
.T / is, as above, the characteristic polynomial of
� � 1 acting on Z.F1/
. The second fundamental result of Wiles (see Theorem 1.4
of [W1]) is the following.

Theorem 4.4. Assume that F1=F satisfies the abelian hypothesis. If 
2 OH has
order prime to p, then we have

�
 D 

: (9)

In particular, when combined with Theorem 4.3, this result proves the main
conjecture asserting that

W
.T /O
ŒŒT�� D C
.T /O
ŒŒT��; (10)

for all characters 
 of H of order prime to p.
We are very grateful to R. Greenberg (private communication) for the following

explanation of how one can define the analogue of the algebraic �-invariant 


appearing in (8) even for characters 
 of H whose order is divisible by p, and then
show that the main conjecture (10) still remains valid for such characters. As we
shall need to vary the base field F in this argument, for the remainder of this section
we shall writeWF;
.T /, �F;
; : : : to indicate the dependence of the above quantities
on the base field F . Fix a character 
 of H , whose order is divisible by p. We shall
assume that K is the fixed field of the kernel of 
. Now we can write 
 in the form

 D  �, where  is a character ofH of order prime to p, and � has p-power order.
Define �0 D �p, and write L0; L for the fixed fields of Ker(�0), Ker(�), respectively.
We can now take the restriction  L (resp.  L0 ) of  to the absolute Galois group of
L (resp. the absolute Galois group of L0). ThenK is the fixed field of Ker( L), and
we define K 0 to be the fixed field of Ker( L0). Thus we have the tower of fields

F 	 L0 	 L 	 K 0 	 K: (11)

Write F 01 for the compositum of K 0 with F cyc, and, as before, let F1 be the
compositum of K with F cyc. To lighten our notation, put

J D O ; I D O�; E D O
; (12)
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so that E is the ring generated over J by the values of �. We first observe that, up
to a pseudo-isomorphism of � -modules, we can identify X.F 01/ with a quotient
of X.F1/. Indeed, let P (resp. P 0) be the Sylow p-subgroup of Gal.K=F / (resp.
Gal.K 0=F /), and put

˝ D Ker.P ! P 0/; (13)

so that˝ has order p. Then the natural map fromX.F1/˝ to X.F 01/, which is the
dual of the restriction map on Galois cohomology, has finite kernel and cokernel.
Indeed, by the usual inflation restriction sequence, the cokernel is finite because it
is dual to H1.Gal.F1=F 01/;Qp=Zp/, and the kernel is finite because it is dual
to a submodule of H2.Gal.F1=F 01/;Qp=Zp/; both these cohomology groups
are obviously finite because Gal.F1=F 01/ is a finite cyclic group. In particular,
it follows that X.F1/˝ and X.F 01/ have the same characteristic power series as
� -modules. We then define

˘.F1/ D Ker.X.F1/! X.F1/˝/: (14)

Explicitly, we have˘.F1/ D .� � 1/X.F1/, where � is any generator of ˝ . Now
the group ring ZpŒP � acts on ˘.F1/, and this action factors through an action of
the ring

B D ZpŒP �=.1C � C : : :C �p�1/ZpŒP �:
But evaluation at the character � defines an isomorphism from B onto the ring I .
Thus we see that ˘.F1/ has a natural structure as an I ŒŒ� ��-module. Now  

is a faithful character of Gal.K=L/ of order prime to p, and thus, for any
ZpŒGal.K=L/�-module A, we may define

A D e .A˝Zp J /:

In particular, we have

˘.F1/ D Ker.X.F1/ ! .X.F1/ /˝/: (15)

It is clear that ˘.F1/ has a structure as an EŒŒ� ��-module, because I acts on
˘.F1/. Moreover, since X.F1/ is a finitely generated torsion ZpŒŒ� ��-module, it
follows that ˘.F1/ is a finitely generated torsion EŒŒ� ��-module. As before, let
�
 be any local parameter of the ring E D O
. Then, by the structure theory for
finitely generated torsion EŒŒ� ��-modules,˘.F1/ will have a characteristic ideal
of the form C
.T /EŒŒT��, where C
.T / is a polynomial such that

C
.T / D �


 R
.T/; (16)

where 

 is some integer � 0, and R
.T/ is a monic polynomial in EŒT �. It is
this integer 

 which we define to be the algebraic �-invariant of 
 when p divides
the order of 
. On the other hand, since .X.F1/ /˝ is pseudo-isomorphic as a


