Michel Marie Deza
Elena Deza

Encyclopedia
 of Distances

Encyclopedia of Distances

Michel Marie Deza • Elena Deza

Encyclopedia of Distances

Second Edition

Springer

Michel Marie Deza
École Normale Supérieure
Paris, France

Elena Deza
Moscow State Pedagogical University
Moscow, Russia

ISBN 978-3-642-30957-1
ISBN 978-3-642-30958-8 (eBook)
DOI 10.1007/978-3-642-30958-8
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012951148
Mathematics Subject Classification (2010): 46-XX, 51-XX, 12-XX, 15-XX, 60-XX, 52-XX, $92-\mathrm{XX}$, 70-XX, 86-XX, 91-XX, 94-XX
© Springer-Verlag Berlin Heidelberg 2009, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

In 1906, Maurice FRÉCHET submitted his outstanding thesis Sur quelques points du calcul functionnel introducing (within a systematic study of functional operations) the notion of metric space (E-espace, E from écart).
Also, in 1914, Felix HAUSDORFF published his famous Grundzüge der Mengenlehre where the theory of topological and metric spaces (metrische Räume) was created.
Let this Encyclopedia be our homage to the memory of these great mathematicians and their lives of dignity through the hard times of the first half of the XX century.

Maurice FRÉCHET (1878-1973) coined in 1906 the concept of écart (semimetric)

Felix HAUSDORFF (1868-1942) coined in 1914 the term metric space

Preface

The preparation of the second edition of Encyclopedia of Distances has presented a welcome opportunity to improve the first edition published in 2009 by updating and streamlining many sections, and by adding new items (especially in Chaps. 1, 15, $18,23,25,27-29$), increasing the book's size by about 70 pages. This new edition preserves, except for Chaps. 18, 23, 25 and 28, the structure of the first edition.

The first large conference with a scope matching that of this Encyclopedia is MDA 2012, the International Conference "Mathematics of Distances and Applications", held in July 2012 in Varna, Bulgaria (http://foibg.com/conf/ITA2012/ 2012mda.htm).

We are grateful to Jin Akiyama, Frederic Barbaresco, Pavel Chebotarev, Mathieu Dutour Sikirić, Aleksandar Jurisić, Boris Kukushkin, Victor Matrosov, Tatiana Nebesnaya, Arkadii Nedel, Michel Petitjean and Egon Schulte for their helpful advice, and to Springer-Verlag for its support in making this work a success.

Paris, France
Michel Marie Deza
Elena Deza
Moscow, Russia
July 2012

Preface to the First Edition

Encyclopedia of Distances is the result of re-writing and extending of our Dictionary of Distances published in 2006 (and put online http://www.sciencedirect.com/ science/book/9780444520876) by Elsevier. About a third of the definitions are new, and majority of the remaining ones are upgraded.

We were motivated by the growing intensity of research on metric spaces and, especially, in distance design for applications. Even if we do not address the practical questions arising during the selection of a "good" distance function, just a sheer listing of the main available distances should be useful for the distance design community.

This Encyclopedia is the first one treating fully the general notion of distance. This broad scope is useful per se, but it also limited our options for referencing. We give an original reference for many definitions but only when it was not too difficult to do so. On the other hand, citing somebody who well developed the notion but was not the original author may induce problems. However, with our data (usually, author name(s) and year), a reader can easily search sources using the Internet.

We found many cases when authors developed very similar distances in different contexts and, clearly, were unaware of it. Such connections are indicated by a simple "cf." in both definitions, without going into priority issues explicitly.

Concerning the style, we tried to make it a mixture of resource and coffee-table book, with maximal independence of its parts and many cross-references.

Preface to Dictionary of Distances, 2006

The concept of distance is a basic one in the whole human experience. In everyday life it usually means some degree of closeness of two physical objects or ideas, i.e., length, time interval, gap, rank difference, coolness or remoteness, while the term metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathematical meaning of those terms which is an abstraction of measurement. The mathematical notions of distance metric (i.e., a function $d(x, y)$ from $X \times X$ to the set of real numbers satisfying to $d(x, y) \geq 0$ with equality only for $x=y, d(x, y)=d(y, x)$, and $d(x, y) \leq d(x, z)+d(z, y))$ and of metric space (X, d) were originated a century ago by M. Fréchet (1906) and F. Hausdorff (1914) as a special case of an infinite topological space. The triangle inequality above appears already in Euclid. The infinite metric spaces are usually seen as a generalization of the metric $|x-y|$ on the real numbers. Their main classes are the measurable spaces (add measure) and Banach spaces (add norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces in Geometry) and L.M. Blumenthal (1953), an explosion of interest in both finite and infinite metric spaces occurred. Another trend: many mathematical theories, in the process of their generalization, settled on the level of metric space. It is an ongoing process, for example, for Riemannian geometry, Real Analysis, Approximation Theory.

Distance metrics and distances have become now an essential tool in many areas of Mathematics and its applications including Geometry, Probability, Statistics, Coding/Graph Theory, Clustering, Data Analysis, Pattern Recognition, Networks, Engineering, Computer Graphics/Vision, Astronomy, Cosmology, Molecular Biology, and many other areas of science. Devising the most suitable distance metrics and similarities, in order to quantify the proximity between objects, has become a standard task for many researchers. Especially intense ongoing search for such distances occurs, for example, in Computational Biology, Image Analysis, Speech Recognition, and Information Retrieval.

Often the same distance metric appears independently in several different areas; for example, the edit distance between words, the evolutionary distance in Biol-
ogy, the Levenshtein distance in Coding Theory, and the Hamming+Gap or shuffleHamming distance.

This body of knowledge has become too big and disparate to operate within. The numbers of worldwide web entries offered by Google on the topics "distance", "metric space" and "distance metric" is about 216, 3 and 9 million, respectively, not to mention all the printed information outside the Web, or the vast "invisible Web" of searchable databases. About 15,000 books on Amazon.com contains "distance" in their titles. However, this huge information on distances is too scattered: the works evaluating distance from some list usually treat very specific areas and are hardly accessible for nonexperts.

Therefore many researchers, including us, keep and cherish a collection of distances for use in their areas of science. In view of the growing general need for an accessible interdisciplinary source for a vast multitude of researchers, we have expanded our private collection into this Dictionary. Some additional material was reworked from various encyclopedias, especially Encyclopedia of Mathematics [EM98], MathWorld [Weis99], PlanetMath [PM], and Wikipedia [WFE]. However, the majority of distances are extracted directly from specialist literature.

Besides distances themselves, we collected here many distance-related notions (especially in Chap. 1) and paradigms, enabling people from applications to get those (arcane for nonspecialists) research tools, in ready-to-use fashion. This and the appearance of some distances in different contexts can be a source of new research.

In the time when over-specialization and terminology fences isolate researchers, this Dictionary tries to be "centripetal" and "ecumenical", providing some access and altitude of vision but without taking the route of scientific vulgarization. This attempted balance defined the structure and style of the Dictionary.

This reference book is a specialized encyclopedic dictionary organized by subject area. It is divided into 29 chapters grouped into 7 parts of about the same length. The titles of the parts are purposely approximative: they just allow a reader to figure out her/his area of interest and competence. For example, Parts II, III and IV, V require some culture in, respectively, pure and applied Mathematics. Part VII can be read by a layman.

The chapters are thematic lists, by areas of Mathematics or applications, which can be read independently. When necessary, a chapter or a section starts with a short introduction: a field trip with the main concepts. Besides these introductions, the main properties and uses of distances are given, within items, only exceptionally. We also tried, when it was easy, to trace distances to their originator(s), but the proposed extensive bibliography has a less general ambition: just to provide convenient sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between them. All item titles and (with majuscules only for proper nouns) selected key terms can be traced in the large Subject Index; they are boldfaced unless the meaning is clear from the context. So, the definitions are easy to locate, by subject, in chapters and/or, by alphabetic order, in the Subject Index.

The introductions and definitions are reader-friendly and maximally independent each from another; still they are interconnected, in the 3-dimensional HTML manner, by hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this "Who is Who" of distances. Examples of such sundry terms are: ubiquitous Euclidean distance ("as-the-crow-flies"), flowershop metric (shortest way between two points, visiting a "flower-shop" point first), knight-move metric on a chessboard, Gordian distance of knots, Earth Mover distance, biotope distance, Procrustes distance, lift metric, Post Office metric, Internet hop metric, WWW hyperlink quasi-metric, Moscow metric, dog-keeper distance.

Besides abstract distances, the distances having physical meaning appear also (especially in Part VI); they range from $1.6 \times 10^{-35} \mathrm{~m}$ (Planck length) to $7.4 \times$ $10^{26} \mathrm{~m}$ (the estimated size of the observable Universe, about 46×10^{60} Planck lengths).

The number of distance metrics is infinite, and therefore our Dictionary cannot enumerate all of them. But we were inspired by several successful thematic dictionaries on other infinite lists; for example, on Numbers, Integer Sequences, Inequalities, Random Processes, and by atlases of Functions, Groups, Fullerenes, etc. On the other hand, the large scope often forced us to switch to the mode of laconic tutorial.

The target audience consists of all researchers working on some measuring schemes and, to a certain degree, students and a part of the general public interested in science.

We tried to address, even if incompletely, all scientific uses of the notion of distance. But some distances did not made it to this Dictionary due to space limitations (being too specific and/or complex) or our oversight. In general, the size/interdisciplinarity cut-off, i.e., decision where to stop, was our main headache. We would be grateful to the readers who will send us their favorite distances missed here.

Contents

Part I Mathematics of Distances
1 General Definitions 3
1.1 Basic Definitions 3
1.2 Main Distance-Related Notions 11
1.3 Metric Numerical Invariants 21
1.4 Metric Mappings 33
1.5 General Distances 43
2 Topological Spaces 59
3 Generalizations of Metric Spaces 67
$3.1 \quad m$-Metrics 67
3.2 Indefinite Metrics 68
3.3 Topological Generalizations 69
3.4 Beyond Numbers 72
4 Metric Transforms 79
4.1 Metrics on the Same Set 79
4.2 Metrics on Set Extensions 82
4.3 Metrics on Other Sets 85
5 Metrics on Normed Structures 89
Part II Geometry and Distances
6 Distances in Geometry 103
6.1 Geodesic Geometry 103
6.2 Projective Geometry 109
6.3 Affine Geometry 114
6.4 Non-Euclidean Geometry 116
7 Riemannian and Hermitian Metrics 125
7.1 Riemannian Metrics and Generalizations 126
7.2 Riemannian Metrics in Information Theory 141
7.3 Hermitian Metrics and Generalizations 144
8 Distances on Surfaces and Knots 157
8.1 General Surface Metrics 157
8.2 Intrinsic Metrics on Surfaces 162
8.3 Distances on Knots 166
9 Distances on Convex Bodies, Cones, and Simplicial Complexes 169
9.1 Distances on Convex Bodies 169
9.2 Distances on Cones 174
9.3 Distances on Simplicial Complexes 177
Part III Distances in Classical Mathematics
10 Distances in Algebra 183
10.1 Group Metrics 183
10.2 Metrics on Binary Relations 191
10.3 Metrics on Lattices 193
11 Distances on Strings and Permutations 197
11.1 Distances on General Strings 198
11.2 Distances on Permutations 206
12 Distances on Numbers, Polynomials, and Matrices 209
12.1 Metrics on Numbers 209
12.2 Metrics on Polynomials 213
12.3 Metrics on Matrices 215
13 Distances in Functional Analysis 223
13.1 Metrics on Function Spaces 223
13.2 Metrics on Linear Operators 229
14 Distances in Probability Theory 233
14.1 Distances on Random Variables 234
14.2 Distances on Distribution Laws 235
Part IV Distances in Applied Mathematics
15 Distances in Graph Theory 249
15.1 Distances on the Vertices of a Graph 250
15.2 Distance-Defined Graphs 257
15.3 Distances on Graphs 267
15.4 Distances on Trees 274
16 Distances in Coding Theory 279
16.1 Minimum Distance and Relatives 280
16.2 Main Coding Distances 283
17 Distances and Similarities in Data Analysis 291
17.1 Similarities and Distances for Numerical Data 292
17.2 Relatives of Euclidean Distance 295
17.3 Similarities and Distances for Binary Data 297
17.4 Correlation Similarities and Distances 301
18 Distances in Systems and Mathematical Engineering 307
18.1 Distances in State Transition and Dynamical Systems 307
18.2 Distances in Control Theory 312
18.3 Motion Planning Distances 314
18.4 MOEA Distances 319
Part V Computer-Related Distances
19 Distances on Real and Digital Planes 323
19.1 Metrics on Real Plane 323
19.2 Digital Metrics 332
20 Voronoi Diagram Distances 339
20.1 Classical Voronoi Generation Distances 340
20.2 Plane Voronoi Generation Distances 342
20.3 Other Voronoi Generation Distances 345
21 Image and Audio Distances 349
21.1 Image Distances 349
21.2 Audio Distances 362
22 Distances in Networks 371
22.1 Scale-Free Networks 371
22.2 Network-Based Semantic Distances 375
22.3 Distances in Internet and Web 378
Part VI Distances in Natural Sciences
23 Distances in Biology 387
23.1 Genetic Distances 390
23.2 Distances for DNA/RNA and Protein Data 401
23.3 Distances in Ecology, Biogeography, Ethology 411
23.4 Other Biological Distances 423
24 Distances in Physics and Chemistry 435
24.1 Distances in Physics 435
24.2 Distances in Chemistry and Crystallography 457
25 Distances in Earth Science and Astronomy 465
25.1 Distances in Geography 465
25.2 Distances in Geophysics 474
25.3 Distances in Astronomy 483
26 Distances in Cosmology and Theory of Relativity 497
26.1 Distances in Cosmology 497
26.2 Distances in Theory of Relativity 506
Part VII Real-World Distances
27 Length Measures and Scales 529
27.1 Length Scales 529
27.2 Orders of Magnitude for Length 539
28 Distances in Applied Social Sciences 545
28.1 Distances in Perception and Psychology 545
28.2 Distances in Economics and Human Geography 554
28.3 Distances in Sociology and Language 565
28.4 Distances in Philosophy, Religion and Art 574
29 Other Distances 587
29.1 Distances in Medicine, Anthropometry and Sport 587
29.2 Equipment distances 600
29.3 Miscellany 611
References 619
Index 627

Part I
 Mathematics of Distances

Chapter 1
 General Definitions

1.1 Basic Definitions

- Distance

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a distance (or dissimilarity) on X if, for all $x, y \in X$, there holds:

1. $d(x, y) \geq 0$ (nonnegativity);
2. $d(x, y)=d(y, x)$ (symmetry);
3. $d(x, x)=0$ (reflexivity).

In Topology, the distance d with $d(x, y)=0$ implying $x=y$ is called a symmetric.
For any distance d, the function D_{1} defined for $x \neq y$ by $D_{1}(x, y)=d(x, y)+c$, where $c=\max _{x, y, z \in X}(d(x, y)-d(x, z)-d(y, z))$, and $D(x, x)=0$, is a metric. Also, $D_{2}(x, y)=d(x, y)^{c}$ is a metric for sufficiently small $c \geq 0$.
The function $D_{3}(x, y)=\inf \sum_{i} d\left(z_{i}, z_{i+1}\right)$, where the infimum is taken over all sequences $x=z_{0}, \ldots, z_{n+1}=y$, is the path semimetric of the complete weighted graph on X, where, for any $x, y \in X$, the weight of edge $x y$ is $d(x, y)$.

- Distance space

A distance space (X, d) is a set X equipped with a distance d.

- Similarity

Let X be a set. A function $s: X \times X \rightarrow \mathbb{R}$ is called a similarity on X if s is nonnegative, symmetric, and if $s(x, y) \leq s(x, x)$ holds for all $x, y \in X$, with equality if and only if $x=y$.
The main transforms used to obtain a distance (dissimilarity) d from a similarity s bounded by 1 from above are: $d=1-s, d=\frac{1-s}{s}, d=\sqrt{1-s}, d=\sqrt{2\left(1-s^{2}\right)}$, $d=\arccos s, d=-\ln s$ (cf. Chap. 4).

- Semimetric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a semimetric (or écart) on X if d is nonnegative, symmetric, if $d(x, x)=0$ for all $x \in X$, and if

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

for all $x, y, z \in X$ (triangle inequality or, sometimes, triangular inequality).
In Topology, it is called a pseudo-metric (or, rarely, semidistance), while the term semimetric is sometimes used for a symmetric (a distance $d(x, y)$ with $d(x, y)=0$ only if $x=y$); cf. symmetrizable space in Chap. 2 .
For a semimetric d, the triangle inequality is equivalent, for each fixed $n \geq 4$, to the following n-gon inequality

$$
d(x, y) \leq d\left(x, z_{1}\right)+d\left(z_{1}, z_{2}\right)+\cdots+d\left(z_{n-2}, y\right),
$$

for all $x, y, z_{1}, \ldots, z_{n-2} \in X$.
For a semimetric d on X, define an equivalence relation, called metric identification, by $x \sim y$ if $d(x, y)=0$; equivalent points are equidistant from all other points. Let $[x]$ denote the equivalence class containing x; then $D([x],[y])=$ $d(x, y)$ is a metric on the set $\{[x]: x \in X\}$ of equivalence classes.

- Metric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a metric on X if, for all $x, y, z \in X$, there holds:

1. $d(x, y) \geq 0$ (nonnegativity);
2. $d(x, y)=0$ if and only if $x=y$ (identity of indiscernibles);
3. $d(x, y)=d(y, x)$ (symmetry);
4. $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).

In fact, 1 follows from 3 and 4.

- Metric space

A metric space (X, d) is a set X equipped with a metric d.
A metric frame (or metric scheme) is a metric space with an integer-valued metric.
A pointed metric space (or rooted metric space) $\left(X, d, x_{0}\right)$ is a metric space (X, d) with a selected base point $x_{0} \in X$.
A multimetric space is the union of some metric spaces; cf. bimetric theory of gravity in Chap. 24.

- Extended metric

An extended metric is a generalization of the notion of metric: the value ∞ is allowed for a metric d.

- Quasi-distance

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-distance on X if d is nonnegative, and $d(x, x)=0$ holds for all $x \in X$.
In Topology, it is also called a premetric or prametric.
If a quasi-distance d satisfies the strong triangle inequality $d(x, y) \leq d(x, z)+$ $d(y, z)$, then (Lindenbaum, 1926) it is symmetric and so, a semimetric.

- Quasi-semimetric

A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-semimetric (or hemimetric, ostensible metric) on the set X if $d(x, x)=0, d(x, y) \geq 0$ for all $x, y \in X$ and

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

for all $x, y, z \in X$ (oriented triangle inequality).
The set X can be partially ordered by the specialization order: $x \preceq y$ if and only if $d(x, y)=0$.
A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e., for all $x, y \in X$ the equality $d(x, y)=0$ implies $d(y, x)=0$.
An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness, i.e., for all $x, y \in X$ the equality $d(x, y)=d(y, x)=0$ implies $x=y$.

A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed symmetry, i.e., for all $x, y, z \in X$

$$
d(x, y)+d(y, z)+d(z, x)=d(x, z)+d(z, y)+d(y, x),
$$

holds or, equivalently, there exists a weight function $w(x) \in \mathbb{R}$ on X with $d(x, y)-d(y, x)=w(y)-w(x)$ for all $x, y \in X$ (i.e., $d(x, y)+\frac{1}{2}(w(x)-w(y))$ is a semimetric). If d is a weightable quasi-semimetric, then $d(x, y)+w(x)$ is a partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).

- Partial metric

Let X be a set. A nonnegative symmetric function $p: X \times X \rightarrow \mathbb{R}$ is called a partial metric [Matt92] if, for all $x, y, z \in X$, it holds:

1. $p(x, x) \leq p(x, y)$ (i.e., every self-distance $p(x, x)$ is small);
2. $x=y$ if $p(x, x)=p(x, y)=p(y, y)=0$ (T_{0} separation axiom);
3. $p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$ (sharp triangle inequality).

If the above separation axiom is dropped, the function p is called a partial semimetric. The nonnegative function p is a partial semimetric if and only if $p(x, y)-p(x, x)$ is a weightable quasi-semimetric with $w(x)=p(x, x)$.
If the above condition $p(x, x) \leq p(x, y)$ is also dropped, the function p is called (Heckmann, 1999) a weak partial semimetric. The nonnegative function p is a weak partial semimetric if and only if $2 p(x, y)-p(x, x)-p(y, y)$ is a semimetric.
Sometimes, the term partial metric is used when a metric $d(x, y)$ is defined only on a subset of the set of all pairs x, y of points.

- Protometric

A function $p: X \times X \rightarrow \mathbb{R}$ is called a protometric if, for all (equivalently, for all different) $x, y, z \in X$, the sharp triangle inequality holds:

$$
p(x, y) \leq p(x, z)+p(z, y)-p(z, z) .
$$

A strong protometric is a protometric p with $p(x, x)=0$ for all $x \in X$. Such a protometric is exactly a quasi-semimetric, but with the condition $p(x, y) \geq 0$ (for any $x, y \in X$) being relaxed to $p(x, y)+p(y, x) \geq 0$.
A partial semimetric is a symmetric protometric (i.e., $p(x, y)=p(y, x)$) with $p(x, y) \geq p(x, x) \geq 0$ for all $x, y \in X$. An example of a nonpositive symmetric protometric is given by $p(x, y)=-(x . y)_{x_{0}}=\frac{1}{2}\left(d(x, y)-d\left(x, x_{0}\right)-d\left(y, y_{0}\right)\right)$, where (X, d) is a metric space with a fixed base point $x_{0} \in X$; see Gromov product similarity $(x . y)_{x_{0}}$ and, in Chap. 4, Farris transform metric $C-(x . y)_{x_{0}}$.

A 0-protometric is a protometric p for which all sharp triangle inequalities (equivalently, all inequalities $p(x, y)+p(y, x) \geq p(x, x)+p(y, y)$ implied by them) hold as equalities. For any $u \in X$, denote by $A_{u}^{\prime}, A_{u}^{\prime \prime}$ the 0 -protometrics p with $p(x, y)=1_{x=u}, 1_{y=u}$, respectively. The protometrics on X form a flat convex cone in which the 0 -protometrics form the largest linear space. For finite $|X|$, a basis of this space is given by all but one $A_{u}^{\prime}, A_{u}^{\prime \prime}$ (since $\sum_{u} A_{u}^{\prime}=\sum_{u} A_{u}^{\prime \prime}$) and, for the flat subcone of all symmetric 0-protometrics on X, by all $A_{u}^{\prime}+A_{u}^{\prime \prime}$.
A weighted protometric on X is a protometric with a point-weight function $w: X \rightarrow \mathbb{R}$. The mappings $p(x, y)=\frac{1}{2}(d(x, y)+w(x)+w(y))$ and $d(x, y)=$ $2 p(x, y)-p(x, x)-p(y, y), w(x)=p(x, x)$ establish a bijection between the weighted strong protometrics (d, w) and the protometrics p on X, as well as between the weighted semimetrics and the symmetric protometrics. For example, a weighted semimetric (d, w) with $w(x)=-d\left(x, x_{0}\right)$ corresponds to a protometric $-(x . y)_{x_{0}}$. For finite $|X|$, the above mappings amount to the representation

$$
2 p=d+\sum_{u \in X} p(u, u)\left(A_{u}^{\prime}+A_{u}^{\prime \prime}\right)
$$

- Quasi-metric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called a quasi-metric (or asymmetric metric, directed metric) on X if $d(x, y) \geq 0$ holds for all $x, y \in X$ with equality if and only if $x=y$, and

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

for all $x, y, z \in X$ (oriented triangle inequality). A quasi-metric space (X, d) is a set X equipped with a quasi-metric d.
For any quasi-metric d, the functions $\max \{d(x, y), d(y, x)\}, \min \{d(x, y), d(y, x)\}$ and $\frac{1}{2}\left(d^{p}(x, y)+d^{p}(y, x)\right)^{\frac{1}{p}}$ with $p \geq 1$ (usually, $p=1$ is taken) are equivalent metrics.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all $x, y, z \in X$, satisfies the following strengthened version of the oriented triangle inequality:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

- Directed-metric

Let X be a set. A function $d: X \times X \rightarrow \mathbb{R}$ is called (Jegede, 2005) a directedmetric on X if, for all $x, y, z \in X$, it holds that $d(x, y)=-d(y, x)$ and

$$
|d(x, y)| \leq|d(x, z)|+|d(z, y)|
$$

Cf. displacement in Chap. 24 and rigid motion of metric space.

- Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a fixed $C \geq 0$ and for every pair of points $x, y \in X$, there exists a sequence
$x=x_{0}, x_{1}, \ldots, x_{t}=y$ for which $d\left(x_{i-1}, x_{i}\right) \leq C$ for $i=1, \ldots, t$, and

$$
d(x, y) \geq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{t-1}, x_{t}\right)-C
$$

i.e., the weakened triangle inequality $d(x, y) \leq \sum_{i=1}^{t} d\left(x_{i-1}, x_{i}\right)$ becomes an equality up to a bounded error.

- Near-metric

Let X be a set. A distance d on X is called a near-metric (or C-near-metric) if $d(x, y)>0$ for $x \neq y$ and the C-relaxed triangle inequality

$$
d(x, y) \leq C(d(x, z)+d(z, y))
$$

holds for all $x, y, z \in X$ and some constant $C \geq 1$.
A C-inframetric is a C-near-metric, while a C-near-metric is a $2 C$-inframetric.
Some recent papers use the term quasi-triangle inequality for the above inequality and so, quasi-metric for the notion of near-metric.
The power transform (cf. Chap. 4) $(d(x, y))^{\alpha}$ of any near-metric is a nearmetric for any $\alpha>0$. Also, any near-metric d admits a bi-Lipschitz mapping on $(D(x, y))^{\alpha}$ for some semimetric D on the same set and a positive number α. A near-metric d on X is called a Hölder near-metric if the inequality

$$
|d(x, y)-d(x, z)| \leq \beta d(y, z)^{\alpha}(d(x, y)+d(x, z))^{1-\alpha}
$$

holds for some $\beta>0,0<\alpha \leq 1$ and all points $x, y, z \in X$. Cf. Hölder mapping.

- Weak ultrametric

A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance on X such that $d(x, y)>0$ for $x \neq y$ and the C-inframetric inequality

$$
d(x, y) \leq C \max \{d(x, z), d(z, y)\}
$$

holds for all $x, y, z \in X$ and some constant $C \geq 1$.
The term pseudo-distance is also used, in some applications, for any of a pseudometric, a quasi-distance, a near-metric, a distance which can be infinite, a distance with an error, etc. Another unsettled term is weak metric: it is used for both a near-metric and a quasi-semimetric.

- Ultrametric

An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d on X which satisfies, for all $x, y, z \in X$, the following strengthened version of the triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

So, at least two of $d(x, y), d(z, y), d(x, z)$ are equal, and an ultrametric space is also called an isosceles space. An ultrametric on set V has at most $|V|$ different values.
A metric d is an ultrametric if and only if its power transform (see Chap. 4) d^{α} is a metric for any real positive number α. Any ultrametric satisfies the four-point
inequality. A metric d is an ultrametric if and only if it is a Farris transform metric (cf. Chap. 4) of a four-point inequality metric.

- Robinsonian distance

A distance d on X is called a Robinsonian distance (or monotone distance) if there exists a total order \preceq on X compatible with it, i.e., for $x, y, w, z \in X$,

$$
x \preceq y \preceq w \preceq z \quad \text { implies } \quad d(y, w) \leq d(x, z),
$$

or, equivalently, for $x, y, z \in X$,

$$
x \preceq y \preceq z \quad \text { implies } \quad d(x, y) \leq \max \{d(x, z), d(z, y)\} .
$$

Any ultrametric is a Robinsonian distance.

- Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it satisfies the following strengthened version of the triangle inequality called the four-point inequality (Buneman, 1974): for all $x, y, z, u \in X$

$$
d(x, y)+d(z, u) \leq \max \{d(x, z)+d(y, u), d(x, u)+d(y, z)\}
$$

holds. Equivalently, among the three sums $d(x, y)+d(z, u), d(x, z)+d(y, u)$, $d(x, u)+d(y, z)$ the two largest sums are equal.
A metric satisfies the four-point inequality if and only if it is a tree-like metric.
Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an L_{1}-metric. Cf. L_{p}-metric in Chap. 5.
A bush metric is a metric for which all four-point inequalities are equalities, i.e., $d(x, y)+d(u, z)=d(x, u)+d(y, z)$ holds for any $u, x, y, z \in X$.

- Relaxed four-point inequality metric

A metric d on X satisfies the relaxed four-point inequality if, for all $x, y, z, u \in$ X, among the three sums

$$
d(x, y)+d(z, u), d(x, z)+d(y, u), d(x, u)+d(y, z)
$$

at least two (not necessarily the two largest) are equal.
A metric satisfies the relaxed four-point inequality if and only if it is a relaxed tree-like metric.

- Ptolemaic metric

A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic inequality

$$
d(x, y) d(u, z) \leq d(x, u) d(y, z)+d(x, z) d(y, u)
$$

(shown by Ptolemy to hold in Euclidean space) for all $x, y, u, z \in X$.
A Ptolemaic space is a normed vector space $(V,\|\cdot\|)$ such that its norm metric $\|x-y\|$ is a Ptolemaic metric. A normed vector space is a Ptolemaic space if and only if it is an inner product space (cf. Chap. 5); so, a Minkowskian metric (cf. Chap. 6) is Euclidean if and only if it is Ptolemaic.

The involution space $\left(X \backslash z, d_{z}\right)$, where $d_{z}(x, y)=\frac{d(x, y)}{d(x, z) d(y, z)}$, is a metric space, for any $z \in X$, if and only if d is Ptolemaic [FoSc06].
For any metric d, the metric \sqrt{d} is Ptolemaic [FoSc06].

- δ-hyperbolic metric

Given a number $\delta \geq 0$, a metric d on a set X is called δ-hyperbolic if it satisfies the Gromov δ-hyperbolic inequality (another weakening of the four-point inequality): for all $x, y, z, u \in X$, it holds that

$$
d(x, y)+d(z, u) \leq 2 \delta+\max \{d(x, z)+d(y, u), d(x, u)+d(y, z)\}
$$

A metric space (X, d) is δ-hyperbolic if and only if for all $x_{0}, x, y, z \in X$ it holds that

$$
(x . y)_{x_{0}} \geq \min \left\{(x . z)_{x_{0}},(y . z)_{x_{0}}\right\}-\delta,
$$

where $(x . y)_{x_{0}}=\frac{1}{2}\left(d\left(x_{0}, x\right)+d\left(x_{0}, y\right)-d(x, y)\right)$ is the Gromov product of the points x and y of X with respect to the base point $x_{0} \in X$.
A metric space (X, d) is 0 -hyperbolic exactly when d satisfies the four-point inequality. Every bounded metric space of diameter D is D-hyperbolic. The n-dimensional hyperbolic space is $\ln 3$-hyperbolic.
Every δ-hyperbolic metric space is isometrically embeddable into a geodesic metric space (Bonk and Schramm, 2000).

- Gromov product similarity

Given a metric space (X, d) with a fixed point $x_{0} \in X$, the Gromov product similarity (or Gromov product, covariance, overlap function) (.) $)_{x_{0}}$ is a similarity on X defined by

$$
(x . y)_{x_{0}}=\frac{1}{2}\left(d\left(x, x_{0}\right)+d\left(y, x_{0}\right)-d(x, y)\right) .
$$

The triangle inequality for d implies $(x . y)_{x_{0}} \geq(x . z)_{x_{0}}+(y . z)_{x_{0}}-(z . z)_{x_{0}}$ (covariance triangle inequality), i.e., the sharp triangle inequality for a protometric $-(x . y)_{x_{0}}$.
If (X, d) is a tree, then $(x . y)_{x_{0}}=d\left(x_{0},[x, y]\right)$. If (X, d) is a measure semimetric space, i.e., $d(x, y)=\mu(x \Delta y)$ for a Borel measure μ on X, then $(x . y)_{\emptyset}=$ $\mu(x \cap y)$. If d is a distance of negative type, i.e., $d(x, y)=d_{E}^{2}(x, y)$ for a subset X of a Euclidean space \mathbb{E}^{n}, then $(x . y)_{0}$ is the usual inner product on \mathbb{E}^{n}.
Cf. Farris transform metric $d_{x_{0}}(x, y)=C-(x . y)_{x_{0}}$ in Chap. 4.

- Cross-difference

Given a metric space (X, d) and quadruple (x, y, z, w) of its points, the crossdifference is the real number $c d$ defined by

$$
c d(x, y, z, w)=d(x, y)+d(z, w)-d(x, z)-d(y, w)
$$

In terms of the Gromov product similarity, for all $x, y, z, w, p \in X$, it holds

$$
\frac{1}{2} c d(x, y, z, w)=-(x . y)_{p}-(z \cdot w)_{p}+(x . z)_{p}+(y . w)_{p}
$$

in particular, it becomes $(x . y)_{p}$ if $y=w=p$.

Given a metric space (X, d) and quadruple (x, y, z, w) of its points with $x \neq z$ and $y \neq w$, the cross-ratio is the real number $c r$ defined by

$$
\operatorname{cr}(x, y, z, w)=\frac{d(x, y) d(z, w)}{d(x, z) d(y, w)} \geq 0 .
$$

- $2 k$-gonal distance

A $2 k$-gonal distance d is a distance on X which satisfies, for all distinct elements $x_{1}, \ldots, x_{n} \in X$, the $2 k$-gonal inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=0$ and $\sum_{i=1}^{n}\left|b_{i}\right|=2 k$.

- Distance of negative type

A distance of negative type d is a distance on X which is $2 k$-gonal for any $k \geq 1$, i.e., satisfies the negative type inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=0$, and for all distinct elements $x_{1}, \ldots, x_{n} \in X$. A distance can be of negative type without being a semimetric. Cayley proved that a metric d is an L_{2}-metric if and only if d^{2} is a distance of negative type.

- $(2 k+1)$-gonal distance

A $(2 k+1)$-gonal distance d is a distance on X which satisfies, for all distinct elements $x_{1}, \ldots, x_{n} \in X$, the $(2 k+1)$-gonal inequality

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=1$ and $\sum_{i=1}^{n}\left|b_{i}\right|=2 k+1$.
The $(2 k+1)$-gonal inequality with $k=1$ is the usual triangle inequality. The $(2 k+1)$-gonal inequality implies the $2 k$-gonal inequality.

- Hypermetric

A hypermetric d is a distance on X which is $(2 k+1)$-gonal for any $k \geq 1$, i.e., satisfies the hypermetric inequality (Deza, 1960)

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

for all $b \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} b_{i}=1$, and for all distinct elements $x_{1}, \ldots, x_{n} \in X$.
Any hypermetric is a semimetric, a distance of negative type and, moreover, it can be isometrically embedded into some n-sphere \mathbb{S}^{n} with squared Euclidean distance. Any L_{1}-metric (cf. L_{p}-metric in Chap. 5) is a hypermetric.

- P-metric

A P-metric d is a metric on X with values in $[0,1]$ which satisfies the correlation triangle inequality

$$
d(x, y) \leq d(x, z)+d(z, y)-d(x, z) d(z, y) .
$$

The equivalent inequality $1-d(x, y) \geq(1-d(x, z))(1-d(z, y))$ expresses that the probability, say, to reach x from y via z is either equal to $(1-d(x, z))(1-$ $d(z, y)$) (independence of reaching z from x and y from z), or greater than it (positive correlation). A metric is a P-metric if and only if it is a Schoenberg transform metric (cf. Chap. 4).

1.2 Main Distance-Related Notions

- Metric ball

Given a metric space (X, d), the metric ball (or closed metric ball) with center $x_{0} \in X$ and radius $r>0$ is defined by $\bar{B}\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}$, and the open metric ball with center $x_{0} \in X$ and radius $r>0$ is defined by $B\left(x_{0}, r\right)=$ $\left\{x \in X: d\left(x_{0}, x\right)<r\right\}$.
The metric sphere with center $x_{0} \in X$ and radius $r>0$ is defined by $S\left(x_{0}, r\right)=$ $\left\{x \in X: d\left(x_{0}, x\right)=r\right\}$.
For the norm metric on an n-dimensional normed vector space $(V,\|\|$.$) , the$ metric ball $\bar{B}^{n}=\{x \in V:\|x\| \leq 1\}$ is called the unit ball, and the set $S^{n-1}=$ $\{x \in V:\|x\|=1\}$ is called the unit sphere. In a two-dimensional vector space, a metric ball (closed or open) is called a metric disk (closed or open, respectively).

- Metric hull

Given a metric space (X, d), let M be a bounded subset of X.
The metric hull $H(M)$ of M is the intersection of all metric balls containing M. The set of surface points $S(M)$ of M is the set of all $x \in H(M)$ such that x lies on the sphere of one of the metric balls containing M.

- Distance-invariant metric space

A metric space (X, d) is distance-invariant if all metric balls $\bar{B}\left(x_{0}, r\right)=\{x \in$ $\left.X: d\left(x_{0}, x\right) \leq r\right\}$ of the same radius have the same number of elements.
Then the growth rate of a metric space (X, d) is the function $f(n)=|\bar{B}(x, n)|$. (X, d) is a metric space of polynomial growth if there are some positive constants k, C such that $f(n) \leq C n^{k}$ for all $n \geq 0$. Cf. graph of polynomial growth, including the group case, in Chap. 15.
For a metrically discrete metric space (X, d) (i.e., with $a=$ $\inf _{x, y \in X, x \neq y} d(x, y)>0$), its growth rate was defined also (Gordon, Linial and Rabinovich, 1998) by

$$
\max _{x \in X, r \geq 2} \frac{\log |\bar{B}(x, a r)|}{\log r}
$$

- Ahlfors q-regular metric space

A metric space (X, d) endowed with a Borel measure μ is called Ahlfors q-regular if there exists a constant $C \geq 1$ such that for every ball in (X, d) with radius $r<\operatorname{diam}(X, d)$ it holds

$$
C^{-1} r^{q} \leq \mu\left(\bar{B}\left(x_{0}, r\right)\right) \leq C r^{Q} .
$$

If such an (X, d) is locally compact, then the Hausdorff q-measure can be taken as μ.

- Closed subset of metric space

Given a subset M of a metric space (X, d), a point $x \in X$ is called a limit point of M (or accumulation point) if every open metric ball $B(x, r)=\{y \in X$: $d(x, y)<r\}$ contains a point $x^{\prime} \in M$ with $x^{\prime} \neq x$. The closure of M, denoted by \bar{M}, is the set M together with all its limit points. The subset M is called closed if $M=\bar{M}$.
A closed subset M is perfect if every point of M is a limit point of M.
Every point of M which is not a limit point of M, is called an isolated point. The interior $\operatorname{int}(M)$ of M is the set of all its isolated points; the exterior $\operatorname{ext}(M)$ of M is $\operatorname{int}(X \backslash M)$ and the boundary $\vartheta(M)$ of M is $X \backslash(\operatorname{int}(M) \cup \operatorname{ext}(M))$.
A subset M is called topologically discrete if $M=\operatorname{int}(M)$.

- Open subset of metric space

A subset M of a metric space (X, d) is called open if, given any point $x \in M$, the open metric ball $B(x, r)=\{y \in X: d(x, y)<r\}$ is contained in M for some positive number r. The family of open subsets of a metric space forms a natural topology on it.
An open subset of a metric space is called clopen if it is closed. An open subset of a metric space is called a domain if it is connected.
A door space is a metric (in general, topological) space in which every subset is either open or closed.

- Connected metric space

A metric space (X, d) is called connected if it cannot be partitioned into two nonempty open sets. Cf. connected space in Chap. 2.
The maximal connected subspaces of a metric space are called its connected components. A totally disconnected metric space is a space in which all connected subsets are \emptyset and one-point sets.
A path-connected metric space is a connected metric space such that any two its points can be joined by an arc (cf. metric curve).

- Cantor connected metric space

A metric space (X, d) is called Cantor connected (or pre-connected) if, for any two its points x, y and any $\epsilon>0$, there exists an ϵ-chain joining them, i.e., a sequence of points $x=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=y$ such that $d\left(z_{k}, z_{k+1}\right) \leq \epsilon$ for every $0 \leq k \leq n$. A metric space (X, d) is Cantor connected if and only if it cannot be partitioned into two remote parts A and B, i.e., such that $\inf \{d(x, y): x \in A$, $y \in B\}>0$.

The maximal Cantor connected subspaces of a metric space are called its Cantor connected components. A totally Cantor disconnected metric is the metric of a metric space in which all Cantor connected components are one-point sets.

- Indivisible metric space

A metric space (X, d) is called indivisible if it cannot be partitioned into two parts, neither of which contains an isometric copy of (X, d). Any indivisible metric space with $|X| \geq 2$ is infinite, bounded and totally Cantor disconnected (Delhomme, Laflamme, Pouzet and Sauer, 2007).
A metric space (X, d) is called an oscillation stable metric space (Nguyen Van Thé, 2006) if, given any $\epsilon>0$ and any partition of X into finitely many pieces, the ϵ-neighborhood of one of the pieces includes an isometric copy of (X, d).

- Metric topology

A metric topology is a topology on X induced by a metric d on X; cf. equivalent metrics.
More exactly, given a metric space (X, d), define the open set in X as an arbitrary union of (finitely or infinitely many) open metric balls $B(x, r)=\{y \in X$: $d(x, y)<r\}, x \in X, r \in \mathbb{R}, r>0$. A closed set is defined now as the complement of an open set. The metric topology on (X, d) is defined as the set of all open sets of X. A topological space which can arise in this way from a metric space is called a metrizable space (cf. Chap. 2).
Metrization theorems are theorems which give sufficient conditions for a topological space to be metrizable.
On the other hand, the adjective metric in several important mathematical terms indicates connection to a measure, rather than distance, for example, metric Number Theory, metric Theory of Functions, metric transitivity.

- Equivalent metrics

Two metrics d_{1} and d_{2} on a set X are called equivalent if they define the same topology on X, i.e., if, for every point $x_{0} \in X$, every open metric ball with center at x_{0} defined with respect to d_{1}, contains an open metric ball with the same center but defined with respect to d_{2}, and conversely.
Two metrics d_{1} and d_{2} are equivalent if and only if, for every $\epsilon>0$ and every $x \in X$, there exists $\delta>0$ such that $d_{1}(x, y) \leq \delta$ implies $d_{2}(x, y) \leq \epsilon$ and, conversely, $d_{2}(x, y) \leq \delta$ implies $d_{1}(x, y) \leq \epsilon$.
All metrics on a finite set are equivalent; they generate the discrete topology.

- Metric betweenness

The metric betweenness of a metric space (X, d) is (Menger, 1928) the set of all ordered triples (x, y, z) such that x, y, z are (not necessarily distinct) points of X for which the triangle equality $d(x, y)+d(y, z)=d(x, z)$ holds.

- Closed metric interval

Given two different points $x, y \in X$ of a metric space (X, d), the closed metric interval between them is the set

$$
I(x, y)=\{z \in X: d(x, y)=d(x, z)+d(z, y)\}
$$

of the points z, for which the triangle equality (or metric betweenness (x, z, y)) holds. Cf. examples in Chap. 5 (inner product space) and Chap. 15 (graphgeodetic metric).

- Underlying graph of a metric space

The underlying graph (or neighborhood graph) of a metric space (X, d) is a graph with the vertex-set X and $x y$ being an edge if $I(x, y)=\{x, y\}$, i.e., there is no third point $z \in X$, for which $d(x, y)=d(x, z)+d(z, y)$.

- Distance monotone metric space

A metric space (X, d) is called distance monotone if any interval $I\left(x, x^{\prime}\right)$ is closed, i.e., for any $y \in X \backslash I\left(x, x^{\prime}\right)$, there exists $x^{\prime \prime} \in I\left(x, x^{\prime}\right)$ with $d\left(y, x^{\prime \prime}\right)>$ $d\left(x, x^{\prime}\right)$.

- Metric triangle

Three distinct points $x, y, z \in X$ of a metric space (X, d) form a metric triangle if the closed metric intervals $I(x, y), I(y, z)$ and $I(z, x)$ intersect only in the common endpoints.

- Metric space having collinearity

A metric space (X, d) has collinearity if for any $\epsilon>0$ each of its infinite subsets contains distinct ϵ-collinear (i.e., with $d(x, y)+d(y, z)-d(x, z) \leq \epsilon$) points x, y, z.

- Modular metric space

A metric space (X, d) is called modular if, for any three different points $x, y, z \in$ X, there exists a point $u \in I(x, y) \cap I(y, z) \cap I(z, x)$. This should not be confused with modular distance in Chap. 10 and modulus metric in Chap. 6.

- Median metric space

A metric space (X, d) is called a median metric space if, for any three points $x, y, z \in X$, there exists a unique point $u \in I(x, y) \cap I(y, z) \cap I(z, x)$.
Any median metric space is an L_{1}-metric; cf. L_{p}-metric in Chap. 5 and median graph in Chap. 15.
A metric space (X, d) is called an antimedian metric space if, for any three points $x, y, z \in X$, there exists a unique point $u \in X$ maximizing $d(x, u)+$ $d(y, u)+d(z, u)$.

- Metric quadrangle

Four different points $x, y, z, u \in X$ of a metric space (X, d) form a metric quadrangle if $x, z \in I(y, u)$ and $y, u \in I(x, z)$; then $d(x, y)=d(z, u)$ and $d(x, u)=d(y, z)$.
A metric space (X, d) is called weakly spherical if, for any three different points $x, y, z \in X$ with $y \in I(x, z)$, there exists $u \in X$ such that x, y, z, u form a metric quadrangle.

- Metric curve

A metric curve (or, simply, curve) γ in a metric space (X, d) is a continuous mapping $\gamma: I \rightarrow X$ from an interval I of \mathbb{R} into X. A curve is called an arc (or path, simple curve) if it is injective. A curve $\gamma:[a, b] \rightarrow X$ is called a Jordan curve (or simple closed curve) if it does not cross itself, and $\gamma(a)=\gamma(b)$.

The length of a curve $\gamma:[a, b] \rightarrow X$ is the number $l(\gamma)$ defined by

$$
l(\gamma)=\sup \left\{\sum_{1 \leq i \leq n} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right): n \in \mathbb{N}, a=t_{0}<t_{1}<\cdots<t_{n}=b\right\} .
$$

A rectifiable curve is a curve with a finite length. A metric space (X, d), where every two points can be joined by a rectifiable curve, is called a quasi-convex metric space (or, specifically, C-quasi-convex metric space) if there exists a constant $C \geq 1$ such that every pair $x, y \in X$ can be joined by a rectifiable curve of length at most $C d(x, y)$. If $C=1$, then this length is equal to $d(x, y)$, i.e., (X, d) is a geodesic metric space (cf. Chap. 6).
In a quasi-convex metric space (X, d), the infimum of the lengths of all rectifiable curves, connecting $x, y \in X$ is called the internal metric.
The metric d on X is called the intrinsic metric (and then (X, d) is called a length space) if it coincides with the internal metric of (X, d).
If, moreover, any pair x, y of points can be joined by a curve of length $d(x, y)$, the metric d is called strictly intrinsic, and the length space (X, d) is a geodesic metric space. Hopf and Rinow, 1931, showed that any complete locally compact length space is geodesic and proper. The punctured plane $\left(\mathbb{R}^{2} \backslash\{0\},\|x-y\|_{2}\right)$ is locally compact and path-connected but not geodesic: the distance between $(-1,0)$ and $(1,0)$ is 2 but there is no geodesic realizing this distance.
The metric derivative of a metric curve $\gamma:[a, b] \rightarrow X$ at a limit point t of $[a, b]$ is, if it exists,

$$
\lim _{s \rightarrow 0} \frac{d(\gamma(t+s), \gamma(t))}{|s|}
$$

It is the rate of change, with respect to t, of the length of the curve at almost every point, i.e., a generalization of the notion of speed to metric spaces.

- Geodesic

Given a metric space (X, d), a geodesic is a locally shortest metric curve, i.e., it is a locally isometric embedding of \mathbb{R} into X; cf. Chap. 6.
A subset S of X is called a geodesic segment (or metric segment, shortest path, minimizing geodesic) between two distinct points x and y in X, if there exists a segment (closed interval) $[a, b]$ on the real line \mathbb{R} and an isometric embedding $\gamma:[a, b] \rightarrow X$, such that $\gamma[a, b]=S, \gamma(a)=x$ and $\gamma(b)=y$.
A metric straight line is a geodesic which is minimal between any two of its points; it is an isometric embedding of the whole of \mathbb{R} into X. A metric ray and metric great circle are isometric embeddings of, respectively, the half-line $\mathbb{R}_{\geq 0}$ and a circle $S^{1}(0, r)$ into X.
A geodesic metric space (cf. Chap. 6) is a metric space in which any two points are joined by a geodesic segment. If, moreover, the geodesic is unique, the space is called totally geodesic (or uniquely geodesic).
A geodesic metric space (X, d) is called geodesically complete if every geodesic is a subarc of a metric straight line. If (X, d) is a complete metric space, then it is geodesically complete. The punctured plane $\left(\mathbb{R}^{2} \backslash\{0\},\|x-y\|_{2}\right)$ is not
geodesically complete: any geodesic going to 0 is not a subarc of a metric straight line.

- Length spectrum

Given a metric space (X, d), a closed geodesic is a map $\gamma: \mathbb{S}^{1} \rightarrow X$ which is locally minimizing around every point of \mathbb{S}^{1}.
If (X, d) is a compact length space, its length spectrum is the collection of lengths of closed geodesics. Each length is counted with multiplicity equal to the number of distinct free homotopy classes that contain a closed geodesic of such length. The minimal length spectrum is the set of lengths of closed geodesics which are the shortest in their free homotopy class. Cf. the distance list.

- Systole of metric space

For any compact metric space (X, d) its systole $\operatorname{sys}(X, d)$ is the length of the shortest noncontractible loop in X; such a loop is necessarily a closed geodesic. So, $\operatorname{sys}(X, d)=0$ exactly if (X, d) is simply connected. Cf. connected space in Chap. 2.
If (X, d) is a graph with path metric, then its systole is referred to as the girth.
If (X, d) is a closed surface, then its systolic ratio is defined to be the ratio $\frac{\operatorname{sys}^{2}(X, d)}{\text { area }(X, d)}$.

- Shankar-Sormani radii

Given a geodesic metric space (X, d), Shankar and Sormani, 2009, defined its unique injectivity radius $\operatorname{Uirad}(X)$ as the supremum over all $r \geq 0$ such that any two points at distance at most r are joined by a unique geodesic, and its minimal radius $\operatorname{Mrad}(X)$ as $\inf _{p \in X} d(p, \operatorname{MinCut}(p))$.
Here the minimal cut locus of $p \operatorname{MinCut}(p)$ is the set of points $q \in X$ for which there is a geodesic γ running from p to q such that γ extends past q but is not minimizing from p to any point past q. If (X, d) is a Riemannian space, then the distance function from p is a smooth function except at p itself and the cut locus. Cf. medial axis and skeleton in Chap. 21.
It holds $\operatorname{Uirad}(X) \leq \operatorname{Mrad}(X)$ with equality if (X, d) is a Riemannian space in which case it is the injectivity radius. It holds $\operatorname{Uirad}(X)=\infty$ for a flat disk but $\operatorname{Mrad}(X)<\infty$ if (X, d) is compact and at least one geodesic is extendible.

- Geodesic convexity

Given a geodesic metric space (X, d) and a subset $M \subset X$, the set M is called geodesically convex (or convex) if, for any two points of M, there exists a geodesic segment connecting them which lies entirely in M; the space is strongly convex if such a segment is unique and no other geodesic connecting those points lies entirely in M. The space is called locally convex if such a segment exists for any two sufficiently close points in M.
For a given point $x \in M$, the radius of convexity is $r_{x}=\sup \{r \geq 0: B(x, r) \subset$ $M\}$, where the metric ball $B(x, r)$ is convex. The point x is called the center of mass of points $y_{1}, \ldots, y_{k} \in M$ if it minimizes the function $\sum_{i} d\left(x, y_{i}\right)^{2}$ (cf. Frechét mean); such point is unique if $d\left(y_{i}, y_{j}\right)<r_{x}$ for all $1 \leq i<j \leq k$.
The injectivity radius of the set M is the supremum over all $r \geq 0$ such that any two points in M at distance $\leq r$ are joined by unique geodesic segment which lies entirely in M. The Hawaiian Earring is a compact complete metric space
consisting of a collection of circles of radius $\frac{1}{i}$ for each $i \in \mathbb{N}$ all joined at a common point; its injectivity radius is 0 . It is path-connected but not simply connected.
The set $M \subset X$ is called a totally convex metric subspace of (X, d) if, for any two points of M, any geodesic segment connecting them lies entirely in M.

- Busemann convexity

A geodesic metric space (X, d) is called Busemann convex (or globally nonpositively Busemann curved) if, for any three points $x, y, z \in X$ and midpoints $m(x, z)$ and $m(y, z)$ (i.e., $d(x, m(x, z))=d(m(x, z), z)=\frac{1}{2} d(x, z)$ and $\left.d(y, m(y, z))=d(m(y, z), z)=\frac{1}{2} d(y, z)\right)$, there holds

$$
d(m(x, z), m(y, z)) \leq \frac{1}{2} d(x, y) .
$$

Equivalently, the distance $D\left(c_{1}, c_{2}\right)$ between any geodesic segments $c_{1}=\left[a_{1}, b_{1}\right]$ and $c_{2}=\left[a_{2}, b_{2}\right]$ is a convex function; cf. metric between intervals in Chap. 10. (A real-valued function f defined on an interval is called convex if $f(\lambda x+$ $(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$ for any x, y and $\lambda \in(0,1)$.)
The flat Euclidean strip $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1\right\}$ is Gromov hyperbolic but not Busemann convex. In a complete Busemann convex metric space any two points are joined by a unique geodesic segment.
A metric space is CAT(0) (cf. Chap. 6) if and only if it is Busemann convex and Ptolemaic (Foertsch, Lytchak and Schroeder, 2007).
A geodesic metric space (X, d) is Busemann locally convex (Busemann, 1948) if the above inequality holds locally. Any geodesic locally CAT(0) metric space (cf. Chap. 6) is Busemann locally convex, and any geodesic CAT(0) metric space is Busemann convex but not vice versa.

- Menger convexity

A metric space (X, d) is called Menger convex if, for any different points $x, y \in$ X, there exists a third point $z \in X$ for which $d(x, y)=d(x, z)+d(z, y)$, i.e., $|I(x, y)|>2$ holds for the closed metric interval $I(x, y)=\{z \in X:(x, y)=$ $d(x, z)+d(z, y)\}$. It is called strictly Menger convex if such a z is unique for all $x, y \in X$.
Geodesic convexity implies Menger convexity. The converse holds for complete metric spaces.
A subset $M \subset X$ is called (Menger, 1928) a d-convex set (or interval-convex set) if $I(x, y) \subset M$ for any different points $x, y \in M$. A function $f: M \rightarrow \mathbb{R}$ defined on a d-convex set $M \subset X$ is a d-convex function if for any $z \in I(x, y) \subset M$

$$
f(z) \leq \frac{d(y, z)}{d(x, y)} f(x)+\frac{d(x, z)}{d(x, y)} f(y) .
$$

A subset $M \subset X$ is a gated set if for every $x \in X$ there exists a unique $x^{\prime} \in M$, the gate, such that $d(x, y)=d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y\right)$ for $y \in M$. Any such set is d-convex.

