


Encyclopedia of Distances



Michel Marie Deza � Elena Deza

Encyclopedia
of Distances

Second Edition



Michel Marie Deza
École Normale Supérieure
Paris, France

Elena Deza
Moscow State Pedagogical University
Moscow, Russia

ISBN 978-3-642-30957-1 ISBN 978-3-642-30958-8 (eBook)
DOI 10.1007/978-3-642-30958-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012951148

Mathematics Subject Classification (2010): 46-XX, 51-XX, 12-XX, 15-XX, 60-XX, 52-XX, 92-XX,
70-XX, 86-XX, 91-XX, 94-XX

© Springer-Verlag Berlin Heidelberg 2009, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy


In 1906, Maurice FRÉCHET submitted his outstanding thesis Sur quelques points
du calcul functionnel introducing (within a systematic study of functional opera-
tions) the notion of metric space (E-espace, E from écart).
Also, in 1914, Felix HAUSDORFF published his famous Grundzüge der Mengen-
lehre where the theory of topological and metric spaces (metrische Räume) was
created.
Let this Encyclopedia be our homage to the memory of these great mathematicians
and their lives of dignity through the hard times of the first half of the XX century.

Maurice FRÉCHET (1878–1973)
coined in 1906 the concept of écart
(semimetric)

Felix HAUSDORFF (1868–1942)
coined in 1914 the term metric space



Preface

The preparation of the second edition of Encyclopedia of Distances has presented a
welcome opportunity to improve the first edition published in 2009 by updating and
streamlining many sections, and by adding new items (especially in Chaps. 1, 15,
18, 23, 25, 27–29), increasing the book’s size by about 70 pages. This new edition
preserves, except for Chaps. 18, 23, 25 and 28, the structure of the first edition.

The first large conference with a scope matching that of this Encyclopedia
is MDA 2012, the International Conference “Mathematics of Distances and Ap-
plications”, held in July 2012 in Varna, Bulgaria (http://foibg.com/conf/ITA2012/
2012mda.htm).

We are grateful to Jin Akiyama, Frederic Barbaresco, Pavel Chebotarev, Math-
ieu Dutour Sikirić, Aleksandar Jurisić, Boris Kukushkin, Victor Matrosov, Tatiana
Nebesnaya, Arkadii Nedel, Michel Petitjean and Egon Schulte for their helpful ad-
vice, and to Springer-Verlag for its support in making this work a success.

Michel Marie Deza
Elena Deza

Paris, France
Moscow, Russia
July 2012
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Preface to the First Edition

Encyclopedia of Distances is the result of re-writing and extending of our Dictio-
nary of Distances published in 2006 (and put online http://www.sciencedirect.com/
science/book/9780444520876) by Elsevier. About a third of the definitions are new,
and majority of the remaining ones are upgraded.

We were motivated by the growing intensity of research on metric spaces and,
especially, in distance design for applications. Even if we do not address the practi-
cal questions arising during the selection of a “good” distance function, just a sheer
listing of the main available distances should be useful for the distance design com-
munity.

This Encyclopedia is the first one treating fully the general notion of distance.
This broad scope is useful per se, but it also limited our options for referencing. We
give an original reference for many definitions but only when it was not too difficult
to do so. On the other hand, citing somebody who well developed the notion but
was not the original author may induce problems. However, with our data (usually,
author name(s) and year), a reader can easily search sources using the Internet.

We found many cases when authors developed very similar distances in different
contexts and, clearly, were unaware of it. Such connections are indicated by a simple
“cf.” in both definitions, without going into priority issues explicitly.

Concerning the style, we tried to make it a mixture of resource and coffee-table
book, with maximal independence of its parts and many cross-references.
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Preface to Dictionary of Distances, 2006

The concept of distance is a basic one in the whole human experience. In everyday
life it usually means some degree of closeness of two physical objects or ideas, i.e.,
length, time interval, gap, rank difference, coolness or remoteness, while the term
metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathematical mean-
ing of those terms which is an abstraction of measurement. The mathematical no-
tions of distance metric (i.e., a function d(x, y) from X×X to the set of real num-
bers satisfying to d(x, y) ≥ 0 with equality only for x = y, d(x, y)= d(y, x), and
d(x, y) ≤ d(x, z)+ d(z, y)) and of metric space (X,d) were originated a century
ago by M. Fréchet (1906) and F. Hausdorff (1914) as a special case of an infinite
topological space. The triangle inequality above appears already in Euclid. The in-
finite metric spaces are usually seen as a generalization of the metric |x − y| on
the real numbers. Their main classes are the measurable spaces (add measure) and
Banach spaces (add norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces in
Geometry) and L.M. Blumenthal (1953), an explosion of interest in both finite and
infinite metric spaces occurred. Another trend: many mathematical theories, in the
process of their generalization, settled on the level of metric space. It is an ongo-
ing process, for example, for Riemannian geometry, Real Analysis, Approximation
Theory.

Distance metrics and distances have become now an essential tool in many ar-
eas of Mathematics and its applications including Geometry, Probability, Statistics,
Coding/Graph Theory, Clustering, Data Analysis, Pattern Recognition, Networks,
Engineering, Computer Graphics/Vision, Astronomy, Cosmology, Molecular Biol-
ogy, and many other areas of science. Devising the most suitable distance metrics
and similarities, in order to quantify the proximity between objects, has become
a standard task for many researchers. Especially intense ongoing search for such
distances occurs, for example, in Computational Biology, Image Analysis, Speech
Recognition, and Information Retrieval.

Often the same distance metric appears independently in several different areas;
for example, the edit distance between words, the evolutionary distance in Biol-
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xii Preface to Dictionary of Distances, 2006

ogy, the Levenshtein distance in Coding Theory, and the Hamming+Gap or shuffle-
Hamming distance.

This body of knowledge has become too big and disparate to operate within.
The numbers of worldwide web entries offered by Google on the topics “distance”,
“metric space” and “distance metric” is about 216, 3 and 9 million, respectively, not
to mention all the printed information outside the Web, or the vast “invisible Web” of
searchable databases. About 15,000 books on Amazon.com contains “distance” in
their titles. However, this huge information on distances is too scattered: the works
evaluating distance from some list usually treat very specific areas and are hardly
accessible for nonexperts.

Therefore many researchers, including us, keep and cherish a collection of dis-
tances for use in their areas of science. In view of the growing general need
for an accessible interdisciplinary source for a vast multitude of researchers, we
have expanded our private collection into this Dictionary. Some additional material
was reworked from various encyclopedias, especially Encyclopedia of Mathematics
[EM98], MathWorld [Weis99], PlanetMath [PM], and Wikipedia [WFE]. However,
the majority of distances are extracted directly from specialist literature.

Besides distances themselves, we collected here many distance-related notions
(especially in Chap. 1) and paradigms, enabling people from applications to get
those (arcane for nonspecialists) research tools, in ready-to-use fashion. This and the
appearance of some distances in different contexts can be a source of new research.

In the time when over-specialization and terminology fences isolate researchers,
this Dictionary tries to be “centripetal” and “ecumenical”, providing some access
and altitude of vision but without taking the route of scientific vulgarization. This
attempted balance defined the structure and style of the Dictionary.

This reference book is a specialized encyclopedic dictionary organized by subject
area. It is divided into 29 chapters grouped into 7 parts of about the same length. The
titles of the parts are purposely approximative: they just allow a reader to figure out
her/his area of interest and competence. For example, Parts II, III and IV, V require
some culture in, respectively, pure and applied Mathematics. Part VII can be read
by a layman.

The chapters are thematic lists, by areas of Mathematics or applications, which
can be read independently. When necessary, a chapter or a section starts with a short
introduction: a field trip with the main concepts. Besides these introductions, the
main properties and uses of distances are given, within items, only exceptionally.
We also tried, when it was easy, to trace distances to their originator(s), but the pro-
posed extensive bibliography has a less general ambition: just to provide convenient
sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between
them. All item titles and (with majuscules only for proper nouns) selected key terms
can be traced in the large Subject Index; they are boldfaced unless the meaning is
clear from the context. So, the definitions are easy to locate, by subject, in chapters
and/or, by alphabetic order, in the Subject Index.

The introductions and definitions are reader-friendly and maximally independent
each from another; still they are interconnected, in the 3-dimensional HTML man-
ner, by hyperlink-like boldfaced references to similar definitions.



Preface to Dictionary of Distances, 2006 xiii

Many nice curiosities appear in this “Who is Who” of distances. Examples of
such sundry terms are: ubiquitous Euclidean distance (“as-the-crow-flies”), flower-
shop metric (shortest way between two points, visiting a “flower-shop” point first),
knight-move metric on a chessboard, Gordian distance of knots, Earth Mover dis-
tance, biotope distance, Procrustes distance, lift metric, Post Office metric, Internet
hop metric, WWW hyperlink quasi-metric, Moscow metric, dog-keeper distance.

Besides abstract distances, the distances having physical meaning appear also
(especially in Part VI); they range from 1.6 × 10−35 m (Planck length) to 7.4 ×
1026 m (the estimated size of the observable Universe, about 46 × 1060 Planck
lengths).

The number of distance metrics is infinite, and therefore our Dictionary cannot
enumerate all of them. But we were inspired by several successful thematic dictio-
naries on other infinite lists; for example, on Numbers, Integer Sequences, Inequali-
ties, Random Processes, and by atlases of Functions, Groups, Fullerenes, etc. On the
other hand, the large scope often forced us to switch to the mode of laconic tutorial.

The target audience consists of all researchers working on some measuring
schemes and, to a certain degree, students and a part of the general public inter-
ested in science.

We tried to address, even if incompletely, all scientific uses of the notion of
distance. But some distances did not made it to this Dictionary due to space
limitations (being too specific and/or complex) or our oversight. In general, the
size/interdisciplinarity cut-off, i.e., decision where to stop, was our main headache.
We would be grateful to the readers who will send us their favorite distances missed
here.
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Chapter 1
General Definitions

1.1 Basic Definitions

• Distance
Let X be a set. A function d :X×X→R is called a distance (or dissimilarity)
on X if, for all x, y ∈X, there holds:

1. d(x, y)≥ 0 (nonnegativity);
2. d(x, y)= d(y, x) (symmetry);
3. d(x, x)= 0 (reflexivity).

In Topology, the distance d with d(x, y)= 0 implying x = y is called a symmet-
ric.
For any distance d , the function D1 defined for x �= y by D1(x, y)= d(x, y)+ c,
where c=maxx,y,z∈X(d(x, y)−d(x, z)−d(y, z)), and D(x,x)= 0, is a metric.
Also, D2(x, y)= d(x, y)c is a metric for sufficiently small c ≥ 0.
The function D3(x, y) = inf

∑
i d(zi, zi+1), where the infimum is taken over

all sequences x = z0, . . . , zn+1 = y, is the path semimetric of the complete
weighted graph on X, where, for any x, y ∈X, the weight of edge xy is d(x, y).

• Distance space
A distance space (X,d) is a set X equipped with a distance d .

• Similarity
Let X be a set. A function s :X×X→R is called a similarity on X if s is non-
negative, symmetric, and if s(x, y)≤ s(x, x) holds for all x, y ∈X, with equality
if and only if x = y.
The main transforms used to obtain a distance (dissimilarity) d from a similarity s

bounded by 1 from above are: d = 1− s, d = 1−s
s

, d =√
1− s, d =√2(1− s2),

d = arccos s, d =− ln s (cf. Chap. 4).
• Semimetric

Let X be a set. A function d :X×X→R is called a semimetric (or écart) on X

if d is nonnegative, symmetric, if d(x, x)= 0 for all x ∈X, and if

d(x, y)≤ d(x, z)+ d(z, y)

M.M. Deza, E. Deza, Encyclopedia of Distances, DOI 10.1007/978-3-642-30958-8_1,
© Springer-Verlag Berlin Heidelberg 2013
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4 1 General Definitions

for all x, y, z ∈X (triangle inequality or, sometimes, triangular inequality).
In Topology, it is called a pseudo-metric (or, rarely, semidistance), while the
term semimetric is sometimes used for a symmetric (a distance d(x, y) with
d(x, y)= 0 only if x = y); cf. symmetrizable space in Chap. 2.
For a semimetric d , the triangle inequality is equivalent, for each fixed n≥ 4, to
the following n-gon inequality

d(x, y)≤ d(x, z1)+ d(z1, z2)+ · · · + d(zn−2, y),

for all x, y, z1, . . . , zn−2 ∈X.
For a semimetric d on X, define an equivalence relation, called metric identifi-
cation, by x ∼ y if d(x, y) = 0; equivalent points are equidistant from all other
points. Let [x] denote the equivalence class containing x; then D([x], [y]) =
d(x, y) is a metric on the set {[x] : x ∈X} of equivalence classes.

• Metric
Let X be a set. A function d : X × X → R is called a metric on X if, for all
x, y, z ∈X, there holds:

1. d(x, y)≥ 0 (nonnegativity);
2. d(x, y)= 0 if and only if x = y (identity of indiscernibles);
3. d(x, y)= d(y, x) (symmetry);
4. d(x, y)≤ d(x, z)+ d(z, y) (triangle inequality).

In fact, 1 follows from 3 and 4.
• Metric space

A metric space (X,d) is a set X equipped with a metric d .
A metric frame (or metric scheme) is a metric space with an integer-valued met-
ric.
A pointed metric space (or rooted metric space) (X,d, x0) is a metric space
(X,d) with a selected base point x0 ∈X.
A multimetric space is the union of some metric spaces; cf. bimetric theory of
gravity in Chap. 24.

• Extended metric
An extended metric is a generalization of the notion of metric: the value ∞ is
allowed for a metric d .

• Quasi-distance
Let X be a set. A function d :X×X→R is called a quasi-distance on X if d is
nonnegative, and d(x, x)= 0 holds for all x ∈X.
In Topology, it is also called a premetric or prametric.
If a quasi-distance d satisfies the strong triangle inequality d(x, y)≤ d(x, z)+
d(y, z), then (Lindenbaum, 1926) it is symmetric and so, a semimetric.

• Quasi-semimetric
A function d :X×X→R is called a quasi-semimetric (or hemimetric, osten-
sible metric) on the set X if d(x, x)= 0, d(x, y)≥ 0 for all x, y ∈X and

d(x, y)≤ d(x, z)+ d(z, y)
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for all x, y, z ∈X (oriented triangle inequality).
The set X can be partially ordered by the specialization order: x 
 y if and only
if d(x, y)= 0.
A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e., for
all x, y ∈X the equality d(x, y)= 0 implies d(y, x)= 0.
An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness,
i.e., for all x, y ∈X the equality d(x, y)= d(y, x)= 0 implies x = y.
A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed sym-
metry, i.e., for all x, y, z ∈X

d(x, y)+ d(y, z)+ d(z, x)= d(x, z)+ d(z, y)+ d(y, x),

holds or, equivalently, there exists a weight function w(x) ∈ R on X with
d(x, y)−d(y, x)=w(y)−w(x) for all x, y ∈X (i.e., d(x, y)+ 1

2 (w(x)−w(y))

is a semimetric). If d is a weightable quasi-semimetric, then d(x, y)+w(x) is a
partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).

• Partial metric
Let X be a set. A nonnegative symmetric function p : X × X → R is called a
partial metric [Matt92] if, for all x, y, z ∈X, it holds:

1. p(x, x)≤ p(x, y) (i.e., every self-distance p(x, x) is small);
2. x = y if p(x, x)= p(x, y)= p(y, y)= 0 (T0 separation axiom);
3. p(x, y)≤ p(x, z)+ p(z, y)− p(z, z) (sharp triangle inequality).

If the above separation axiom is dropped, the function p is called a partial
semimetric. The nonnegative function p is a partial semimetric if and only if
p(x, y)− p(x, x) is a weightable quasi-semimetric with w(x)= p(x, x).
If the above condition p(x, x)≤ p(x, y) is also dropped, the function p is called
(Heckmann, 1999) a weak partial semimetric. The nonnegative function p is a
weak partial semimetric if and only if 2p(x, y)−p(x, x)−p(y, y) is a semimet-
ric.
Sometimes, the term partial metric is used when a metric d(x, y) is defined only
on a subset of the set of all pairs x, y of points.

• Protometric
A function p :X×X→R is called a protometric if, for all (equivalently, for all
different) x, y, z ∈X, the sharp triangle inequality holds:

p(x, y)≤ p(x, z)+ p(z, y)− p(z, z).

A strong protometric is a protometric p with p(x, x)= 0 for all x ∈X. Such a
protometric is exactly a quasi-semimetric, but with the condition p(x, y)≥ 0 (for
any x, y ∈X) being relaxed to p(x, y)+ p(y, x)≥ 0.
A partial semimetric is a symmetric protometric (i.e., p(x, y)= p(y, x)) with
p(x, y) ≥ p(x, x) ≥ 0 for all x, y ∈ X. An example of a nonpositive symmetric
protometric is given by p(x, y)=−(x.y)x0 = 1

2 (d(x, y)− d(x, x0)− d(y, y0)),
where (X,d) is a metric space with a fixed base point x0 ∈X; see Gromov prod-
uct similarity (x.y)x0 and, in Chap. 4, Farris transform metric C − (x.y)x0 .
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A 0-protometric is a protometric p for which all sharp triangle inequalities
(equivalently, all inequalities p(x, y)+ p(y, x) ≥ p(x, x)+ p(y, y) implied by
them) hold as equalities. For any u ∈X, denote by A′

u,A
′′
u the 0-protometrics p

with p(x, y)= 1x=u,1y=u, respectively. The protometrics on X form a flat con-
vex cone in which the 0-protometrics form the largest linear space. For finite |X|,
a basis of this space is given by all but one A′

u,A
′′
u (since

∑
u A′

u =
∑

u A′′
u) and,

for the flat subcone of all symmetric 0-protometrics on X, by all A′
u +A′′

u.
A weighted protometric on X is a protometric with a point-weight function
w : X → R. The mappings p(x, y) = 1

2 (d(x, y)+ w(x)+ w(y)) and d(x, y) =
2p(x, y)− p(x, x)− p(y, y), w(x) = p(x, x) establish a bijection between the
weighted strong protometrics (d,w) and the protometrics p on X, as well as be-
tween the weighted semimetrics and the symmetric protometrics. For example, a
weighted semimetric (d,w) with w(x)=−d(x, x0) corresponds to a protometric
−(x.y)x0 . For finite |X|, the above mappings amount to the representation

2p = d +
∑

u∈X
p(u,u)

(
A′

u +A′′
u

)
.

• Quasi-metric
Let X be a set. A function d : X × X → R is called a quasi-metric (or asym-
metric metric, directed metric) on X if d(x, y) ≥ 0 holds for all x, y ∈ X with
equality if and only if x = y, and

d(x, y)≤ d(x, z)+ d(z, y)

for all x, y, z ∈X (oriented triangle inequality). A quasi-metric space (X,d) is
a set X equipped with a quasi-metric d .
For any quasi-metric d , the functions max{d(x, y), d(y, x)}, min{d(x, y), d(y, x)}
and 1

2 (d
p(x, y)+ dp(y, x))

1
p with p ≥ 1 (usually, p = 1 is taken) are equivalent

metrics.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all
x, y, z ∈ X, satisfies the following strengthened version of the oriented triangle
inequality:

d(x, y)≤max
{
d(x, z), d(z, y)

}
.

• Directed-metric
Let X be a set. A function d : X ×X → R is called (Jegede, 2005) a directed-
metric on X if, for all x, y, z ∈X, it holds that d(x, y)=−d(y, x) and

∣
∣d(x, y)

∣
∣≤ ∣∣d(x, z)∣∣+ ∣∣d(z, y)∣∣.

Cf. displacement in Chap. 24 and rigid motion of metric space.
• Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C ≥ 0 and for every pair of points x, y ∈ X, there exists a sequence
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x = x0, x1, . . . , xt = y for which d(xi−1, xi)≤ C for i = 1, . . . , t , and

d(x, y)≥ d(x0, x1)+ d(x1, x2)+ · · · + d(xt−1, xt )−C,

i.e., the weakened triangle inequality d(x, y) ≤∑t
i=1 d(xi−1, xi) becomes an

equality up to a bounded error.
• Near-metric

Let X be a set. A distance d on X is called a near-metric (or C-near-metric) if
d(x, y) > 0 for x �= y and the C-relaxed triangle inequality

d(x, y)≤ C
(
d(x, z)+ d(z, y)

)

holds for all x, y, z ∈X and some constant C ≥ 1.
A C-inframetric is a C-near-metric, while a C-near-metric is a 2C-inframetric.
Some recent papers use the term quasi-triangle inequality for the above inequality
and so, quasi-metric for the notion of near-metric.
The power transform (cf. Chap. 4) (d(x, y))α of any near-metric is a near-
metric for any α > 0. Also, any near-metric d admits a bi-Lipschitz mapping
on (D(x, y))α for some semimetric D on the same set and a positive number α.
A near-metric d on X is called a Hölder near-metric if the inequality

∣
∣d(x, y)− d(x, z)

∣
∣≤ βd(y, z)α

(
d(x, y)+ d(x, z)

)1−α

holds for some β > 0, 0 < α ≤ 1 and all points x, y, z ∈X. Cf. Hölder mapping.
• Weak ultrametric

A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance on
X such that d(x, y) > 0 for x �= y and the C-inframetric inequality

d(x, y)≤ C max
{
d(x, z), d(z, y)

}

holds for all x, y, z ∈X and some constant C ≥ 1.
The term pseudo-distance is also used, in some applications, for any of a pseudo-
metric, a quasi-distance, a near-metric, a distance which can be infinite, a dis-
tance with an error, etc. Another unsettled term is weak metric: it is used for both
a near-metric and a quasi-semimetric.

• Ultrametric
An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d on
X which satisfies, for all x, y, z ∈ X, the following strengthened version of the
triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

d(x, y)≤max
{
d(x, z), d(z, y)

}
.

So, at least two of d(x, y), d(z, y), d(x, z) are equal, and an ultrametric space is
also called an isosceles space. An ultrametric on set V has at most |V | different
values.
A metric d is an ultrametric if and only if its power transform (see Chap. 4) dα is
a metric for any real positive number α. Any ultrametric satisfies the four-point
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inequality. A metric d is an ultrametric if and only if it is a Farris transform
metric (cf. Chap. 4) of a four-point inequality metric.

• Robinsonian distance
A distance d on X is called a Robinsonian distance (or monotone distance) if
there exists a total order 
 on X compatible with it, i.e., for x, y,w, z ∈X,

x 
 y 
w 
 z implies d(y,w)≤ d(x, z),

or, equivalently, for x, y, z ∈X,

x 
 y 
 z implies d(x, y)≤max
{
d(x, z), d(z, y)

}
.

Any ultrametric is a Robinsonian distance.
• Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it
satisfies the following strengthened version of the triangle inequality called the
four-point inequality (Buneman, 1974): for all x, y, z,u ∈X

d(x, y)+ d(z,u)≤max
{
d(x, z)+ d(y,u), d(x,u)+ d(y, z)

}

holds. Equivalently, among the three sums d(x, y)+ d(z,u), d(x, z)+ d(y,u),
d(x,u)+ d(y, z) the two largest sums are equal.
A metric satisfies the four-point inequality if and only if it is a tree-like metric.
Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an
L1-metric. Cf. Lp-metric in Chap. 5.
A bush metric is a metric for which all four-point inequalities are equalities, i.e.,
d(x, y)+ d(u, z)= d(x,u)+ d(y, z) holds for any u,x, y, z ∈X.

• Relaxed four-point inequality metric
A metric d on X satisfies the relaxed four-point inequality if, for all x, y, z,u ∈
X, among the three sums

d(x, y)+ d(z,u), d(x, z)+ d(y,u), d(x,u)+ d(y, z)

at least two (not necessarily the two largest) are equal.
A metric satisfies the relaxed four-point inequality if and only if it is a relaxed
tree-like metric.

• Ptolemaic metric
A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic inequality

d(x, y)d(u, z)≤ d(x,u)d(y, z)+ d(x, z)d(y,u)

(shown by Ptolemy to hold in Euclidean space) for all x, y,u, z ∈X.
A Ptolemaic space is a normed vector space (V ,‖.‖) such that its norm metric
‖x− y‖ is a Ptolemaic metric. A normed vector space is a Ptolemaic space if and
only if it is an inner product space (cf. Chap. 5); so, a Minkowskian metric (cf.
Chap. 6) is Euclidean if and only if it is Ptolemaic.
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The involution space (X\z, dz), where dz(x, y) = d(x,y)
d(x,z)d(y,z)

, is a metric space,
for any z ∈X, if and only if d is Ptolemaic [FoSc06].
For any metric d , the metric

√
d is Ptolemaic [FoSc06].

• δ-hyperbolic metric
Given a number δ ≥ 0, a metric d on a set X is called δ-hyperbolic if it satis-
fies the Gromov δ-hyperbolic inequality (another weakening of the four-point
inequality): for all x, y, z,u ∈X, it holds that

d(x, y)+ d(z,u)≤ 2δ+max
{
d(x, z)+ d(y,u), d(x,u)+ d(y, z)

}
.

A metric space (X,d) is δ-hyperbolic if and only if for all x0, x, y, z ∈X it holds
that

(x.y)x0 ≥min
{
(x.z)x0 , (y.z)x0

}− δ,

where (x.y)x0 = 1
2 (d(x0, x)+ d(x0, y)− d(x, y)) is the Gromov product of the

points x and y of X with respect to the base point x0 ∈X.
A metric space (X,d) is 0-hyperbolic exactly when d satisfies the four-point
inequality. Every bounded metric space of diameter D is D-hyperbolic. The
n-dimensional hyperbolic space is ln 3-hyperbolic.
Every δ-hyperbolic metric space is isometrically embeddable into a geodesic
metric space (Bonk and Schramm, 2000).

• Gromov product similarity
Given a metric space (X,d) with a fixed point x0 ∈ X, the Gromov product
similarity (or Gromov product, covariance, overlap function) (.)x0 is a similarity
on X defined by

(x.y)x0 =
1

2

(
d(x, x0)+ d(y, x0)− d(x, y)

)
.

The triangle inequality for d implies (x.y)x0 ≥ (x.z)x0 + (y.z)x0 − (z.z)x0

(covariance triangle inequality), i.e., the sharp triangle inequality for a pro-
tometric −(x.y)x0 .
If (X,d) is a tree, then (x.y)x0 = d(x0, [x, y]). If (X,d) is a measure semimet-
ric space, i.e., d(x, y) = μ(x  y) for a Borel measure μ on X, then (x.y)∅ =
μ(x ∩ y). If d is a distance of negative type, i.e., d(x, y)= d2

E(x, y) for a subset
X of a Euclidean space E

n, then (x.y)0 is the usual inner product on E
n.

Cf. Farris transform metric dx0(x, y)= C − (x.y)x0 in Chap. 4.
• Cross-difference

Given a metric space (X,d) and quadruple (x, y, z,w) of its points, the cross-
difference is the real number cd defined by

cd(x, y, z,w)= d(x, y)+ d(z,w)− d(x, z)− d(y,w).

In terms of the Gromov product similarity, for all x, y, z,w,p ∈X, it holds

1

2
cd(x, y, z,w)=−(x.y)p − (z.w)p + (x.z)p + (y.w)p;

in particular, it becomes (x.y)p if y =w = p.
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Given a metric space (X,d) and quadruple (x, y, z,w) of its points with x �= z

and y �=w, the cross-ratio is the real number cr defined by

cr(x, y, z,w)= d(x, y)d(z,w)

d(x, z)d(y,w)
≥ 0.

• 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies, for all distinct elements
x1, . . . , xn ∈X, the 2k-gonal inequality

∑

1≤i<j≤n

bibj d(xi, xj )≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 0 and

∑n
i=1 |bi | = 2k.

• Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for any
k ≥ 1, i.e., satisfies the negative type inequality

∑

1≤i<j≤n

bibj d(xi, xj )≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 0, and for all distinct elements x1, . . . , xn ∈X.

A distance can be of negative type without being a semimetric. Cayley proved
that a metric d is an L2-metric if and only if d2 is a distance of negative type.

• (2k + 1)-gonal distance
A (2k + 1)-gonal distance d is a distance on X which satisfies, for all distinct
elements x1, . . . , xn ∈X, the (2k + 1)-gonal inequality

∑

1≤i<j≤n

bibj d(xi, xj )≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 1 and

∑n
i=1 |bi | = 2k + 1.

The (2k + 1)-gonal inequality with k = 1 is the usual triangle inequality. The
(2k + 1)-gonal inequality implies the 2k-gonal inequality.

• Hypermetric
A hypermetric d is a distance on X which is (2k + 1)-gonal for any k ≥ 1, i.e.,
satisfies the hypermetric inequality (Deza, 1960)

∑

1≤i<j≤n

bibj d(xi, xj )≤ 0

for all b ∈ Z
n with

∑n
i=1 bi = 1, and for all distinct elements x1, . . . , xn ∈X.

Any hypermetric is a semimetric, a distance of negative type and, moreover, it
can be isometrically embedded into some n-sphere S

n with squared Euclidean
distance. Any L1-metric (cf. Lp-metric in Chap. 5) is a hypermetric.
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• P -metric
A P -metric d is a metric on X with values in [0,1] which satisfies the correla-
tion triangle inequality

d(x, y)≤ d(x, z)+ d(z, y)− d(x, z)d(z, y).

The equivalent inequality 1− d(x, y)≥ (1− d(x, z))(1− d(z, y)) expresses that
the probability, say, to reach x from y via z is either equal to (1 − d(x, z))(1 −
d(z, y)) (independence of reaching z from x and y from z), or greater than it
(positive correlation). A metric is a P -metric if and only if it is a Schoenberg
transform metric (cf. Chap. 4).

1.2 Main Distance-Related Notions

• Metric ball
Given a metric space (X,d), the metric ball (or closed metric ball) with center
x0 ∈X and radius r > 0 is defined by B(x0, r)= {x ∈X : d(x0, x)≤ r}, and the
open metric ball with center x0 ∈ X and radius r > 0 is defined by B(x0, r) =
{x ∈X : d(x0, x) < r}.
The metric sphere with center x0 ∈X and radius r > 0 is defined by S(x0, r)=
{x ∈X : d(x0, x)= r}.
For the norm metric on an n-dimensional normed vector space (V ,‖.‖), the
metric ball B

n = {x ∈ V : ‖x‖ ≤ 1} is called the unit ball, and the set Sn−1 =
{x ∈ V : ‖x‖ = 1} is called the unit sphere. In a two-dimensional vector space, a
metric ball (closed or open) is called a metric disk (closed or open, respectively).

• Metric hull
Given a metric space (X,d), let M be a bounded subset of X.
The metric hull H(M) of M is the intersection of all metric balls containing M .
The set of surface points S(M) of M is the set of all x ∈H(M) such that x lies
on the sphere of one of the metric balls containing M .

• Distance-invariant metric space
A metric space (X,d) is distance-invariant if all metric balls B(x0, r) = {x ∈
X : d(x0, x)≤ r} of the same radius have the same number of elements.
Then the growth rate of a metric space (X,d) is the function f (n)= |B(x,n)|.
(X,d) is a metric space of polynomial growth if there are some positive con-
stants k,C such that f (n)≤ Cnk for all n≥ 0. Cf. graph of polynomial growth,
including the group case, in Chap. 15.
For a metrically discrete metric space (X,d) (i.e., with a =
infx,y∈X,x �=y d(x, y) > 0), its growth rate was defined also (Gordon, Linial and
Rabinovich, 1998) by

max
x∈X,r≥2

log |B(x, ar)|
log r

.
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• Ahlfors q-regular metric space
A metric space (X,d) endowed with a Borel measure μ is called Ahlfors
q-regular if there exists a constant C ≥ 1 such that for every ball in (X,d) with
radius r < diam(X,d) it holds

C−1rq ≤ μ
(
B(x0, r)

)≤ CrQ.

If such an (X,d) is locally compact, then the Hausdorff q-measure can be taken
as μ.

• Closed subset of metric space
Given a subset M of a metric space (X,d), a point x ∈ X is called a limit point
of M (or accumulation point) if every open metric ball B(x, r) = {y ∈ X :
d(x, y) < r} contains a point x′ ∈M with x′ �= x. The closure of M , denoted by
M , is the set M together with all its limit points. The subset M is called closed if
M =M .
A closed subset M is perfect if every point of M is a limit point of M .
Every point of M which is not a limit point of M , is called an isolated point. The
interior int(M) of M is the set of all its isolated points; the exterior ext(M) of M
is int(X\M) and the boundary ϑ(M) of M is X\(int(M)∪ ext(M)).
A subset M is called topologically discrete if M = int(M).

• Open subset of metric space
A subset M of a metric space (X,d) is called open if, given any point x ∈M ,
the open metric ball B(x, r)= {y ∈X : d(x, y) < r} is contained in M for some
positive number r . The family of open subsets of a metric space forms a natural
topology on it.
An open subset of a metric space is called clopen if it is closed. An open subset
of a metric space is called a domain if it is connected.
A door space is a metric (in general, topological) space in which every subset is
either open or closed.

• Connected metric space
A metric space (X,d) is called connected if it cannot be partitioned into two
nonempty open sets. Cf. connected space in Chap. 2.
The maximal connected subspaces of a metric space are called its connected com-
ponents. A totally disconnected metric space is a space in which all connected
subsets are ∅ and one-point sets.
A path-connected metric space is a connected metric space such that any two
its points can be joined by an arc (cf. metric curve).

• Cantor connected metric space
A metric space (X,d) is called Cantor connected (or pre-connected) if, for any
two its points x, y and any ε > 0, there exists an ε-chain joining them, i.e., a
sequence of points x = z0, z1, . . . , zn−1, zn = y such that d(zk, zk+1)≤ ε for ev-
ery 0≤ k ≤ n. A metric space (X,d) is Cantor connected if and only if it cannot
be partitioned into two remote parts A and B , i.e., such that inf{d(x, y) : x ∈ A,

y ∈ B}> 0.
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The maximal Cantor connected subspaces of a metric space are called its Cantor
connected components. A totally Cantor disconnected metric is the metric of a
metric space in which all Cantor connected components are one-point sets.

• Indivisible metric space
A metric space (X,d) is called indivisible if it cannot be partitioned into two
parts, neither of which contains an isometric copy of (X,d). Any indivisible met-
ric space with |X| ≥ 2 is infinite, bounded and totally Cantor disconnected (Del-
homme, Laflamme, Pouzet and Sauer, 2007).
A metric space (X,d) is called an oscillation stable metric space (Nguyen Van
Thé, 2006) if, given any ε > 0 and any partition of X into finitely many pieces,
the ε-neighborhood of one of the pieces includes an isometric copy of (X,d).

• Metric topology
A metric topology is a topology on X induced by a metric d on X; cf. equivalent
metrics.
More exactly, given a metric space (X,d), define the open set in X as an arbi-
trary union of (finitely or infinitely many) open metric balls B(x, r) = {y ∈ X :
d(x, y) < r}, x ∈X, r ∈R, r > 0. A closed set is defined now as the complement
of an open set. The metric topology on (X,d) is defined as the set of all open
sets of X. A topological space which can arise in this way from a metric space is
called a metrizable space (cf. Chap. 2).
Metrization theorems are theorems which give sufficient conditions for a topo-
logical space to be metrizable.
On the other hand, the adjective metric in several important mathematical terms
indicates connection to a measure, rather than distance, for example, metric Num-
ber Theory, metric Theory of Functions, metric transitivity.

• Equivalent metrics
Two metrics d1 and d2 on a set X are called equivalent if they define the same
topology on X, i.e., if, for every point x0 ∈X, every open metric ball with center
at x0 defined with respect to d1, contains an open metric ball with the same center
but defined with respect to d2, and conversely.
Two metrics d1 and d2 are equivalent if and only if, for every ε > 0 and every
x ∈X, there exists δ > 0 such that d1(x, y) ≤ δ implies d2(x, y) ≤ ε and, con-
versely, d2(x, y)≤ δ implies d1(x, y)≤ ε.
All metrics on a finite set are equivalent; they generate the discrete topology.

• Metric betweenness
The metric betweenness of a metric space (X,d) is (Menger, 1928) the set of all
ordered triples (x, y, z) such that x, y, z are (not necessarily distinct) points of X

for which the triangle equality d(x, y)+ d(y, z)= d(x, z) holds.
• Closed metric interval

Given two different points x, y ∈ X of a metric space (X,d), the closed metric
interval between them is the set

I (x, y)= {z ∈X : d(x, y)= d(x, z)+ d(z, y)
}
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of the points z, for which the triangle equality (or metric betweenness (x, z, y))
holds. Cf. examples in Chap. 5 (inner product space) and Chap. 15 (graph-
geodetic metric).

• Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space (X,d) is a
graph with the vertex-set X and xy being an edge if I (x, y)= {x, y}, i.e., there is
no third point z ∈X, for which d(x, y)= d(x, z)+ d(z, y).

• Distance monotone metric space
A metric space (X,d) is called distance monotone if any interval I (x, x′) is
closed, i.e., for any y ∈ X\I (x, x′), there exists x′′ ∈ I (x, x′) with d(y, x′′) >

d(x, x′).
• Metric triangle

Three distinct points x, y, z ∈X of a metric space (X,d) form a metric triangle
if the closed metric intervals I (x, y), I (y, z) and I (z, x) intersect only in the
common endpoints.

• Metric space having collinearity
A metric space (X,d) has collinearity if for any ε > 0 each of its infinite subsets
contains distinct ε-collinear (i.e., with d(x, y) + d(y, z) − d(x, z) ≤ ε) points
x, y, z.

• Modular metric space
A metric space (X,d) is called modular if, for any three different points x, y, z ∈
X, there exists a point u ∈ I (x, y)∩I (y, z)∩I (z, x). This should not be confused
with modular distance in Chap. 10 and modulus metric in Chap. 6.

• Median metric space
A metric space (X,d) is called a median metric space if, for any three points
x, y, z ∈X, there exists a unique point u ∈ I (x, y)∩ I (y, z)∩ I (z, x).
Any median metric space is an L1-metric; cf. Lp-metric in Chap. 5 and median
graph in Chap. 15.
A metric space (X,d) is called an antimedian metric space if, for any three
points x, y, z ∈ X, there exists a unique point u ∈ X maximizing d(x,u) +
d(y,u)+ d(z,u).

• Metric quadrangle
Four different points x, y, z,u ∈ X of a metric space (X,d) form a metric
quadrangle if x, z ∈ I (y,u) and y,u ∈ I (x, z); then d(x, y) = d(z,u) and
d(x,u)= d(y, z).
A metric space (X,d) is called weakly spherical if, for any three different points
x, y, z ∈X with y ∈ I (x, z), there exists u ∈X such that x, y, z,u form a metric
quadrangle.

• Metric curve
A metric curve (or, simply, curve) γ in a metric space (X,d) is a continuous
mapping γ : I →X from an interval I of R into X. A curve is called an arc (or
path, simple curve) if it is injective. A curve γ : [a, b] → X is called a Jordan
curve (or simple closed curve) if it does not cross itself, and γ (a)= γ (b).
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The length of a curve γ : [a, b]→X is the number l(γ ) defined by

l(γ )= sup

{ ∑

1≤i≤n

d
(
γ (ti), γ (ti−1)

) : n ∈N, a = t0 < t1 < · · ·< tn = b

}

.

A rectifiable curve is a curve with a finite length. A metric space (X,d), where
every two points can be joined by a rectifiable curve, is called a quasi-convex
metric space (or, specifically, C-quasi-convex metric space) if there exists a
constant C ≥ 1 such that every pair x, y ∈X can be joined by a rectifiable curve
of length at most Cd(x, y). If C = 1, then this length is equal to d(x, y), i.e.,
(X,d) is a geodesic metric space (cf. Chap. 6).
In a quasi-convex metric space (X,d), the infimum of the lengths of all rectifiable
curves, connecting x, y ∈X is called the internal metric.
The metric d on X is called the intrinsic metric (and then (X,d) is called a
length space) if it coincides with the internal metric of (X,d).
If, moreover, any pair x, y of points can be joined by a curve of length d(x, y),
the metric d is called strictly intrinsic, and the length space (X,d) is a geodesic
metric space. Hopf and Rinow, 1931, showed that any complete locally compact
length space is geodesic and proper. The punctured plane (R2 \ {0},‖x − y‖2)

is locally compact and path-connected but not geodesic: the distance between
(−1,0) and (1,0) is 2 but there is no geodesic realizing this distance.
The metric derivative of a metric curve γ : [a, b]→X at a limit point t of [a, b]
is, if it exists,

lim
s→0

d(γ (t + s), γ (t))

|s| .

It is the rate of change, with respect to t , of the length of the curve at almost every
point, i.e., a generalization of the notion of speed to metric spaces.

• Geodesic
Given a metric space (X,d), a geodesic is a locally shortest metric curve, i.e., it
is a locally isometric embedding of R into X; cf. Chap. 6.
A subset S of X is called a geodesic segment (or metric segment, shortest path,
minimizing geodesic) between two distinct points x and y in X, if there exists a
segment (closed interval) [a, b] on the real line R and an isometric embedding
γ : [a, b]→X, such that γ [a, b] = S, γ (a)= x and γ (b)= y.
A metric straight line is a geodesic which is minimal between any two of its
points; it is an isometric embedding of the whole of R into X. A metric ray and
metric great circle are isometric embeddings of, respectively, the half-line R≥0
and a circle S1(0, r) into X.
A geodesic metric space (cf. Chap. 6) is a metric space in which any two points
are joined by a geodesic segment. If, moreover, the geodesic is unique, the space
is called totally geodesic (or uniquely geodesic).
A geodesic metric space (X,d) is called geodesically complete if every geodesic
is a subarc of a metric straight line. If (X,d) is a complete metric space, then
it is geodesically complete. The punctured plane (R2 \ {0},‖x − y‖2) is not
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geodesically complete: any geodesic going to 0 is not a subarc of a metric straight
line.

• Length spectrum
Given a metric space (X,d), a closed geodesic is a map γ : S1 → X which is
locally minimizing around every point of S1.
If (X,d) is a compact length space, its length spectrum is the collection of
lengths of closed geodesics. Each length is counted with multiplicity equal to the
number of distinct free homotopy classes that contain a closed geodesic of such
length. The minimal length spectrum is the set of lengths of closed geodesics
which are the shortest in their free homotopy class. Cf. the distance list.

• Systole of metric space
For any compact metric space (X,d) its systole sys(X,d) is the length of the
shortest noncontractible loop in X; such a loop is necessarily a closed geodesic.
So, sys(X,d)= 0 exactly if (X,d) is simply connected. Cf. connected space in
Chap. 2.
If (X,d) is a graph with path metric, then its systole is referred to as the girth.
If (X,d) is a closed surface, then its systolic ratio is defined to be the ratio
sys2(X,d)
area(X,d)

.
• Shankar–Sormani radii

Given a geodesic metric space (X,d), Shankar and Sormani, 2009, defined its
unique injectivity radius Uirad(X) as the supremum over all r ≥ 0 such that any
two points at distance at most r are joined by a unique geodesic, and its minimal
radius Mrad(X) as infp∈X d(p,MinCut(p)).
Here the minimal cut locus of p MinCut(p) is the set of points q ∈X for which
there is a geodesic γ running from p to q such that γ extends past q but is not
minimizing from p to any point past q . If (X,d) is a Riemannian space, then the
distance function from p is a smooth function except at p itself and the cut locus.
Cf. medial axis and skeleton in Chap. 21.
It holds Uirad(X) ≤ Mrad(X) with equality if (X,d) is a Riemannian space in
which case it is the injectivity radius. It holds Uirad(X)=∞ for a flat disk but
Mrad(X) <∞ if (X,d) is compact and at least one geodesic is extendible.

• Geodesic convexity
Given a geodesic metric space (X,d) and a subset M ⊂ X, the set M is called
geodesically convex (or convex) if, for any two points of M , there exists a
geodesic segment connecting them which lies entirely in M ; the space is strongly
convex if such a segment is unique and no other geodesic connecting those points
lies entirely in M . The space is called locally convex if such a segment exists for
any two sufficiently close points in M .
For a given point x ∈M , the radius of convexity is rx = sup{r ≥ 0 : B(x, r) ⊂
M}, where the metric ball B(x, r) is convex. The point x is called the center
of mass of points y1, . . . , yk ∈M if it minimizes the function

∑
i d(x, yi)

2 (cf.
Frechét mean); such point is unique if d(yi, yj ) < rx for all 1≤ i < j ≤ k.
The injectivity radius of the set M is the supremum over all r ≥ 0 such that any
two points in M at distance ≤ r are joined by unique geodesic segment which
lies entirely in M . The Hawaiian Earring is a compact complete metric space
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consisting of a collection of circles of radius 1
i

for each i ∈ N all joined at a
common point; its injectivity radius is 0. It is path-connected but not simply
connected.
The set M ⊂ X is called a totally convex metric subspace of (X,d) if, for any
two points of M , any geodesic segment connecting them lies entirely in M .

• Busemann convexity
A geodesic metric space (X,d) is called Busemann convex (or globally non-
positively Busemann curved) if, for any three points x, y, z ∈ X and mid-
points m(x, z) and m(y, z) (i.e., d(x,m(x, z)) = d(m(x, z), z) = 1

2d(x, z) and
d(y,m(y, z))= d(m(y, z), z)= 1

2d(y, z)), there holds

d
(
m(x, z),m(y, z)

)≤ 1

2
d(x, y).

Equivalently, the distance D(c1, c2) between any geodesic segments c1 = [a1, b1]
and c2 = [a2, b2] is a convex function; cf. metric between intervals in Chap. 10.
(A real-valued function f defined on an interval is called convex if f (λx +
(1− λ)y)≤ λf (x)+ (1− λ)f (y) for any x, y and λ ∈ (0,1).)
The flat Euclidean strip {(x, y) ∈R

2 : 0 < x < 1} is Gromov hyperbolic but not
Busemann convex. In a complete Busemann convex metric space any two points
are joined by a unique geodesic segment.
A metric space is CAT(0) (cf. Chap. 6) if and only if it is Busemann convex and
Ptolemaic (Foertsch, Lytchak and Schroeder, 2007).
A geodesic metric space (X,d) is Busemann locally convex (Busemann, 1948)
if the above inequality holds locally. Any geodesic locally CAT(0) metric space
(cf. Chap. 6) is Busemann locally convex, and any geodesic CAT(0) metric space
is Busemann convex but not vice versa.

• Menger convexity
A metric space (X,d) is called Menger convex if, for any different points x, y ∈
X, there exists a third point z ∈ X for which d(x, y) = d(x, z) + d(z, y), i.e.,
|I (x, y)| > 2 holds for the closed metric interval I (x, y) = {z ∈ X : (x, y) =
d(x, z)+ d(z, y)}. It is called strictly Menger convex if such a z is unique for
all x, y ∈X.
Geodesic convexity implies Menger convexity. The converse holds for complete
metric spaces.
A subset M ⊂X is called (Menger, 1928) a d-convex set (or interval-convex set)
if I (x, y)⊂M for any different points x, y ∈M . A function f :M →R defined
on a d-convex set M ⊂X is a d-convex function if for any z ∈ I (x, y)⊂M

f (z)≤ d(y, z)

d(x, y)
f (x)+ d(x, z)

d(x, y)
f (y).

A subset M ⊂X is a gated set if for every x ∈X there exists a unique x′ ∈M , the
gate, such that d(x, y)= d(x, x′)+d(x′, y) for y ∈M . Any such set is d-convex.


