Springer ThesesRecognizing Outstanding Ph.D. Research

Rituparna Bose

Biodiversity and Evolutionary Ecology of Extinct Organisms

Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes: http://www.springer.com/series/8790

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Rituparna Bose

Biodiversity and Evolutionary Ecology of Extinct Organisms

Doctoral Thesis accepted by Indiana University, Bloomington, United States of America

Author
Dr. Rituparna Bose
City College of New York
New York, NY
USA

Supervisor
Prof. Dr. P. David Polly
Department of Geological Sciences Office
Indiana University
Bloomington, IN
USA

ISSN 2190-5053 ISSN 2190-5061 (electronic) ISBN 978-3-642-31720-0 ISBN 978-3-642-31721-7 (eBook) DOI 10.1007/978-3-642-31721-7

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012943357

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Parts of this thesis have been published in the following journal articles:

Bose, R., Schneider, C., Leighton, L. R., and Polly, P. D., 2011. Influence of atrypid morphological shape on Devonian episkeletobiont assemblages from the lower Genshaw Formation of the Traverse Group of Michigan: a geometric morphometric approach. *Paleogeography, Paleoecology and Paleoclimatology* 310:427–441.

Bose, R., 2012. A new morphometric model in distinguishing two closely related extinct brachiopod species. Manuscript accepted in *Historical Biology: An International Journal of Paleobiology* 24:1–10 (DOI:10.1080/08912963.2012.658568)

I would like to dedicate this work to Professor David Polly, a true pioneer in the field of Evolutionary Paleontology and geometric morphometrics and a great source of inspiration for me in this field of science; I would also like to dedicate this work to my family who were a great source of moral support throughout my doctoral career

Supervisor's Foreword

Organisms are trade-offs: their structure neither perfectly suits their needs, nor is it random. The vertebrae in our own lower backs are structured differently from our four-legged relatives, providing us with support against gravity for our upper bodies and flexibility for forward locomotion. Despite the transformation in vertebral structure that accompanied the evolution of bipedality, our lower backs are notoriously rickety, subjecting approximately three quarters of us to severe back pain sometime during our adult lives. The structure of our lower back simply is not adequate to both hold our skulls high and move us forward smoothly on our two legs. Like all organismal structures, our backs are a compromise between what we inherited from our ancestors, adaptation of that inheritance through the painful process of natural selection, and non-genetic compensation for stress, strain, and breakage provided by growth and remodeling. Each one of these factors packs its own set of compromises. Our bones are both rigid structural supports whose hydroxyapatite matrix requires a calcium-rich diet and a mineral reservoir to provide our nervous systems with calcium when dietary sources are low. These two functions that are so important to our health often work at cross purposes as anyone with osteoporosis can attest. Every step in the Darwinian descent with modification is a response to the many competing selectional demands of the moment and chance.

The study of the factors that influence organismal structure is both fascinating and challenging. The trade-offs mean that no one factor is ever expected to explain all of the variations we see in a structure; indeed even important factors may only explain a small portion of that variation. The study of the evolution of structures is therefore a statistical pursuit. In this dissertation, Dr Rituparna Bose uses a statistical approach to look at the evolution of brachiopod valves. Brachiopods were important members of marine communities during the Paleozoic Era (542–251 million years ago), living through many cycles of sea level change and extensive reorganization of the continental shelf environments in which they lived. Bose uses a series of case studies of the Atrypidae, a widespread group of brachiopods, to examine the roles of ancestry (phylogeny), geographic isolation, sea level change, encrustations by other marine organisms, and adaptations to

substrates as factors explaining the shape of the valves of these filter-feeding animals. She uses geometric morphometrics, a relatively recent method for measuring biological shape, to analyze the shape of features of the valves and to statistically determine the extent to which these factors are each correlated with valve shape. She finds that despite considerable similarities among atrypides through time and space, their shell shape is indeed a measureable product of ancestry and environmental change.

Prof. Dr. P. David Polly Associate Professor of Geological Sciences Paleontology, Indiana University, Bloomington

About the Author

Dr. Rituparna Bose (M.Sc., Ph.D.) is currently an adjunct Assistant Professor in the Department of Earth and Atmospheric Sciences and in the Department of Biological Sciences and Geology at the City University of New York.

Dr. Bose obtained her undergraduate education at the University of Calcutta, India, and authored a thesis paper in environmental geology (coastal management). She came to the United States in 2004 to pursue higher studies. During the course of her graduate studies at Bowling Green State University and Indiana University at Bloomington, she was the primary author in multiple high-impact peer-reviewed publications. Here she was awarded the Indiana University Dissertation Year Research Fellowship which is given to the best doctoral students of the university. Her work with Dr. Margaret Yacobucci and Prof. David Polly culminated in major findings in evaluating the evolution and determining the biodiversity of extinct organisms.

As a result of her findings which have profound implications in bio-conservation, she won major national awards like the Theodore Roosevelt Memorial Grant (American Museum of Natural History) and Schuchert and Dunbar Grant (Yale Peabody Museum of Natural History). Additionally, BP Global Energy Group funded her to present these findings at North American Paleontology Convention (NAPC) by the prestigious NAPC Travel Award.

Dr. Bose continues to pursue both her teaching and research career. Her research interests lie in applications of quantitative algorithms to study evolutionary biology, micropaleontology, disaster management studies, and other applied geological sciences. In addition, she teaches courses in Physical Geology, Environmental Geology, Earth System Science, Natural Disasters, and Historical Geology.

The foreword of this book has been written by Prof. David Polly, Editor of *Palaeontology* and Executive Editor of *Palaeontologia Electronica*.

Acknowledgments

First and foremost, I would like to express my deep gratitude to my supervisor, Prof. David Polly, for his valuable guidance. I would also like to gratefully acknowledge Prof. Claudia Johnson for her valuable suggestions in various professional aspects throughout my graduate education. Finally, I would like to specially thank Prof. Lindsey Leighton and Prof. Chris Schneider at the University of Alberta for their kind help.

Financial support for this research was derived primarily from Galloway-Horowitz Research Grant-in-Aid granted by Department of Geological Sciences, Indiana University; Indiana University School of Arts and Sciences Dissertation Year Research Fellowship; Dunbar and Schuchert Grant-in Aid funded by Yale Peabody Museum, Theodore Roosevelt Memorial Grant funded by American Museum of Natural History, and funds from the BP Global Energy group.

Contents

1	A Geometric Morphometric Approach in Assessing			
	Paleontological Problems in Atrypid Taxonomy, Phylogeny, Evolution and Ecology			
	1.1 Introduction			1
		1.1.1	Brief Outline	1
		1.1.2	Why Silurian and Devonian Time Periods	
			for this Study?	2
		1.1.3	Why Brachiopods?	3
		1.1.4	Why Geometric Morphometric Methods?	4
	Refe	erences		5
				
2	Testing the Taxonomy and Phylogeny of Eastern North American			
	Atrypid Brachiopods: A Geometric Morphometric Approach 1			
	2.1	Introd	luction	11
		2.1.1	Taxonomy	11
		2.1.2	Hypotheses	12
		2.1.3	Ecological Evolutionary Units and Subunits	16
	2.2	2.2 Materials		16
		2.2.1	Paleogeography	16
	2.3 Method		ods	18
		2.3.1	Data Set	18
		2.3.2	Geometric Morphometrics	19
		2.3.3	Morphometric Divergence	20
		2.3.4	Statistical Analysis	21
	2.4	2.4 Results		
		2.4.1	Taxonomic Differentiation	22
		2.4.2	Temporal Variation	25
		2.4.3	Spatial Variation	27