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Preface

In the recent decade, there has been growing interest in the numerical treatment of
high-dimensional problems. It is well known that classical numerical discretization
schemes fail in more than three or four dimensions due to the curse of dimension-
ality. The technique of sparse grids allows to overcome this problem to some extent
under suitable regularity assumptions. This discretization approach is obtained from
a multi-scale basis by a tensor product construction and subsequent truncation of the
resulting multiresolution series expansion.

Hans-Joachim Bungartz, Jochen Garcke, Michael Griebel, and Markus Hegland
organized a workshop specifically to strengthen the research on the mathematical
understanding and analysis of sparse grid discretization. Particular focus was given
to aspects arising from applications. More than 40 researchers from four different
continents attended the workshop in Bonn, Germany, from May 16–20, 2011.

This volume of LNCSE now comprises selected contributions from attendees of
the workshop. The contents range from numerical analysis and stochastic partial
differential equations to applications in data analysis, finance, and physics.

The workshop was hosted by the Institut für Numerische Simulation and the
Hausdorff Research Institute for Mathematics (HIM) of the Rheinische Friedrich-
Wilhelms-Universität Bonn as part of the Trimester Program Analysis and Numerics
for High Dimensional Problems. Financial support of the HIM is kindly acknowl-
edged. We especially thank Christian Rieger for his efforts and enthusiasm in the
local organization of the workshop and the staff of the HIM for their assistance.

Bonn, Germany Jochen Garcke
Michael Griebel
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An Adaptive Sparse Grid Approach for Time
Series Prediction

Bastian Bohn and Michael Griebel

Abstract A real valued, deterministic and stationary time series can be embedded
in a—sometimes high-dimensional—real vector space. This leads to a one-to-one
relationship between the embedded, time dependent vectors in R

d and the states
of the underlying, unknown dynamical system that determines the time series. The
embedded data points are located on an m-dimensional manifold (or even fractal)
called attractor of the time series. Takens’ theorem then states that an upper bound
for the embedding dimension d can be given by d � 2mC 1.

The task of predicting future values thus becomes, together with an estimate on
the manifold dimension m, a scattered data regression problem in d dimensions. In
contrast to most of the common regression algorithms like support vector machines
(SVMs) or neural networks, which follow a data-based approach, we employ in
this paper a sparse grid-based discretization technique. This allows us to efficiently
handle huge amounts of training data in moderate dimensions. Extensions of the
basic method lead to space- and dimension-adaptive sparse grid algorithms. They
become useful if the attractor is only located in a small part of the embedding space
or if its dimension was chosen too large.

We discuss the basic features of our sparse grid prediction method and give the
results of numerical experiments for time series with both, synthetic data and real
life data.

B. Bohn (�) �M. Griebel
Institute for Numerical Simulation, University of Bonn, 53115, Bonn, Germany
e-mail: bohn@ins.uni-bonn.de; griebel@ins.uni-bonn.de

J. Garcke and M. Griebel (eds.), Sparse Grids and Applications, Lecture Notes
in Computational Science and Engineering 88, DOI 10.1007/978-3-642-31703-3 1,
© Springer-Verlag Berlin Heidelberg 2013
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2 B. Bohn and M. Griebel

1 Introduction and Problem Formulation

One of the most important tasks in the field of data analysis is the prediction of
future values from a given time series of data. In our setting, a time series

�
sj
�1
jD1 is

an ordered set of real values. The task of forecasting can now be formulated as:

Given the values s1; : : : ; sN , predict sNC1!

To tackle the forecasting problem, we assume that the values sj stem from an
underlying stationary process which evolves in time. The aim is then to reconstruct
the domain of this process as good as possible from the data s1; : : : ; sN and to
use this reconstruction for the prediction of the value sNC1. To this end, let M0

represent the phase space of the underlying system, let � W M0 ! M0 denote the
corresponding equations of motion and let o W M0 ! R be an observable which
defines a time series by

�
sj
�1
jD1 D �

o
�
�j .x0/

��1
jD1 ; (1)

where x0 2 M0 is an arbitrary initial condition of the process and

�j D � ı � ı : : : ı �
„ ƒ‚ …

j times

:

In practice M0, � and o are of course not known, but only the values sj of the time
series are given. To tackle the forecasting problem, we need to find a connection
between the past values of the time series and the next one.

Takens’ theorem [2, 25] provides the theoretical background to construct algo-
rithms for this purpose. Assuming that a given equidistant time series consists of
measurements, i.e. evaluations of the observable o, of an m-dimensional process
which follows some deterministic equation of motion �, there is the possibility to
find a regular m-dimensional submanifold U of R2mC1 which is diffeomorphic to
the phase space M0 of the underlying system. The most common construction of
such a submanifold works via delay embedding. In this case the time-dependent
observations sj are themselves used as coordinates to represent U � R

2mC1.
Here, since an element x 2 U corresponds to one specific point in phase space,
the dynamics of the process and thus the evolution of the time series itself are
completely determined by x and the forecasting problem translates into an ordinary
regression-like task in R

2mC1. For an overview of the delay embedding scheme and
different approaches to time series analysis see [21].

In this paper we use a regularized least squares approach to find an adequate
approximation to the solution of the prediction problem. In combination with
a FEM-like grid discretization this leads to a non-data-based approach whose
computational costs grow only linearly in the number of elements of the given
time series. Then, in contrast to most data-based techniques like support vector
machines or standard neural networks using radial basis functions, this approach
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is able to handle huge time series. But, if d D 2m C 1 denotes the dimension of
the ambient space and 2t is the number of grid points in one direction, the number
of points in a conventionally discretized ambient space would grow like O

�
2td
�
.

Thus, this naive approach suffers from the curse of dimensionality which restricts
the application of a conventional discretization to low-dimensional, i.e. to one-, two-
or three-dimensional spaces.

To circumvent this problem the sparse grid discretization [1] is used in this paper.
A first approach for the prediction of financial time series with sparse grids has been
presented in [8]. For regular sparse grids, the number of grid points increases only
like O.2t � td�1/, i.e. the curse of dimensionality is now just present with respect to
the term t . This way, we are able to efficiently deal with huge amounts of data in
moderate dimensions up to about d D 10. Moreover, for most time series the high-
dimensional data does not fill the whole space. The process obtained by using the
delay embedding method then visits only a small fraction of the whole discretized
area. This observation justifies a space-adaptive sparse grid [13] discretization
which resolves the trajectory of the process. Finally, an ANOVA-like approach
leads to dimension-adaptive sparse grids [10, 17] that are useful if our a priori
choice of d is too large.

Thus, we will introduce two different adaptive algorithms in this paper: The
space-adaptive algorithm locally adapts to features of the prediction function
whereas the dimension-adaptive algorithm refines by employing subspaces which
are relevant for an efficient representation of the prediction function in its ANOVA-
decomposition.

In summary, each of our algorithms processes the following steps:

1. Estimation of the dimensionm of the underlying process
2. Rewriting the forecasting problem as a regression problem in R

d with d D
2mC1

3. Approximating the solution of the regression problem in a discretized (regular,
space-adaptive or dimension-adaptive) sparse grid space

4. Predicting the value sNC1 by point evaluation of the computed sparse grid
function at .sN�2m; : : : ; sN /T

Altogether, we obtain a new class of algorithms for the prediction of time series
data which scale only linearly with the length of the given time series, i.e. the
amount of data points, but still allow us to use reasonably large window sizes for the
delay embedding due to our sparse grid approach. The new methods give excellent
prediction results with manageable computational costs.

The remainder of this paper is organized as follows: In Sect. 1, we describe the
delay embedding scheme and review some crucial issues concerning the application
of Takens’ theorem. In Sect. 2, we show how the forecasting problem can be
rewritten as a regression problem. We also derive the regularized least squares
functional which determines our predictor function. In Sect. 3, we deal with the
regular sparse grid approximation. We deduce the associated linear system and solve
it using a preconditioned CG-algorithm. Then, we introduce and discuss space- and
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dimension-adaptive sparse grid algorithms. In Sect. 4, we give the results of
numerical experiments which illustrate the favorable properties of our new methods.

2 Takens’ Theorem and the Delay Embedding Scheme

We now provide the essential theory concerning Takens’ theorem [25] and give a
hint to some modifications from [2].

For an arbitrary d 2 N we can create vectors

tj WD �
sj�dC1; sj�dC2; : : : ; sj�1; sj

�T 2 R
d ; j � d

following the so-called delay embedding scheme. Each vector consists of d
consecutive past time series values. A connection between these delay vectors and
the unknown evolution of the process in the phase space is established by the
following theorem:

Theorem 1. Let M0 be a compact m-dimensional C2-manifold, let � W M0 ! M0

denote a C2-diffeomorphism and let o 2 C2 .M0;R/. Then, �.�;o/ W M0 ,! R
2mC1

defined by

�.�;o/ .x/ WD �
o .x/ ; o .� .x// ; o

�
�2 .x/

�
; : : : ; o

�
�2m .x/

��
(2)

is generically1 an embedding.

This is Takens’ theorem for discrete time series, see [19, 25]. The embedding �.�;o/
establishes a one-to-one connection between a state in the phase space M0 and a
.2m C 1/-dimensional delay vector constructed by (2). It can formally be inverted
and we obtain

�j�2m .x0/ D ��1.�;o/
��
o
�
�j�2m .x0/

�
; o
�
�j�2mC1 .x0/

�
; : : : ; o

�
�j .x0/

���

D ��1.�;o/
��
sj�2m; sj�2mC1; : : : ; sj

��

D ��1.�;o/
�
tj
�

1Here, “generically” means the following:
If Xl WD ˚

x 2M0 j �l .x/ D x
�

fulfills jXl j < 1 for all l � 2m and if the Jacobian matrix�
D�l

�
x of �l at x has pairwise distinct eigenvalues for all l � 2m; x 2 Xl , then the set of all

o 2 C2 .M0;R/ for which the embedding property of Theorem 1 does not hold is a null set. As
C2 .M0;R/ is an infinite dimensional vector space, the term “null set” may not be straightforward.

It should be understood in the way that every set Y �
n
o 2 C2 .M0;R/ j �.�;o/ is an embedding

o

is prevalent.
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for all j � d with tj 2 R
2mC1 and thus d D 2mC 1. Applying o ı �2mC1 on both

sides we obtain
o
�
�jC1 .x0/

� D o
�
�2mC1

�
��1.�;o/

�
tj
���

: (3)

This means that the value sjC1 D o
�
�jC1 .x0/

�
is completely determined by the

previous 2mC1 values sj�2m; : : : ; sj .2 Note that not necessarily all of the preceding
2m C 1 values are essential to specify the current one, but Theorem 1 states that
2m C 1 values are always sufficient to do so. Note furthermore that not only the
next but all following values are determined by 2m C 1 consecutive time series
values. To see this one can just recursively follow the scheme in (3). Thus, if we
have for example an equidistant time series with a 1 min gap between successive
values but are interested in a 15 min forecast, we can still use 2m C 1 consecutive
values as input in our regression algorithm later on.3

Often, the equations of motion are described by a system of time-continuous
differential equations instead of a time-discrete mapping � as in Theorem 1. To
this end, let V denote a vector field in C2 .M0; TM0/, let o 2 C2 .M0;R/ and let
z W RC ! M0 fulfill the differential equation

dz
dt

D V.z/; z.0/ D z0 (4)

for given z0 2 M0. We define �t .z0/ WD z.t/ as the flow of the vector field V. Now
�� can be used in Theorem 1 instead of � for an arbitrary � 2 R

C and the time-
continuous setting is covered as well. For a thorough treatment of this case we refer
to [2, 25].

A main requirement for Takens’ theorem is the compactness of the manifold
M0, i.e. the domain of the process which contains all possible states. Sometimes
the dynamics tends to form a so-called “strange attractor”, which means that the
trajectories of the system do not form a manifold anymore but just a point set
A of non-integer dimension. In [2] it was shown that it is possible to generalize
Theorem 1 also to this case:

Theorem 2. Let A � M0 � R
k where M0 is an open subset of Rk and A is

a compact subset of M0 which possesses box-counting dimension bdim .A/ D m.
Furthermore, let � W M0 ! M0 be a C2-diffeomorphism and let o 2 C2 .M0;R/.
Then, for �.�;o/ W M0 ,! R

b2mC1c defined as in (2), the properties

2All functions on the right hand side of (3) are at least twice differentiable. As M0 is compact,
the concatenation of these functions lies in the standard Sobolev space H2.�.�;o/.M0//, where

�.�;o/.M0/ � R
2mC1 denotes the image of M0 under �.�;o/.

3 An alternative would be to simulate a time series with 15 min gaps by omitting intermediate
values which would lead to a considerable reduction of the number of points. This is however not
advantageous, as more points usually lead to better prediction results for the numerical algorithm.
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1. �.�;o/ is one-to-one on A and
2. �.�;o/ is an immersion on each compact subset C of a smooth manifold contained

in A

generically4 hold.

Here, bac denotes the largest integer which is smaller or equal to a 2 R
C.

In real world applications, the set A is not a priori known. But for the delay
embedding scheme to work we only need to know the box-counting dimension
bdim .A/ of the set A. Its estimation is an elaborate task by its own. To this end,
various approaches exist in the literature [22, 23, 26]. Here, we recommend using
the Grassberger-Procaccia algorithm [12] to estimate the correlation dimension Qm
as an approximation of the box-counting dimensionm since this worked best in our
experiments. The delay length is then set to d D b2 QmC 1c.

In summary we have a theory which provides us with a justification to use
delayed vectors like in (2) as input for a learning tool.

3 The Regression Problem and the Regularized Least
Squares Approach

In this section, we describe how the task of predicting a time series can be
recast into a higher-dimensional regression problem by means of delay embedding.
Furthermore, we motivate a specific regularized least squares approach.

We assume that we have an infinite time series
�
sj
�1
jD1 which is just an

observation of a deterministic process on an m-dimensional attractor, compare
Sect. 2. From now on, let d WD b2mC 1c denote the embedding dimension used for
the delay scheme. We define

tj WD �
sj�dC1; sj�dC2; : : : ; sj�1; sj

�T 2 R
d ; j � d; (5)

to be the j -th delay vector. Due to Takens’ theorem, there exists a Og W Rd ! R,
with Og WD o ı �d ı ��1.�;o/, cf. (3), such that

Og �tj
� D sjC1 for all j � d: (6)

If we assume that
�
sj
�N
jD1 is known a priori then our goal is to find a good

approximation g to Og with the help of N � d C 1 training patterns

4Here “generically” means the following:
If QXl WD

˚
x 2 A j �l .x/ D x

�
fulfills cdim

� QXl
� � l

2
for all l � b2m C 1c and if

�
D�l

�
x has

pairwise distinct eigenvalues for all l � b2mC 1c; x 2 QXl , then the set of all o 2 C2 .M0;R/ for
which the properties in Theorem 2 do not hold is a null set.
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�
tj ; sjC1

� 2 R
d � R; j D d; : : : ; N � 1: (7)

Thus, we now have to deal with a regression problem instead of the forecasting
problem. Our approach is to choose g 2 X � ˚

f W Rd ! R
�

as

g D arg minf 2XF .f /

where F W X ! R
C [ f1g is a functional that expresses how good functions from

X approximate Og. The function space X still has to be specified.
To this end, as we do not know any embedded points on which we want to

evaluate g afterwards, it is common to minimize the expectation of some Lebesgue
measurable cost function c W R � R ! R

C [ f1g with respect to the density
p W Rd � R ! Œ0; 1� of all possible input patterns. This leads to

F.f / D Ep Œc .y; f .x//�

and thus gives

g D arg minf2XEp Œc .y; f .x//� D arg minf2X

Z

Rd�R

c .y; f .x// p.x; y/ .dx ˝ dy/ :

Note here that we have to restrictX to contain only Lebesgue measurable functions
to make this term well-defined.

Since we have to cope with training patterns and do not know the exact density
p, we use the empirical density

Op .x; y/ D 1

N � d
N�1X

jDd
ıtj .x/ısjC1

.y/

instead of p. This results in the problem of finding the argument of the minimum of

F.f / D
Z

Rd�R
c .y; f .x// Op .x; y/ .dx ˝ dy/ D 1

N � d

N�1X

jDd
c
�
sjC1; f .tj /

�
:

(8)
Note that if we want to calculate the point evaluations f

�
tj
�
, then the set of

admissible functions X has here to be restricted further to contain only functions
for which point evaluations are well defined.

We decided to use c .a; b/ WD .a� b/2. One can easily show that for this specific
cost function a minimizer of F maximizes the likelihood of the given input data
under the assumption of a Gaussian noise term being added to each exact time series
value, see e.g. Sect. 3.3 in [24].5

5Other cost functions can be used as well but these might lead to non-quadratic or even non-convex
minimization problems.
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The minimization of (8) for f 2 X still leads to an ill-posed problem and a
further restriction of the space of admissible functions is therefore needed. To this
end, Tikhonov proposed to add a constraint of the form�.f / � c with an arbitrary
positive constant c and a nonnegative functional � W X ! R

C which is strictly
convex on a certain subspace depending on the problem itself, see [27]. Using the
method of Lagrange multipliers we then obtain the new minimization problem

g D arg minf 2XF.f / WD arg minf 2X

0

@ 1

N � d

N�1X

jDd
c
�
sjC1; f .tj /

�C ��.f /

1

A

(9)
which is well-posed if � is positive. We will employ the Sobolev semi-norm

�.f / WD jf jH1
mix

D
X

jaj1D1

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

da1

dxa11
: : :

dad

dxadd
f

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

2

L2.Rd /
(10)

since this perfectly fits after discretization to our basis functions as we will see later.
Here a D .a1; : : : ; ad / denotes a multi index and jaj1 WD maxiD1;:::;d jai j. We will
use the function g 2 X defined in (9) as continuous approximation to Og from now
on.

Instead of our H1
mix-semi-norm, a method using gradient penalties—which

corresponds to the H1 semi-norm—was presented in [9] and error bounds were
provided for a discrete solution achieved by the so-called combination technique.
Note that some of these results rely on the assumption of independent and uniformly
distributed samples. Nevertheless, similar results can be given for our case under
the assumption of independently drawn samples according to the probability
distribution on the reconstructed attractor. The resulting errors then refer to the
attractor measure instead of the Lebesgue measure.

3.1 Minimization for an Arbitrary Basis

Now let f�i g1iD1 be a basis of � WD ff 2 X j �.f / � cg. Our task is to find a

w WD .w1;w2; : : :/

with wi 2 R for each i 2 N n f0g, which minimizes

1

N�d
N�1X

jDd

 

sjC1�
1X

iD1
wi �i

�
tj
�
!2

C�
1X

iD1

1X

kD1

0

@wiwk
X

jaj1D1
hDa�i ;D

a�kiL2.Rd /

1

A

(11)
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where Da D da1

dx
a1
1

: : : dad

dx
ad
d

denotes a multivariate derivative. The corresponding

function

g.x/ D
1X

iD1
wi �i .x/

then would give us the approximate prediction sNC1 	 g .tN / by point evaluation
at tN . As (11) is a sum of strictly convex functions, the argument g of the minimum
can be found by identifying the zeroes of d

dwl
F.f / for all l 2 N n f0g. For

	 WD .N � d/� this leads to the infinite system

N�1X

jDd
sjC1�l

�
tj
� D

1X

iD1
wi

0

@
N�1X

jDd
�l
�
tj
�
�i
�
tj
�C 	h .�i ; �l /

1

A (12)

for all l 2 N n f0g, where h W � � � ! R denotes the semi-definite bilinear form

h .s; t/ D
X

jaj1D1
hDas;DatiL2.Rd / :

3.2 Minimization for a Kernel Basis in a Reproducing Kernel
Hilbert Space

To derive a finite solution procedure, the following approach is standard in the
mathematical learning community. For the case �.f / D jjf jj2H, with H being
a reproducing kernel Hilbert space, we can write g from (9) as a finite linear
combination of evaluations of the reproducing kernel k W R

d � R
d ! R in the

points corresponding to the training patterns

g.x/ D
N�1X

jDd
gj k

�
tj ; x

�

with some real-valued weights gj . This is known as the representer theorem for
reproducing kernel Hilbert spaces, see e.g. [24]. Analogous observations as above
result with the property

˝
k .ti ; �/ ; k

�
tj ; �

�˛
H D k

�
ti ; tj

�
in the finite system

N�1X

jDd
sjC1k

�
tj ; tl

� D
N�1X

jDd
gj

 
N�1X

iDd
k
�
ti ; tj

�
k .ti ; tl /C 	k

�
tj ; tl

�
!
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for all l 2 fd; : : : ; N � 1g. If the
�
k
�
tj ; x

��N�1
jDd are linearly independent6 this leads

to the linear system
s D .K C 	I/ g (13)

where K 2 R
.N�d/�.N�d/ is the kernel matrix with entries Ki;j D k

�
ti ; tj

�
,

I 2 R
.N�d/�.N�d/ is the identity matrix and g D .gd ; : : : ; gN�1/T 2 R

N�d ,
s D .sdC1; : : : ; sN /T 2 R

N�d .
Note that for the case (10) we only regularized with a semi-norm of a reproducing

kernel Hilbert space but still get the representation

g.x/ D
N�1X

jDd
gj k

�
tj ; x

�C g0.x/

with a g0 W Rd ! R from the null space of � and a certain kernel function k, see
[24].

One could now try to solve the linear system (13). The major problem of this
approach—besides the knowledge of an explicit formulation of the reproducing
kernel7—is the complexity with respect to the number of input patterns. The direct
solution of (13) would involve a number of operations of the order O

�
N3
�

since
we have to deal with a full system matrix here. But even if one does not compute
the inverse of K C 	I directly and uses an appropriate iterative scheme instead, the
complexity for solving this system is at least O

�
N2
�

because of the dense kernel
matrix K. Therefore, in the next section, we will consider the infinite system (12)
in the first place and resort to a further approximation of our prediction problem by
discretization.

4 Discretization via Sparse Grids

To find an approximate solution to (12) we restrict ourselves to a finite dimensional
subspace �M WD span f�i gMiD1 � � WD ff 2 X j �.f / � cg for some M 2 N.
For the naive full grid approach the curse of dimensionality then shows up in the
number of necessary grid points which grows exponentially with d . To deal with
this issue, we will employ the sparse grid discretization technique and its adaptive
enhancements here. To this end, we will assume that the domain of Og (and thus g)
is the d -dimensional hypercube

Hd WD Œ0; 1�d :

6If this is not the case we can choose a linearly independent subsystem and continue analogously.
7See [28] for several reproducing kernels and their corresponding Hilbert spaces.
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Note that this is not a restriction since the domain of the underlying original
process is compact (cf. Theorems 1 and 2). By rescaling the resulting domain of
the reconstructed process we always can obtain the domain Œ0; 1�d .

4.1 Multilevel Hierarchical Bases and Regular Sparse Grids

First, we recall the construction of a full grid space using a piecewise linear
hierarchical basis and discuss its relation to a sparse grid space. Let the one-
dimensional hat function � W R ! Œ0; 1� be defined by

�.x/ WD
�
1 � jxj; if x 2 Œ�1; 1�
0 else

and let
�l;i .x/ WD �.2l � x � i/jŒ0;1�

for any l; i 2 N be a dilated and rescaled version of � restricted to the interval
Œ0; 1�. One can easily see that supp .�l;i / D �

.i � 1/2�l ; .i C 1/2�l
� \ Œ0; 1�.

The construction of a d -dimensional hat function is straightforward via the tensor
product

�l;i.x/ WD
dY

jD1
�lj ;ij .xj /;

where l D .l1; : : : ; ld / 2 N
d is the multivariate level and i D .i1; : : : ; id / 2 N

d

denotes the multivariate position index. Furthermore, we define xl;i WD i � 2�l,
where the multiplication has to be understood componentwise, i.e. xl;i D
�
xl1;i1 ; : : : ; xld ;id

�T
with xlj ;ij WD ij � 2�lj . For a fixed l 2 N

d , we then have with

˝l WD ˚
xl;i j 0 � i � 2l�

the full grid of level l. Here, the inequalities are to be understood componentwise
and 0 D .0; : : : ; 0/ is the null index. The space of piecewise d -linear functions on
the grid ˝l is

Vl WD span fBlg with Bl D ˚
�l;i j 0 � i � 2l� :

Bl is called nodal basis since the value of a function fl.x/ D P
0�i�2l fl;i � �l;i.x/ 2

Vl on one of the grid points xl;j of ˝l is given by the coefficient fl;j 2 R that
corresponds to �l;j.

Now, let

Il WD
�

i 2 N
d

ˇ
ˇ̌
ˇ
0 � ij � 1; if lj D 0

1 � ij � 2lj � 1; ij odd if lj > 0
for all 1 � j � d

�
: (14)
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Then, Wl WD span
˚
�l;i j i 2 Il

�
is a hierarchical increment space (or detail space)

because of the property

Wl D span

8
<

:
Bl n

d[

jD1
Bl�ej

9
=

;

where ej denotes the j -th unit vector and Bk WD ; for each k D .k1; : : : ; kd / with
kj < 0 for some j D 1; : : : ; d . Thus we get

Vl D
M

k�l

Wk D span
˚ QBl

�

with the hierarchical basis

QBl WD ˚
�k;i j i 2 Ik;k � l

�
:

Now, we can define the space of piecewise d -linear functions on the regular
(isotropic) full grid

˝t WD ˝.t;:::;t / D ˚
xk;i j jkj1 � t; i 2 Ik

�

of level t 2 N by
Vt WD V.t;:::;t / D

M

jkj1�t
Wk:

If
ft D

X

jkj1�t

X

i2Ik

fk;i�k;i

is the interpolant of f 2 H2 .Hd / in Vt it holds that

jjf � ft jjL2.Hd /
D O

�
2�2t

�
: (15)

Next, we define the regular sparse grid of level t by

˝s
t WD ˚

xk;i j nd .k/ � t; i 2 Ik
�

(16)

and the corresponding function space by

V s
t WD

M

k2Nd
nd .k/�t

Wk;

where nd .0/ WD 0 and

nd .k/ WD jkj1 � d C jfm j km D 0gj C 1
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for every other k 2 N
d . Here, jkj1 WD Pd

jD1 jkj j denotes the `1 norm. This specific
definition of nd guarantees that the resolution of grids on the boundary is the same
as the resolution of grids in the interior of the domain.

If
f s
t .x/ D

X

k2Nd
nd .k/�t

X

i2Ik

˛k;i�k;i.x/ 2 V s
t

is the interpolant of f 2 H2
mix.Hd / in V s

t , it holds that

jjf � f s
t jjL2.Hd /

D O
�
2�2t td�1

�
:

Thus, compared to (15), the accuracy is only slightly worse by a factor td�1.
However, the number of points in the full grid is j˝t j D O

�
2td
�

and suffers
from the curse of dimensionality for large d whereas, in the sparse grid case,
M WD j˝s

t j D O
�
2t � td�1� holds and the exponential dependence of d now

only affects the level t instead of 2t . For a thorough treatment of sparse grids,
approximation results and complexity issues we refer to [1] and the references
therein.

By solving (9) in the discrete space V s
t � � we get (analogously to (12))

N�1X

jDd
sjC1�l;i

�
tj
� D

X

k2Nd Wnd .k/�t;
m2Ik

˛k;m

0

@
N�1X

jDd
�l;i

�
tj
�
�k;m

�
tj
�C 	h

�
�l;i; �k;m

�
1

A

(17)
for all l 2 N

d W nd .l/ � t and i 2 Il.
A preconditioned multilevel conjugate gradient (pCG) algorithm is used to solve
the linear system (17) iteratively. Here, for reasons of simplicity, we employ as
preconditioner the inverse of the diagonal of the system matrix of (17) after its
transformation to a prewavelet representation, see [15]. As we only need to imple-
ment matrix-vector-multiplications for the pCG algorithm, the system matrices are
not assembled explicitly. The hierarchical structure and the compact support of our
basis functions allow a fast application8 of the first term in the brackets on the right
hand side of (17) in O

�
N � td � operations. Because of the product structure of

H1
mix an efficient implementation of the unidirectional principle can be employed

for the on-the-fly multiplication of the term corresponding to the bilinear form h,
see e.g. [4]. This needs O.M/ operations. Thus, the costs of a single iteration of
the pCG algorithm are only O

�
N � td CM

� D O
�
.N � t C 2t / � td�1� operations.

For a detailed review of computational issues on the implementation of sparse grid
methods, grid traversal strategies and linear system solvers, we refer to [4]. See
Fig. 1 for two sparse grid examples.

8 Note that the use of the combination technique [16] even allows here for a slight improvement to
O
�
N � t d�1

�
. In both cases, however, the constant in the O-notation grows exponentially with d .
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a b

Fig. 1 Different sparse grid examples in two dimensions. (a) Regular sparse grid of level 5. (b)
Space-adaptive sparse grid

4.2 Space-Adaptive Sparse Grids

Since most attractors only fill a sparse pattern of Hd , it is obvious that a regular grid
is not necessarily the best structure to approximate a function on such an attractor.
On the one hand, there might not be enough grid points in relevant regions to fit
the function which leads to bad approximations. On the other hand, there might be
too many grid points in irrelevant areas which causes overfitting and results in an
unnecessary high cost complexity, see [9] for a thorough treatment of this issue. One
would prefer a grid which rather matches the shape of the trajectory than the ambient
space Hd . Such a grid (and of course the corresponding function space) can be
derived using an iterative algorithm which adaptively creates finer grid resolutions
where needed. The main component of such a procedure is an appropriate error
indicator which decides if the grid has to be locally refined in a certain region. We
here simply use


l;i WD ˇ
ˇ
ˇ
ˇ˛l;i�l;i

ˇ
ˇ
ˇ
ˇ
L1.Hd /

D ˇ
ˇ˛l;i

ˇ
ˇ

as such an indicator. For more elaborate techniques and details on how to choose
a reliable and efficient indicator 
l;i for the case of specific norms of the error, we
refer to [13].

Our overall algorithm proceeds as follows: First, it starts with a regular sparse
grid for some low level ˝s

adp D Q̋ s
adp WD ˝s

t and solves (17) on this grid. Then, it

checks for each
n
.l; i/ j xl;i 2 Q̋ s

adp

o
if 
l;i > ", where " 2 R

C is some fix threshold.

If this is the case for the pair .l; i/ with odd ij or ij D 0 for each j 2 f1; : : : ; d g, all
of its child nodes are inserted into the grid ˝s

adp if they are not already contained.9

In the one-dimensional case the child nodes are defined as

9Note here that it is not enough to check the surplus of points which have been inserted in the
last iteration. The hierarchical surplus of all other points can change as well when calculating the
solution on the refined grid.
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child .xl;i / WD
8
<

:

fxlC1;2i˙1g if l > 0;
fx1;1g if l D 0; i D 1;

fx0;1g if l D 0; i D 0:

(18)

In the multivariate case we define child
�
xl;i
�

as

�
xk;m 2 ˝k

ˇ
ˇ
ˇ
ˇ

There exists j 2 f1; : : : ; d g; s.t. xkj ;mj 2 child
�
xlj ;ij

�

and kh D lh;mh D ih for all h 2 f1; : : : ; d g n fj g
�
: (19)

After the insertion it has to be guaranteed—by e.g. inserting further nodes where
needed—that all hierarchical ancestors of every inserted point are contained in
the resulting grid. Otherwise, an incorrect hierarchical basis representation for the
corresponding function space would result and common grid traversal algorithms
would run into problems. To achieve this we simply insert each missing direct
ancestor and proceed recursively with the inserted points until each direct ancestor
to every grid point has been inserted into ˝s

adp. The direct ancestors of points xl;i

with odd ij or ij D 0 for each j D f1; : : : ; d g are defined by

directAnc
�
xl;i
� WD ˚

xk;m 2 ˝l j xl;i 2 child
�
xk;m

��
: (20)

Algorithm 1 The space-adaptive sparse grid algorithm

Input: starting level t , threshold ", #iterations L, error indicators 
l;i, time series
�
sj
�N
jD1

,
embedding dimension d , regularization parameter �
Output: space-adaptive sparse grid ˝s

adp

initialize: ˝s
adp ˝s

t , Q̋ sadp  ˝s
t , It 0

while It < L do
solve (17) on Q̋ sadp

for all .k;m/ with odd mj or mj D 0 for each j 2 f1; : : : ; dg and xk;m 2 Q̋ sadp do
if 
k;m > " then

˝s
adp ˝s

adp [ child
�
xk;m

�

end if
end for
if Q̋ sadp D ˝s

adp then
return ˝s

adp
end ifQ̋ s

adp ˝s
adp

for all xk;m with odd mj or mj D 0 for each j 2 f1; : : : ; dg and xk;m 2 Q̋ sadp do
˝s

adp ˝s
adp [ AllAncestors(k, m, d )

end forQ̋ s
adp ˝s

adp
It ItC1

end while
return ˝s

adp
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Algorithm 2 AllAncestors(l, i, d )
Input: multivariate level l, multivariate index i, embedding dimension d
Output: set X of all ancestors of xl;i

initialize: X  ;
X  X [ directAnc

�
xl;i
�

for all xk;m 2 directAnc
�
xl;i
�

with odd mj or mj D 0 for each j 2 f1; : : : ; dg do
X  X [ AllAncestors(k, m, d )

end for
return X

When every relevant grid point of Q̋ s
adp has been visited and treated accordingly,

we set Q̋ s
adp D ˝s

adp and start anew. This iteration runs until either no point needs to
be refined or the number of iterations reaches some fixed limit L 2 N. A summary
of the procedure can be found in Algorithm 1. For details on runtime and technical
issues we refer to [4].

4.3 Dimension-Adaptive Sparse Grids

In the case of attractors which fill a highly anisotropic part of the ambient space Hd

or in case the ambient space dimension was overestimated, it is desirable to employ
dimension-adaptive refinement instead of pure space-adaptive refinement. There,
refinement takes place globally but only in directions which are relevant for the
construction of a good forecasting function. Dimension-adaptivity for sparse grids
has been introduced in [17]. The application of dimension-adaptive algorithms has
been studied for integration in [10] and for approximation in [6, 7]. The approach
which we use in the following is a little bit different though, it can be found in [4].

To motivate the idea of dimension-adaptive grids we will shortly review the
concept of the ANOVA (Analysis of Variance) decomposition. We introduce a
splitting

V D 1 ˚ C (21)

of a space V of univariate functions with domain Œ0; 1� into the space of constant
functions 1 and the remainder C. This is done using the identity

f D P.f /C .f � P.f //

for some projector P W V ! 1 with P j1 D id.
For multivariate tensor product function spaces V we apply the splitting in every

direction, i.e.
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V D
dO

iD1
Vi D

dO

iD1
.1i ˚ Ci /

D11 ˝ : : :˝ 1d

˚
dM

iD1
.11 ˝ : : :˝ 1i�1 ˝ Ci ˝ 1iC1 ˝ : : :˝ 1d /

˚
dM

iD1

dM

jDiC1

�
11˝ : : :˝ 1i�1˝ Ci˝1iC1˝ : : :˝ 1j�1 ˝ Cj ˝ 1jC1 ˝ : : :˝ 1d

�

:::

˚C1 ˝ : : :˝ Cd ; (22)

and receive a unique splitting of a function f 2 V into the sum of a constant
function, d univariate functions, d.d�1/

2
bivariate functions, and so on, i.e.

f .x1; : : : ; xd / D f0C
dX

iD1
fi .xi /C

dX

iD1

dX

jDiC1
fij .xi ; xj /C: : :Cf1;:::;d .x1; : : : ; xd /:

(23)
We call f0 the ANOVA component of order 0, the fi are ANOVA components of
order 1, and so on.
The most common choice for P is

P.f / WD
Z

Œ0;1�

f .x/dx

for V � L2.Œ0; 1�/, which just gives the classical L2-ANOVA decomposition.
Another choice is

P.f / WD f .a/

which leads to a well-defined decomposition if the point evaluation in a is well-
defined for all functions in V . This results in the so-called anchored ANOVA
decomposition with anchor a. It is well suited to our piecewise linear basis
functions.

Here, to transfer the concept of the multivariate anchored ANOVA decomposition
to the piecewise linear hierarchical basis discretization, we have to change the index
set introduced in (14) as in [6]. We define

QIl WD

8
<̂

:̂
i 2 N

d

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ij D 0; if lj D �1
ij D 1; if lj D 0

1 � ij � 2lj � 1; ij odd if lj > 0

for all 1 � j � d

9
>=

>;

(24)
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and allow the negative level �1. Furthermore, we define the one-dimensional basis
function ��1;0 WD �Œ0;1� to be the indicator function of the interval Œ0; 1�. With this
and the definition

QWl WD spanf�l;i j i 2 QIlg
we see10 that

QVl WD
M

�1�k�l

QWk D
M

�1�k�l

spanf�k;m j m 2 QIkg

D
M

0�k�l

spanf�k;m j m 2 Ikg D
M

0�k�l

Wk D Vl

for all l with lj � 0 for all j D 1; : : : ; d . This way, we just have split the
space of linear functions on Œ0; 1�, which was previously spanned by the two linear
basis functions associated to the two boundary points, further into the sum of
one constant (level �1) and one linear function (level 0). If we define the norm
of a multivariate level index with possibly negative coordinates as

jlj WD j.max.l1; 0/; : : : ;max.ld ; 0//j

we can maintain our previous definition for sparse grids (16) using

Qnd .k/ WD
�
0 if kj � 0 for all 1 � j � d

jkj1 � d C jfm j km � 0gj C 1 else

instead of nd .k/. But we now are able to identify functions which are constant in
direction j as they are elements of QV.l1;:::;lj�1;�1;ljC1;:::;ld /. This approach fits to a
discretized anchored ANOVA decomposition with a D 0. To this end, we now
define an infinite-dimensional univariate function space

V D QV�1 ˚
1M

iD0
QWi (25)

and, with the choice 1i D � QV�1
�
i

and Ci D
�L1

jD0 QWj

�

i
in (21), we again obtain

the splitting (22) which is now conform to the infinite-dimensional tensor product-
hierarchical basis. In other words, if we use the alternative basis that is defined by the
index set QIl , the only univariate basis function  for which P. / ¤ 0 is  D ��1;0
for P.f / WD f .0/ and the anchored ANOVA decomposition completely fits to the
hierarchical tensor product basis.

So far, the subspaces of the ANOVA decomposition are (up to the very first
one) still infinite-dimensional and need to be further discretized. To this end, for a

10Note that Wl and QWl are the same for a multilevel index l with lj 	 1 for all j D 1; : : : ; d .


